spectrum

1
2 2 3 3 S P 60 80 100 120 140 160 180 200 220 2 3 P 1 2 3 P 1 2 3 S 1 2 3 S 1 cro ss-over-line photodetector signal[arb.units] laser freq u en cy 15 20 25 30 35 40 45 FW H M ~ 5,2 M Hz p ow er[arb.units] freq u en cy [M H z] spectrum beat signal characteristics of the used diode lasers for transversal cooling and trapping For stabilizing the diode lasers we use the mean of saturation spectroscopy. We extract the control signal out of the spectrum of the -transition. The laser linewidth of the diode lasers is determined to about 5 MHz by measuring the beat signal on a fast photodetector. transversal cooling and deflection of the He* beam To separate the metastable helium atoms from the ground-state atoms, the He* source is placed off- axis, so that only the metastables will be deflected into the “Stark-slower”-section by the use of the diode laser at = 1083 nm. 0,000 0,005 0,010 0,015 0,020 -0 ,5 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 w ith o u t laser d eflectio n + tran sversalco o lin g intensity [arb.units] tim e o f flig h t [s] R. Jung 1 , R. Schumann 2 , S. Gerlach 1 , T. Kwapien 1 , U. Eichmann 2 , G. von Oppen 1 1 Technische Universität Berlin, Institut für Atomare und Analytische Physik, Hardenbergstrasse 6, D-10623 Berlin 2 Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Str. 2A, D-12489 Berlin Magneto-Optical Trapping of “Stark-Slowed” Metastable Helium Atoms Max-Born-Institu goal : - study of ionisation dynamics of metastable helium atoms in a trap - cold collisions of ultraslow He* - storage of metastable helium atoms in an electro-dynamical trap - realization of a storage-ring for slow helium atoms trapping and guiding He* atoms by means of dynamical electric fields Our aim is to construct a trap or an atom-guide for helium atoms based on rotating electric fields. Simulations show the possibility to hold helium atoms with v < 2 m/s against gravity. With variable structures of the rods it will be possible to get a storage-ring for metastable helium atoms, where we can study ultracold collisions of He*. electrod es : calculated trajectory : Getting a closed trajectory of a trapped atom, we used following parameters: trap dimensions: distance of the rods 8 mm radius of the rods 2 mm applied voltage : U = 20,0 kV frequency of the applied voltage : = 3000 Hz outlook principle of laser cooling by the use of the Stark effect polarisability : scalar (3 3 P) = 4.279 MHz/(kV/cm) 2 tensor (3 3 P) = 0.084 MHz/(kV/cm) 2 scalar (2 3 S) = 0.076 MHz/(kV/cm) 2 160000 165000 170000 175000 180000 185000 20 = 31.9 G Hz 21 = 2 .2 7 G Hz 20 21 2 3 P 0 2 3 P 1 2 3 P 2 1083 nm 20 = 8772.517(16) M Hz 21 = 6 58 .5 4 8 (6 9) M Hz e - -H eliu m S to ß anreg u n g in G asen tlad u ng 389 nm 3 3 D 3 1 D 21 20 3 3 P 2 3 3 P 1 3 3 P 0 3 3 P 3 1 P 0 2 1 P 2 3 P 3 1 S 3 3 S 2 1 S 2 3 S 1 1 S Energie [cm -1 ] energy [cm -1 ] discharge 0 10 20 30 40 50 -20 0 -10 0 0 100 200 3 3 P 2 , |m J |=2 3 3 P 2 , |m J |=1 3 3 P 1 , m J =0 S tark aufsp altu ng d es 3 3 P 2 -N iveaus Energie [M H z] elek trisch e F eld stärk e [k V /cm ] 0 10 20 30 40 50 -10 -8 -6 -4 -2 0 2 4 6 8 10 3 3 P 2 3 3 P 1 3 3 P 0 S tark v ersch ieb u n g d es 3 3 P -M ultipletts Energie [G H z] elek trisch e F eld stärk e [k V /cm ] energy [GHz] energy [MHz] stark-splitting of the 3 3 P 2 -niveau stark-shift of the 3 3 P-multiplett electric field [kV/cm] electric field [kV/cm] - energy levels of helium up to n = 3 0 ,0 00 0 ,00 5 0,010 0 ,0 15 0,020 0 ,0 00 0 ,0 02 0 ,0 04 0 ,0 06 0 ,0 08 0 ,0 10 0 ,0 12 0 ,0 14 0 ,0 16 0 ,0 18 v H e-atom s ~ 10 m /s U 3 [kV ] 25,1 25,0 24,5 24,0 23,5 22,5 ion-signal[arb.units] tim e o f flig h t MOT [s] fixed applied voltage - first two field plates: U 1 = 12,1 kV; U 2 = 18,6 kV detuning - longitudinal cooling laser ~ - 2,3 GHz detuning - MOT diode laser: ~ -8 MHz Shown are TOF-spectra of cooled helium atoms taken from the MOT-MCP while varying the applied voltage of the third field plate. The increase of the signal was due to the interaction between the MOT-laser and helium atoms (v atoms ~ 10 m/s) at U 3 = 25,1 kV. - results of laser cooling trapping of metastable helium atoms in a magneto- optical trap -0,5 0,0 0,5 1,0 1,5 2,0 0,0 0 0,0 5 0,1 0 0,1 5 0,2 0 0,2 5 0,3 0 H e*-b eam ON L o ad in g o f th e M ag n eto -O p ticalT rap M C P cu rren t (M O T ) [arb .u n its] tim e [s] 0,0 0,5 1,0 1,5 2,0 0,0 0 0,0 5 0,1 0 0,1 5 0,2 0 0,2 5 0,3 0 H e*-b eam blocked D ecay o f th e M ag n eto -O p ticalT rap tim e [s] M C P cu rren t (M O T ) [arb .u n its] Shown is the loading and the decay of our MOT. field-gradient (z-axis) : dB/dz = 6,4 Gauss/cm detuning of the MOT-laser : = -7 MHz diameter of the trapping laser beam : d = 2 cm lifetime of the trap : 240 ms v start ~ 1000 m/s setup of He*-source and cooling section : LN 2 -cool ed He*-source (discharge) transversal cool ing diode l aser =1083nm def lectionofHe* -Stark-Slower - longi tudinal cool ingsecti on MOT apature setup of the magneto-optical trap : cool ed helium atoms (v < 20 m/s) gol d-coated mirror MCP-det ector /4-plate /4-plate magnetic fi eld coi ls (ant i- hel mholtz-confi gurat ion) longi tudinal cool inglaser = 389 nm MOT diodelaser = 1083 nm 0.0005 0.001 0.0015 0.002 -20000 -10000 10000 20000 0.0005 0.001 0.0015 0.002 -20000 -10000 10000 20000 0.0005 0.001 0.0015 0.002 -20000 -10000 10000 20000 0.0005 0.001 0.0015 0.002 -20000 -10000 10000 20000 applied voltage (U3,U4) applied voltage (U1,U2) -1 -0.75 -0.5 -0.25 0.25 0.5 0.75 1 -1 -0.75 -0.5 -0.25 0.25 0.5 0.75 1 U1 U3 U2 U4

Upload: stuart-maldonado

Post on 31-Dec-2015

20 views

Category:

Documents


0 download

DESCRIPTION

applied voltage (U1,U2). applied voltage (U3,U4 ). Max-Born-Institut. R. Jung 1 , R. Schumann 2 , S. Gerlach 1 , T. Kwapien 1 , U. Eichmann 2 , G. von Oppen 1. 1 Technische Universität Berlin, Institut für Atomare und Analytische Physik, Hardenbergstrasse 6, D-10623 Berlin - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: spectrum

2 23 3S P

60

80

100

120

140

160

180

200

220

23P1

23P1

23S1

23S1

cross-over-line

phot

odet

ecto

r sig

nal [

arb.

units

]

laser frequency15 20 25 30 35 40 45

FWHM ~ 5,2 MHz

pow

er [a

rb.u

nits

]

frequency [MHz]

spectrum beat signal

characteristics of the used diode lasers for transversal cooling and trapping

For stabilizing the diode lasers we use the mean of saturation spectroscopy.We extract the control signal out of the spectrum of the -transition.The laser linewidth of the diode lasers is determined to about 5 MHz by measuring the beat signal on a fast photodetector.

transversal cooling and deflection of the He* beam

To separate the metastable helium atoms from the ground-state atoms, the He* source is placed off-axis, so that only the metastables will be deflected into the “Stark-slower”-section by the use of the diode laser at = 1083 nm.

0,000 0,005 0,010 0,015 0,020-0,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0 without laser deflection + transversal cooling

inte

nsity

[arb

.uni

ts]

time of flight [s]

R. Jung1, R. Schumann2, S. Gerlach1, T. Kwapien1, U. Eichmann2, G. von Oppen1

1 Technische Universität Berlin, Institut für Atomare und Analytische Physik, Hardenbergstrasse 6, D-10623 Berlin2 Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Str. 2A, D-12489 Berlin

Magneto-Optical Trapping of “Stark-Slowed” Metastable Helium Atoms

Max-Born-Institut

goal :

- study of ionisation dynamics of metastable helium atoms in a trap

- cold collisions of ultraslow He*

- storage of metastable helium atoms in an electro-dynamical trap

- realization of a storage-ring for slow helium atoms

trapping and guiding He* atoms by means of dynamical electric

fieldsOur aim is to construct a trap or an atom-guide for helium atoms based on rotating electric fields. Simulations show the possibility to hold helium atoms with v < 2 m/s against gravity.With variable structures of the rods it will be possible to get a storage-ring for metastable helium atoms, where we can study ultracold collisions of He*.

electrodes : calculated trajectory :

Getting a closed trajectory of a trapped atom, we used following parameters:

trap dimensions:distance of the rods 8 mmradius of the rods 2 mm

applied voltage : U = 20,0 kVfrequency of the applied voltage : = 3000 Hz

outlook

principle of laser cooling by the use of the Stark effect

polarisability : scalar(33P) = 4.279 MHz/(kV/cm)2

tensor(33P) = 0.084 MHz/(kV/cm)2

scalar(23S) = 0.076 MHz/(kV/cm)2

160000

165000

170000

175000

180000

185000

20

= 31.9 GHz

21

= 2.27 GHz

20

21

23P0

23P1

23P2

1083 nm 20

= 8772.517(16) MHz

21

= 658.548(69) MHz

e--Helium Stoßanregung

in Gasentladung

389 nm

33D

31D

21

20

33P2

33P1

33P0

33P

31P

0

21P

23P

31S

33S

21S

23S

11S

Ener

gie

[cm

-1]

ener

gy [

cm-1]

discharge

0 10 20 30 40 50-200

-100

0

100

200

33P

2, |m

J|=2

33P2, |m J|=1

33P1, m J=0

Starkaufspaltung des 33P2-Niveaus

Ener

gie

[MH

z]

elektrische Feldstärke [kV/cm]

0 10 20 30 40 50-10

-8

-6

-4

-2

0

2

4

6

8

10

33P

2

33P1

33P

0

Starkverschiebung des 33P-Multipletts

Ener

gie

[GH

z]

elektrische Feldstärke [kV/cm]

ener

gy [

GH

z]en

ergy

[M

Hz]

stark-splitting of the 33P2-niveau

stark-shift of the 33P-multiplett

electric field [kV/cm]

electric field [kV/cm]

- energy levels of helium up to n = 3

0,000 0,005 0,010 0,015 0,020

0,000

0,002

0,004

0,006

0,008

0,010

0,012

0,014

0,016

0,018v

He-atoms ~ 10 m/s

U3 [kV]

25,1

25,0

24,5

24,0

23,5

22,5

ion-

sign

al [a

rb. u

nits

]

time of flightMOT

[s]

fixed applied voltage - first two field plates: U1 = 12,1 kV; U2 = 18,6 kVdetuning - longitudinal cooling laser ~ -2,3 GHzdetuning - MOT diode laser: ~ -8 MHz

Shown are TOF-spectra of cooled helium atoms taken from the MOT-MCP while varying the applied voltage of the third field plate.The increase of the signal was due to the interaction between the MOT-laser and helium atoms (vatoms ~ 10 m/s) at U3 = 25,1 kV.

- results of laser cooling

trapping of metastable helium atoms in a magneto-optical trap

-0,5 0,0 0,5 1,0 1,5 2,0

0,00

0,05

0,10

0,15

0,20

0,25

0,30

He*-beam ON

Loading of the Magneto-Optical Trap

MC

P c

urr

ent

(MO

T)

[arb

.un

its]

time [s]

0,0 0,5 1,0 1,5 2,0

0,00

0,05

0,10

0,15

0,20

0,25

0,30

He*-beam blocked

Decay of the Magneto-Optical Trap

time [s]

MC

P c

urr

ent

(MO

T)

[arb

.un

its]

Shown is the loading and the decay of our MOT. field-gradient (z-axis) : dB/dz = 6,4 Gauss/cmdetuning of the MOT-laser : = -7 MHzdiameter of the trapping laser beam : d = 2 cm

lifetime of the trap : 240 ms

vstart ~ 1000 m/s

setup of He*-source and cooling section :

LN2-cooledHe*-source(discharge)

transversalcooling

diode laser=1083 nm

deflection of He* -Stark-Slower -longitudinal cooling section

MOT

apature

setup of the magneto-optical trap :

cooled helium atoms(v < 20 m/s)

gold-coated mirror

MCP-detector

/4-plate

/4-platemagnetic field coils

(anti-helmholtz-configuration)

longitudinal cooling laser= 389 nm

MOT diode laser= 1083 nm

0.0005 0.001 0.0015 0.002

-20000

-10000

10000

20000

0.0005 0.001 0.0015 0.002

-20000

-10000

10000

20000

0.0005 0.001 0.0015 0.002

-20000

-10000

10000

20000

0.0005 0.001 0.0015 0.002

-20000

-10000

10000

20000

applied voltage (U3,U4)

applied voltage (U1,U2)

-1 -0.75 -0.5 -0.25 0.25 0.5 0.75 1

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

U1 U3

U2U4