spherical dome 2013 m

Upload: rahulgehlot2008

Post on 07-Jul-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Spherical Dome 2013 m

    1/39

    Design of Spherical Shells (Domes)

    The Islamic University of Gaza

    Department of Civil EngineeringENGC 6353

  • 8/18/2019 Spherical Dome 2013 m

    2/39

    Shell Structure

    A thin shell is defined as a shell with a relatively small

    thickness, compared with its other dimensions.

  • 8/18/2019 Spherical Dome 2013 m

    3/39

    Shell Structure

  • 8/18/2019 Spherical Dome 2013 m

    4/39

    Four commonly occurring Shell Types:

    Hyperbolic Paraboloid (Hypar)

    Dome

    Barrel Vault

    Folded Plate

  • 8/18/2019 Spherical Dome 2013 m

    5/39

    To answer this question, we have to investigate some important notionsof structural design.

    What is a shell structure?

  • 8/18/2019 Spherical Dome 2013 m

    6/39

    Two-dimensional structures: beams and arches

     A beam responds to loading by bending

    the top elements of the beam are

    compressed and the bottom is extended:the development of internal tension andcompression is necessary to resist theapplied vertical loading.

     An arch responds to loading bycompressing.

    The elements through the thickness ofthe arch are being compressedapproximately equally. Note that thereis some bending also present.

  • 8/18/2019 Spherical Dome 2013 m

    7/39

    Plate Bending

     A plate responds to transverse loads by bending

    This is a fundamentally inefficient use of material, by analogy tothe beam. Moreover, bending introduces tension into theconvex side of the bent plate.

  • 8/18/2019 Spherical Dome 2013 m

    8/39

    Plate bending vs. membrane stresses

    This slide shows a concrete plate of 6”thickness, spanning 100 feet, resistingits own weight by plate bending

    If the plate is shaped into a box,then each of the sides of the boxresists bending by the developmentof membrane stresses. The box

    structure is much stronger andstiffer!

    Note: this is an experiment you can try yourself by folding a sheetof paper into a box.

  • 8/18/2019 Spherical Dome 2013 m

    9/39

     A shell is shaped so that it will develop membrane

    stresses in response to loads

    The half-dome shell responds to transverse loads by development ofmembrane forces. Note that lines on the shell retain approximately theiroriginal shape.

    Domes

  • 8/18/2019 Spherical Dome 2013 m

    10/39

    Domes

    The primary response of a dome to loading is development of membranecompressive stresses along the meridians, by analogy to the arch.

    The dome also develops compressive or tensile membrane stresses alonglines of latitude. These are known as ‘hoop stresses’ and are tensile at the

    base and compressive higher up in the dome.

    Meridional Compressive Stress

    Circumferential Hoop Stress(comp.)

    Circumferential Hoop Stress (tens.)

  • 8/18/2019 Spherical Dome 2013 m

    11/39

    The half-dome shell does develop membrane tensile stresses, below about50 ‘north latitude.’ These are also known as ‘hoop stresses’ 

    In this figure, the blue colorrepresents zones ofcompressive stress only.The colors beyond bluerepresent circumferential

    tensile stresses, intensifyingas the colors move towardsthe red.

     A dome that is a segment of

    a sphere not includinglatitudes less than 50 doesnot develop significant hooptension.

  • 8/18/2019 Spherical Dome 2013 m

    12/39

    Thin Shell Structures

    Two type of stresses are produced:1. Meridional stresses along the direction of the meridians

    2. Hoop stresses along the latitudes

    Bending stresses are negligible, but become significant when the rise

    of the dome is very small

    (if the rise is less than the about1/8 the base diameter the shell is

    considered as a shallow shell)

  • 8/18/2019 Spherical Dome 2013 m

    13/39

    Thin Shell Structures

    Assumption of Analysis1. Deflection under load are small.

    2. Points on the normal to the middle surface deformationwill remain on the normal after deformation

    3. Shear stresses normal to the middle surface can be neglected

  • 8/18/2019 Spherical Dome 2013 m

    14/39

    Spherical Shells 

    r   a 

    a     

     H 

    N  

    B D 

     A 

    d  

    F     

    N  

    N  +dN 

     

    Internal Forces due to dead load w/m3

    Consider the equilibrium of a ring enclosed between two

    Horizontal section AB and CD

    The weight of the ring ABCD itself acting vertically downward

    The meridional thrust N per unit length acting tangentially at B The reaction thrust N +d N per unit unit length at point D

  • 8/18/2019 Spherical Dome 2013 m

    15/39

    r   a 

    a     

     H 

    N  

     A 

    d  

    F     

    N  

    N  +dN  

     

    2

    2

    2

    Surface area of shell AEB

    21 cos

    2

    2 (1 cos )

    (2 )sin 2 (1 cos )

    sin

     (1 cos ) (1 cos )

    sin (1 cos )(1 cos ) 1 cos

    Meridional Force

     D D

     D

     D

     D D D

     A a EF  EF a

    W w A a EF  

    W w a

     N r w a

    r a

    w a w a w a N 

     N 

     

     

     

      

     

     

     

     

     

     

    +ve compression

    -ve tension

  • 8/18/2019 Spherical Dome 2013 m

    16/39

    Spherical Shells 

    r   a 

    a     

     H 

    N  

     A 

    d  

    F     

    N  

    N  +dN  

     

    N  +dN  

    N  

    d  

    The difference between the and which respectively acts at

    angles and with the horizontal give rise to the hoop force.

    Hoope force =

    The horizontal component of is

    Hoop Force

     N N dN 

     N ad 

     N N 

     N 

     

     

     

     

     

     

     

     

    cos

     causes hoop tension a cos sin

    The horizontal component of +d is +d cos

    +d causes hoop tension

    similar 

      +d cos c

    l

    s

    y

    o

     N N 

     N N N N d 

     N N N N d a d 

     

     

     

     

     

     

     

  • 8/18/2019 Spherical Dome 2013 m

    17/39

    Spherical Shells 

    r   a 

    a     

     H 

    N  

     A 

    d  

    N  

    N  +dN  

     

    N  +dN  

    N  

    d  

    2

    2

    When increasein issmall d tends to be zeroa cos sin

     (1 cos )

    sin

    1 cos cos 1  cos -

    1 cos 1 cos

     D

     D D

     N  N ad d N 

    where

    w a N 

     N w a w a

     

     

     

     

       

     

     

      

     

         

  • 8/18/2019 Spherical Dome 2013 m

    18/39

    Spherical Shells 

    '

    o '

    o '

    1  cos -

    1 cos

    0 ( )2

    90 (when

    )0 51 49

    51 49 willbecompressive

    51 49 will be tensile

    HoopForce

     D

    o

     N w a

    wa At crown N 

     At base N wa N 

    compress

     for N 

     fo

    ion

    tensio

    r N 

    n

     N 

     

     

     

     

     

     

     

      

     

      

     

     

     

  • 8/18/2019 Spherical Dome 2013 m

    19/39

    Spherical Shells 

  • 8/18/2019 Spherical Dome 2013 m

    20/39

    Spherical Shells 

    o '

    max

    coscos

    1 cos

    at 51 49 0 & is maximum

      0.

    Ri

    382

    ngForce H

     D

     D

     H N w a

     N H 

     H w a

     

     

      

     

     

  • 8/18/2019 Spherical Dome 2013 m

    21/39

    Spherical Shells 

    2 2 2

    2 2

    o

    max

    MeridionalForceT

    Hoop Forc

      in

    (1 cos )sin

    2 sin sin in

    2

     cos 2

    2

    coscos

    2

    at 45 0 & H is maximum 0.35

    e

    35

     N

     L L

     L

     L

     L

     L

     L

    W w r w a s

     y ar a

     N a w a s

    w a

     N 

    w a N 

     Ring Tension

     H N w a

     N H w a

     

     

     

     

     

     

     

      

     

     

      

     

    Internal forces due to Live load (w  L/m 2 )horizontal

  • 8/18/2019 Spherical Dome 2013 m

    22/39

    Spherical Shells 

  • 8/18/2019 Spherical Dome 2013 m

    23/39

     In conical shells and flat spherical dome, bending moments

    will be developed due to the big difference between the high

    tensile stress in the foot ring and compressive stresses or lowtensile stress in the adjacent zones of the shell 

  • 8/18/2019 Spherical Dome 2013 m

    24/39

    Ring beam design

     

    max(see the tables of circu

    0.9

    Vertical Uniform load ( ) sin .

    2

    # of supports

    Horizontal Load 

    Vertical L

     

    2

    1

    o d 

     

    a

     

    Design of the Circular Beam

    Ultimate Load 

    s

     y

    ve

    T  A f 

    T H r 

    w N o w

    r Span length l

    P r w

     M C P r 

        

     

     

    max

    lar beams

    (see the tables of circular beams)

     

    2

    )

    ve M C P r   

  • 8/18/2019 Spherical Dome 2013 m

    25/39

     Edge Forces 

     In flat spherical domes, bending moments will be developed due to

    the big difference between the high tensile stress in the foot ring and

    compressive stresses in the adjacent zones 

     It is recommended to use transition curves at the edge and to

    increase the thickness of the shell at the transition curve.

     Bending moments can avoided if the shape of meridian is changed

    in a convenient manner. This change can be done by a transitioncurve, which when well chosen gives a relief to the stress at the foot

    ring.

     In order to decrease the stress due to the forces at the foot ring, it isrecommended to increase the thickness of the shell in the region of

    the transition curve.

  • 8/18/2019 Spherical Dome 2013 m

    26/39

     Edge Forces 

     In flat spherical domes, bending moments will be developed due to

    the big difference between the high tensile stress in the foot ring and

    compressive stresses in the adjacent zones 

     It is recommended to use transition curves at the edge and to

    increase the thickness of the shell at the transition curve.

  • 8/18/2019 Spherical Dome 2013 m

    27/39

     Ring Beam

     At the free edge of the dome, meridian stresses have a large

    horizontal component which is taken care of by providing a ring

    beam there. This ring beam is subjected to hoop tension.

     In case of hemispherical domes, no ring beam are required since

    the meridional thrust is vertical at free end 

  • 8/18/2019 Spherical Dome 2013 m

    28/39

     Reinforcement 

    Steel is generally placed at the center of the thickness of the

    dome along the meridians and latitudes. If all the meridional

    lines are led to the crown, there will be a lot of congestion of bars

    and their proper anchorage may be difficult.

    To overcome this problem, small circle is left at the crown and

    all the meridional steel bars are stopped at this circle. Area

    enclosed by this small circle at the top is reinforced by a separatemesh.

  • 8/18/2019 Spherical Dome 2013 m

    29/39

    Example: Design of a spherical dome

    Design a spherical shell roof for a circular tank 12m indiameter as shown in the figure. Assume the followingloading: Covering material = 50 kg/m2 and LL= 100 kg/m2

    Use ' 2 2300 / 4200 /c ykg cm and f kg cm

    r=6m

    y=1.4m

    a

  • 8/18/2019 Spherical Dome 2013 m

    30/39

    22 2

    2 2 2 2

    2 2 2 2

    2

    6 1.4Radius of the Shell 13.562 2 1.4

    6sin = 0.442

    13.56

    26.23 cos 0.896 tan 0.493

    a r a y

    a r a y ay

    r ya m y

     

     

    r=6m

    y=1.4m

    a

    Loading on roof 

    Assume shell thickness = 10 cm

    Own weight = 0.1(2.5)= 0.25 t/m2

    Covering materials = 0.05 t/m2

    LL= 0.1 t/m2

     Note: the live load is considered as loading per surface area

  • 8/18/2019 Spherical Dome 2013 m

    31/39

    Design of Ring Beam:Wu= 1.2(0.2+0.05)+1.6(0.1)=0.52 t/m2

    Total load on roof =

    2  ayWu=2  (13.56)(1.4)(0.52)=62 ton 

    Vertical Load per meter of cylindrical wall

    =62/(2*6)=1.645 ton/m’

    Outward horizontal force =1.645/tan=3.337 t/m’

    2

    Ring tension in beam

    3.337 5 20

    20*1000 5.350.9 4200

    use 8 10 mm

    s

     y

    T H r tons

    T  cm f  

     

  • 8/18/2019 Spherical Dome 2013 m

    32/39

    Design of the ShellMeridian Force

    Meridian force per unit length of circumference

    2

    s

    1 cos

    0.52*13.560 3.52 / ' (compression)

    2 2

    cos 0.896

    0.52 13.563.72 / ' (compression)

    1 0.896

    Use minimum reinf. ratio = 0.0018

    A 0.0018(10)(100) 1.8

    use 5 8 mm/m

    u

    u

    W a

     N 

    W aat N t m

    at foot 

     N t m

    cm

     

     

     

     

     

     

     

  • 8/18/2019 Spherical Dome 2013 m

    33/39

    Ring (Hoop) Force

    2

    s

    1  cos -

    1 cos

    0.52(13.56)0 3.52 / ' (compression)

    2 2

    cos 0.896 2.59 / ' (compression)

    A 0.0018(10)(100) 1.8use minmum reinf. 5 8 mm/m

    u N w r 

    wr  At crown N t m

     At foot N t m

    cm

     

     

     

      

     

     

     

     

  • 8/18/2019 Spherical Dome 2013 m

    34/39

    22

    6

    min2

    0.6 0.6 13.56 0.15 0.85

    0.52 0.85Fixing moment 0.188 /

    2 2

    15 3 12

    0.85 300 1 2.61 10 0.1881 0.00034200 100 12 300

    use minmum reinf. 5 8 mm/m

    u

     x at cm

    W x M t m

    d cm

       

     

    Bending Moment

    Assume that the thickness at the foot = 15 cm

  • 8/18/2019 Spherical Dome 2013 m

    35/39

    Example: Design of a spherical Dome

    Reinforcement details

    h l h ll d l d

  • 8/18/2019 Spherical Dome 2013 m

    36/39

    Spherical Shells under General Loading 

     Internal Forces Due to Others Loading 

  • 8/18/2019 Spherical Dome 2013 m

    37/39

  • 8/18/2019 Spherical Dome 2013 m

    38/39

  • 8/18/2019 Spherical Dome 2013 m

    39/39