spectrum analysis of b-type stars: stellar parameters and...

46
Fernanda Nieva Fernanda Nieva Spectrum analysis of B Spectrum analysis of B - - type stars: type stars: stellar parameters and abundances stellar parameters and abundances

Upload: others

Post on 31-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Fernanda NievaFernanda Nieva

    Spectrum analysis of BSpectrum analysis of B--type stars: type stars:

    stellar parameters and abundancesstellar parameters and abundances

  • Early BEarly B--type main sequence & giant starstype main sequence & giant stars

    in contrast to cooler B & Astars:

    � no atmospheric difussion

    in contrast to hotter O/ BA

    supergiants:

    � no strong mass loss & winds

    Fernanda Nieva Spectral analysis B stars Brussels, 05.05.2013

  • Which stellar parameters can be derived Which stellar parameters can be derived from the spectrum?from the spectrum?

    1. From spectral lines:effective temperature, surface gravity, micro and macroturbulence, projected rotational velocity, chemical abundances

    2. From stellar flux bolometric correction, color excess, reddening

    3. Combining 1&2 + extra constraints (e.g. evol. mass):distance, mass, luminosity, radius

    Fernanda Nieva Spectral analysis B stars Brussels, 05.05.2013

  • Atomic Atomic PhysicsPhysics

    Model Model AtomsAtoms

    Stellar Stellar AtmospheresAtmospheres

    SpectraSpectra

    Theory: synthetic lines

    Observations

    Absolute physical parameters

    Line fits

    l

    Nor

    m. F

    lux

    Goal: reproducing the whole observed spectrum with 1 set of parameters only ☺☺☺☺

    Result: simultaneous atmospheric parameters & chemical abundances @ high precision (reduced systematic effects)

    Multiple metal ionization equilibria

    Fernanda Nieva Spectral analysis B stars Brussels, 05.05.2013

    Our analysis: Quantitative SpectroscopyOur analysis: Quantitative Spectroscopy

  • Atomic Atomic PhysicsPhysics

    Model Model AtomsAtoms

    Stellar Stellar AtmospheresAtmospheres

    Our analysis: Quantitative SpectroscopyOur analysis: Quantitative Spectroscopy

    Theory: synthetic lines

    Fernanda Nieva Spectral analysis B stars Brussels, 05.05.2013

    SpectraSpectra

    Observations

    ••Partially interactivePartially interactive

    ••Interpolations are automatic within a large gridInterpolations are automatic within a large grid

    ••All elements fitted independentlyAll elements fitted independently

    ••Several manual iterations neededSeveral manual iterations needed

    •• Full control where important decisions have to be takenFull control where important decisions have to be taken

    ••Time consuming (1Time consuming (1--2 stars per day)2 stars per day)

    ••Very reliable resultsVery reliable results

  • NonNon--LTE line formationLTE line formation

    • Level populations: DETAIL• Formal solution: SURFACE

    (Giddings, 1981; Butler & Giddings 1985; updated by K. Butler, LMU)

    • Model atoms

    H (Przybilla & Butler 2004)He I/II (Przybilla 2005)C II/III/IV (Nieva & Przybilla 2006 ApJL, 2008 A&A)O, N, Mg, Al, Ne, Fe & others (Munich group’90s + N. Przybilla + K. Butler)

    Classical model atmospheresClassical model atmospheresplane-parallel, hydrostatic & radiative equilibrium, LTE

    Hybrid non-LTE approach:

    OK for OB main sequence stars(Nieva & Przybilla 2007 A&A)

    radiative transfer & statistical equilibrium

    Fernanda Nieva Spectral analysis B stars Brussels, 05.05.2013

  • Sources of systematic uncertaintiesSources of systematic uncertainties

    Models

    Model atmospheres

    Line formation

    Line blocking

    Atomic data

    Line-broadening theory

    Non-LTE effects

    Observations

    Composite spectra

    Resolution & S/N

    Data reduction

    Normalization

    Continuum

    Blended lines

    Peculiar stars

    Analysis

    Effective temperature

    Surface gravity

    Microturbulence

    “Macroturbulence”

    Projected rotational velocity

    Spectral line selection

    All of them (20) are taken into account here+CNO processed material (evolutionary state)

    Nieva & Przybilla (2009,2010a)

    Fernanda Nieva Spectral analysis B stars Brussels, 05.05.2013

  • Simultaneous fits to most measurable H/He linesSimultaneous fits to most measurable H/He lines

    Data: FEROS, ESO

    H Balmer

    He I

    He II

    HR 3055

    Visual Near IR

    Nieva & Przybilla (2007, A&A)

    He I K-Band

    Data: Subaru, Hawaii

  • Result: fits to most modeled lines (~3800Result: fits to most modeled lines (~3800--5100 5100 ÅÅ))

    Nieva & Przybilla 2012, A&A, 539, A143

    Nieva & Simón-Díaz 2011, A&A, 532, A2

    Fernanda Nieva Spectral analysis B stars Brussels, 05.05.2013

  • Nieva & Przybilla 2012, A&A, 539, A143

    PresentPresent--day abundances in the solar day abundances in the solar neighbourhoodneighbourhood

    O and Si: same abundances from early B-type stars in Orion by Simon-Diaz (2010) (OII)

    O and Mg: same abundances from BA-supergiants in the solar neighbourhood by

    Firnstein & Przybilla (OI)

    Cosmic Abundance Standard (CAS)Cosmic Abundance Standard (CAS)

  • Stellar EvolutionObservational constraints on the (magneto-)hydrodynamic

    mixing of CNO-burning products in massive stars

    In the MS, the lines characterize the nuclear path and the slopedepends only on the initial abundance values, regardless on any other ingredient of the models (mass, rotational velocity, etc.)

    AGSS09

    CAS

    Nieva & Przybilla (2012)Nieva & Simon-Diaz (2011)

    Fernanda Nieva Spectral analysis B stars Brussels, 05.05.2013

  • Galactic Chemical EvolutionOB stars: end point of GCE models

    CAS

    AGSS09AGSS09

    Fernanda Nieva Spectral analysis B stars Brussels, 05.05.2013

  • Galactic Chemical EvolutionOB stars: end point of GCE models

    CAS

    AGSS09

    Nieva & Przybilla (2012)Nieva & Simon-Diaz (2011)

    Fernanda Nieva Spectral analysis B stars Brussels, 05.05.2013

  • Galactic Chemical EvolutionOB stars: end point of GCE models

    CAS

    AGSS09

    Fernanda Nieva Spectral analysis B stars Brussels, 05.05.2013

  • Galactic Chemical EvolutionOB stars: end point of GCE models

    CAS

    AGSS09

    Nieva & Przybilla (2012)Nieva & Simon-Diaz (2011)

    Fernanda Nieva Spectral analysis B stars Brussels, 05.05.2013

  • Sources of systematic uncertaintiesSources of systematic uncertainties

    Models

    Model atmospheres

    Line formation

    Line blocking

    Atomic data

    Line-broadening theory

    Non-LTE effects

    Observations

    Composite spectra

    Resolution & S/N

    Data reduction

    Normalization

    Continuum

    Blended lines

    Peculiar stars

    Analysis

    Effective temperature

    Surface gravity

    Microturbulence

    “Macroturbulence”

    Projected rotational velocity

    Spectral line selection

    +CNO processed material (evolutionary state)

    Examples

    Nieva & Przybilla (2009,2010a)

    Fernanda Nieva Spectral analysis B stars Brussels, 05.05.2013

  • C II λ4267 Ǻ very sensitive to non-LTE (different ab-initio photoionization cross-sections!)

    C II λ5145 Ǻ not sensitive to non-LTE

    -0.8 dex !

    C II model: see also Sigut (1996)

    Nieva & Przybilla (2008, A&A)

    Fernanda Nieva Spectral analysis B stars Brussels, 05.05.2013

  • approximations (standard)

    vs.

    ab-initio (our)

    Nieva & Przybilla (2008, A&A)

    Sensitivity to collisional excitation cross-sections

    Also highly sensitive to collisional ionization

    only approximations: several orders of magnitude

  • ∆∆∆∆Teff : -2000 K

    ∆∆∆∆log g: +0.2 dex

    ∆ξ∆ξ∆ξ∆ξ: +5 km s-1

    Nieva & Przybilla (2008, A&A)

    ∆∆∆∆Teff : up to 4000/6000 K (~15%) from literature !!

    ���� spectroscopic-photometric

    calibrations

    Nieva, M.-F. 2013, A&A, 550, 26

    Fernanda Nieva Spectral analysis B stars Brussels, 05.05.2013

  • ∆∆∆∆Teff : -2000 K

    ∆∆∆∆log g: +0.2 dex

    ∆ξ∆ξ∆ξ∆ξ: +5 km s-1

    Nieva & Przybilla (2008, A&A)

    ~ +1.1 dex!

    ~ -0.4 dex!

    ~+0.4 dex!

    ∆∆∆∆Teff : up to 4000/6000 K (~15%) from literature !!

    ���� spectroscopic-photometric

    calibrations

    Nieva, M.-F. 2013, A&A, 550, 26

    Fernanda Nieva Spectral analysis B stars Brussels, 05.05.2013

  • Composite spectraComposite spectra

    • Binarity is common among massive stars

    • Difficult to be identified with spectra @ low R and low S/N (previous studies)

    • Analyzing a composite as a single spectrum leads to systematic errors in the parameters and

    chemical abundances

    Fernanda Nieva Spectral analysis B stars Brussels, 05.05.2013

  • XClose inspection of the star samples

    Sbs: spectroscopic binaries (light from 2 stars in 1 spectrum)

    Nieva & Przybilla (2012)

    Fernanda Nieva Spectral analysis B stars Brussels, 05.05.2013

    Composite spectraComposite spectra

  • Fernanda Nieva Spectral analysis B stars Brussels, 05.05.2013

    Composite spectraComposite spectra

  • Fernanda Nieva Spectral analysis B stars Brussels, 05.05.2013

    Composite spectraComposite spectra

  • Fernanda Nieva Spectral analysis B stars Brussels, 05.05.2013

    Composite spectraComposite spectra

  • Fernanda Nieva Spectral analysis B stars Brussels, 05.05.2013

    Composite spectraComposite spectra

  • Fernanda Nieva Spectral analysis B stars Brussels, 05.05.2013

    Composite spectraComposite spectra

  • Nieva et al. (in prep.)

    Chemically peculiar: He-weak (also 3He and stratification) → diffusion

    XLow He abundance

    Fernanda Nieva Spectral analysis B stars Brussels, 05.05.2013

    Peculiar starsPeculiar stars

  • Maeder et al. (2014)

    Chemically peculiar: He-strong → diffusion

    XEnhanced He abundance

    Peculiar starsPeculiar stars

  • Maeder et al. (2014)

    Chemically peculiar: He-strong → diffusion

    XEnhanced He abundance

    Overlooked in FLAMES I (Hunter et al. 2009)

    Peculiar starsPeculiar stars

  • Be stars: fast rotators / light from star and disk in the spectrum

    X

    Maeder et al. (2014)

    Influence of disk on stellar spectrum: not well understood

    Peculiar starsPeculiar stars

  • Be stars: fast rotators / light from star and disk in the spectrum

    X

    Maeder et al. (2014)

    Influence of disk on stellar spectrum: not well understood

    Overlooked in FLAMES I (Hunter et al. 2009)

    Peculiar starsPeculiar stars

  • • Can we fully automatize our analysis, teach the code to avoid all systematics and obtain reliable results?

    • We have tried..., but still not fully automatic

  • Irrgang et al. 2014, A&A, 565, A63

  • Single spectrumSingle spectrum

    Irrgang et al. 2014, A&A, 565, A63

  • Irrgang et al. 2014, A&A, 565, A63

    Single spectrumSingle spectrum

  • Composite spectra: SB2Composite spectra: SB2

    Irrgang et al. 2014, A&A, 565, A63

  • Irrgang et al. 2014, A&A, 565, A63

    Composite spectra: SB2Composite spectra: SB2

  • Irrgang et al. 2014, A&A, 565, A63

  • New method• Still not fully automatic• Requires manual preparation of observed spectra• Stills requires an experienced user• Most stellar parameters reliable• Abundances can be improved: the code gives to all spectral lines the

    same weight when fitting. But: ionization equilibria are still satisfactory. E.g. 40 OII lines vs. 3 OI lines

    • Best linelists differ with temperature, but also with data reduction, S/N, blends, vsini, details of model atoms.

    • Ongoing improvements...

    • My personal opinionReliable results: still with our older partially interactive method.

    In this method: all OII lines together have the same weight than all OI lines together: ionization equilibrium. The same principle is applied to all elements. This is the only way to obtain simultaneous multiple ionization equilibrium and reliable parameters

  • Fast alternative for TFast alternative for Teffeff derivationderivation

    Nieva, M.-F. 2013, A&A, 550, 26

    Based on spectral and luminosity calibration from our Based on spectral and luminosity calibration from our 30 benchmark stars30 benchmark stars

    carefully studied in Nieva (2007), Nieva & Przybilla (2006, 2007, 2008, 2012, 2014),

    Przybilla et al. (2008), Nieva & Simon-Diaz (2011)

  • Nieva, M.-F. 2013, A&A, 550, 26

    Spectral and luminosity calibration from our Spectral and luminosity calibration from our 30 benchmark stars30 benchmark stars

  • Nieva, M.-F. 2013, A&A, 550, 26

    Spectral and luminosity calibration from our Spectral and luminosity calibration from our 30 benchmark stars30 benchmark stars

    + =

    Spectral classification Mult. ioniz. equilibria Teff calibration

  • My recommendations for a spectral My recommendations for a spectral analysis of O9V to B3III type starsanalysis of O9V to B3III type stars

    H & He I/II

    1. Check normalization

    2. Check asymmetries

    3. Check Hα: Be?

    4. Check He-w/He-s

    Further tests

    Check distances

    Check SEDs

    Check CNO ab.

    Check HR diagram

    Check M-L rel.

    Metals

    1. Check asymmetries

    2. Ioniz. equil.: do all lines give the same microt., Teff, logg,

    vsini+mac?

    3. Parameters agree with H &He lines?

    Quick Teff estimation (it also helps to identify He-w, He-s, SGs, some SB2s):

    1. Measure 3-4 EWs: check spectral type

    2. Teff from Fig. A.1. & Table 3 in Nieva, M.-F. 2013, A&A, 550, 26

  • Nieva & Przybilla (2007)Hybrid non-LTE approach

    • LTE atmospheres+NLTE line-formation

    • equivalentfull NLTE calculations

    • advantages:- comprehensivemodel atomspossible

    - much faster

    tailored modelling

    Fernanda Nieva Spectral analysis B stars Brussels, 05.05.2013