spin-orbit effects in semiconductor quantum dots departament de física, universitat de les illes...

32
Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA (CSIC-UIB) Palma de Mallorca (SPAIN) Llorenç Serra Outline: Introduction: experimental motivation Level structure in horizontal B Vertical B: spin precession Far Infrared absorption Confinement induced by SO Collaborators: Manuel Valín-Rodríguez (Mallorca) Antonio Puente (Mallorca) Enrico Lipparini (Trento)

Post on 19-Dec-2015

224 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA

Spin-orbit effects in semiconductor quantum dots

Departament de Física, Universitat de les Illes BalearsInstitut Mediterrani d’Estudis Avançats IMEDEA (CSIC-UIB)

Palma de Mallorca (SPAIN)

Llorenç Serra

Outline: Introduction: experimental motivation Level structure in horizontal B Vertical B: spin precession Far Infrared absorption Confinement induced by SO

Collaborators: Manuel Valín-Rodríguez (Mallorca) Antonio Puente (Mallorca) Enrico Lipparini (Trento)

Page 2: Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA

Introduction: experimental motivation

Experiments: level splittings of 1-electron quantum dots in B||

Hanson et al, PRL 91,196802 (2003)

Page 3: Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA

Potok et al, PRL 91, 016802 (2003)

spli

ttin

g ( e

V )

B|| (T)

| g | = 0.37

| g | = 0.44

Page 4: Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA

Origin of the deviations ?

* Extension of the wf’s in AlGaAs region (g=+0.4)

* Nuclear polarization effects (hyperfine)

* Non parabolicity of the bands

What is the role of typical spin-orbit couplings of semiconductors?

Page 5: Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA

I. QD levels in a horizontal B

Model of spatial confinement: 2D representation (strong z confinement) effective mass model (GaAs conduction band) parabolic potential in xy plane

The Zeeman term: bulk GaAs gyromagnetic factor Bohr magneton Pauli matrices

)( *2

1

* 2222

0

22

yxmm

ppH yx

xy

)(* 2

1yyxxBZ BBgH

meV

067.0*

0

emm

44.0* g

cme

eB 2

yx ,

B

x

y

z

Page 6: Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA

The Zeeman scenario

number) quantum(spin 1

number) quantum( ... , 2 , 1 , 0

number) quantum (principal ... , 2 , 1 , 0

*2

1 )12( 0

s

L

n

sBgn

z

Bsn

eigenstates: Laguerre polynomials eigenspinors in direction of B

sp energy levels

Bg Bs * spin splitting

Page 7: Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA

Natural units:

e

cm

m

* field

*length

energy

0

00

0

Bg Bs *

),,( sn

Page 8: Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA

The SO coupling terms

σVcm

p

4 22

conduction band (3D)

ii

zyxippp iiii

3

; ),,( 3,2,1 ; )( 2

22

1

* linear Dresselhaus term (bulk asymmetry)

in 2D quantum wells [001]:

2

0

2

zk zD

)( yyxxD

D pp

( z0 vertical width )

coupling constant

Page 9: Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA

* Rashba term (nanostructure z asymmetry) )( yxxyR

R pp

eR 0 ( vertical electric field )

Rashba and Dresselhaus terms:

* used to analyze the conductance of quantum wells and large (chaotic) dots

R and D uncertain in nanostructures (sample dependent!)in GaAs 2DEG’s: 5 meVÅ - 50 meVÅ

* tunability of the Rashba strength with external fields (basis of spintronic devices)

We shall treat R and D as parameters

Page 10: Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA

No exact solution with SO, but analytical approximations in limits:

a) Weak SO in zero field 0, ; 0 DRZ

smm

n RDRDsn

*

*

)12( 222

2220

fine structure: zero-field up-down splitting !

Kramers degeneracy

*

2 222 RDs

m

),,(),,( snsn

2nd order degenerate pert. theory

an alternative method: unitary transformation

)O( todiagonal is

~

) ()( exp

3

UU

yxxyiU yxDyxR

ZDRxy )(

Page 11: Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA

b) Weak SO in large field

)12( 1 1

2

*

22)0(

zns

z

FG

msnsn

)2(sin 2

)2(sin 2

22

22

0

DRDR

DRDR

B

F

G

ω

Bg*μz

definitions

- new fine structure of the major shell- ( dependence) anisotropy!

Intermediate cases only numerically, - xy grid - Fock-Darwin basis

ZDR ,

ZDR ,

Page 12: Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA

Parameters:

00

00

1.0

2.0

deg45

R

D

θ

00R

0

R0

15.0

T 58.0 Å; 330

meVÅ 05 and meV 1 if Typical?

Typical level spectra with SO ),,( sn

Page 13: Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA

Anisotropy of first two shells at large B

Isotropic when only one source

Symmetry!

σB *2

1

)/exp(-i operator symmetry

us)(Dresselha

(Rashba)

0 ,

r,

,,

BDRxy

zzD

zzR

DRDR

g

SL

SL

Position of gap minima depend on

)(sgn DR

20B

Page 14: Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA

)](min[)](max[

:(blue) anisotropy

:(red) splitting averaged-

0.2948 :Zeeman

20when

0

B

anisotropy + zero field splitting + position of minima QD energy levels could determine the lambda’s

(need high accuracy!)

Systematics of first-shell gap

Page 15: Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA

In physical units:

below Zeeman |g*|B B (level repulsion)

0 dependence|g*|B B

Page 16: Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA

Second shell:

two gaps (inner, outer)zero field value0 dependence

Page 17: Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA

Experimental results from QD conductance: 1 electron occupancy

Potok et al., Phys. Rev Lett. 91, 018802 (2003)

Hanson et al., Phys. Rev Lett. 91, 196802 (2003)

BUT: zero field splitting of 2nd shell? - anisotropies?

spli

ttin

g ( e

V )

B|| (T)

| g | = 0.37

| g | = 0.44

Page 18: Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA

SO effects in GaAs are close to the observations BUT only for a given B orientation.

Determination of the angular anisotropy and zero field splittingsare important to check the relevance of SO in these experiments.

M. Valín-Rodríguez et al. Eur. Phys. J. B 39, 87 (2004)

Page 19: Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA

II. QD levels in a vertical B

As before, the Zeeman term:

DRxy ; ;

zBZ BgH * 2

1

B

x

y

z

BUT now, B also in spatial parts:

xc

eB

yiPp

yc

eB

xiPp

yy

xx

Symmetric gauge

Page 20: Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA

energy levels (without SO)

parabola effective 4

frequencycyclotron *

*2

1

2

1

4 )12(

220

220

c

c

Bcc

sn

cm

eB

sBgn

at large field

bands)(Landau *2

1

2

)12(

0

sBgn

Bcsn

c

SO coupling redefines magnetic field weak SO (unitary tranformation)

sBgn

sm

Bscsc

sn

RDcscc

*2

1

2

1

4 )12(

*2

,

2,2

0

223,

ZDRxy ,

Page 21: Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA

Spin precession without SO: The Larmor theorem

spin precessing *

eq. Heisenberg ,

BgSSdt

d

HSSdt

di

B

The Larmor frequency

*

Bg B

L

sL equals the spin-flip gap

Spin precession with SO

4

)12(

*

*2

220

22

322

3c

cRDRDLsP n

mm

Page 22: Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA

spin-flip (precessional) transition (N = 7, 9, 11)

Page 23: Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA

Real time simulations

No interaction

Page 24: Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA

Real time simulations:

time-dependent LSDA

),(δ

][δ),',(

),(

' e

),(

'

'

2

t

EtV

tdtV

XCXC

H

rr

r'-r

r'rr

Page 25: Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA

M. Valín-Rodríguez et al. Phys. Rev. B 66, 235322 (2002)

ÅmeV 04D

ÅmeV 011D

LSDAmeV 60

Page 26: Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA

Deformation allows the transition between Kramers conjugates at B=0

x

y

yx yxm

2222*2

1

Page 27: Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA

LSDA

M. Valín-Rodríguez et al. Phys. Rev. B 69, 085306 (2004)

Page 28: Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA

Strong variation with tilting angle:

meVÅ 80

meVÅ 35

9.0

meV 62/)(

R

R

yx

Page 29: Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA

Far Infrared Absorption (without Coulomb interaction):

splitting of the Kohn mode

222

00*

)(

mRD

at B=0

Page 30: Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA

Far Infrared Absorption with Coulomb interaction: restores Kohn mode (fragmented)characteristic spin and density oscillation patterns

at B=0

Page 31: Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA

Confinement induced by SO modulation:

Rashba term )(rRR )(iR)(e

R

bulk bands

... ,2

3 ,

2

1

)()(

jJ z

eR

iR

localized states

Page 32: Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA

Conclusions:

* In horizontal fields SO effects are small, but they are close to recent observations. Zero field splittings and anisotropies are also predicted. * In vertical fields the SO-induced modifications of the g-factors are quiteimportant.

* Possibility of confinement induced by SO ?