special senses - western wyoming community college senses - western wyoming community college

13
The Nervous System Part 1: Neurons Part 2: Neurophysiology Postsynaptic Potentials and the Action Potential The Axon Terminal Part 3: The Brain and Spinal Cord • Part 4: Special Senses Receptors • Thermoreceptors • Photoreceptors – sight • Nociceptors • Chemoreceptors – smell/taste • Mechanoreceptors – hearing

Upload: phamdang

Post on 06-May-2018

223 views

Category:

Documents


1 download

TRANSCRIPT

The  Nervous  System

• Part  1:  Neurons  • Part  2:  Neurophysiology  – Postsynaptic  Potentials  and  the  Action  Potential  – The  Axon  Terminal  

• Part  3:  The  Brain  and  Spinal  Cord  • Part  4:  Special  Senses

Receptors

• Thermoreceptors  • Photoreceptors  – sight  

• Nociceptors  • Chemoreceptors  – smell/taste  

• Mechanoreceptors  – hearing

Eye  Anatomy

• conjunctiva  – thin  connective  tissue  layer  that  

covers  eye  and  inner  eyelid  • cornea  

– transparent  covering  of  the  iris  – course  focus  of  images  

• sclera  – “white”  of  eye,  dense  connective  

tissue

Eye  Anatomy• choroid  

– lines  inner  surface  of  sclera  – helps  nourish  the  retina  – melanocytes  give  black  appearance  – absorbs  excess  light  

• ciliary  body  – extends  from  edge  of  retina  (ora  

serrata)  to  junction  of  sclera  and  cornea  

– ciliary  processes  • folds  that  connect  to  the  suspensory  ligaments  to  the  lens  

• cells  secrete  aqueous  humor  • ciliary  muscles

Eye  Anatomy• ciliary  muscles  

– contraction  pulls  choroid  layer  forward  

– creates  slack  for  the  ciliary  process  and  suspensory  ligaments  

– allows  lens  to  become  more  round  (curves  light  more)  

• iris  – colored  part  of  eyeball  – hole  in  center  is  pupil  

• regulates  amount  of  light  that  enters  eye  by  reflex  constriction  or  dilation  of  smooth  muscles  or  iris

Eye  Anatomy• retina  

– beginning  of  visual  pathway  – detached  retina:  retina  

separated  from  underlying  epithelial  layer  • distorts  shape  of  retina,  making  images  blurry  

• corrected  by  laser  surgery  • optic  disc  

– where  optic  nerve  exits  the  eyeball

Eye  Anatomy• central  fovea:  depression  in  center  

of  macula  lutea  (center  of  eye)  – contains  highest  concentration  

of  cones  • photoreceptors  for  color  vision,  best  acuity  of  vision  

– contains  no  rods  • rods:  photoreceptors  for  black  and  white  vision  that  work  in  low  light  

– rods  increase  in  concentration  as  move  away  from  fovea  

– macular  degeneration  • common  cause  of  blindness,  

especially  age-­‐related  blindness

Eye  Anatomy

• rods  and  cones  are  connected  to  ganglion  cells  by  bipolar  cells  

• light  passes  through  ganglion  cells,  then  bipolar  cells,  before  exciting  the  rods  and  cones  – excess  light  then  absorbed  by  

pigment  cells  and  choroid  layer

Eye  Anatomy• lens  

– fine  focus  of  images  – changes  shape  as  the  ciliary  muscles  

change  tension

Eye  Anatomy• fluids  in  eye  

– aqueous  humor:  watery  fluid  in  anterior  cavity  • surrounds  lens  and  interior  of  

cornea  • constantly  formed  (secreted  by  

ciliary  processes)  and  replaced  (drained  through  Schlemm  canal)  

– vitreous  humor:  gelatinous  material  in  posterior  cavity  • never  replaced  

– together,  these  fluids  help  maintain  shape  of  eyeball  • intraocular  pressure  is  normally  

16  mmHg  • increase  in  intraocular  pressure  

is  glaucoma  – retina  degenerates,  

blindness  results

Image  Formation• images  formed  on  retina  are  upside-­‐

down  and  inverted  left  to  right,  but  brain  compensates  for  this  

• accommodation  – increase  in  curvature  of  lens  to  allow  for  

near  vision  • presbyopia  

– as  we  age,  lens  often  loses  elasticity  and  cannot  accommodate  

– near  point  of  vision  generally  increases  with  age  – corrected  with  “reading  glasses”  (magnifying  

lens)

Abnormalities  of  Refraction (bending  of  light  rays  as  they  cross  from  one  medium  to  another)

• normal  (emmetropic)  eye:  image  focused  on  retina  

• nearsighted  (myopic)  eye:  image  focused  in  front  of  retina  – corrected  by  scattering  of  image  with  

concave  lens  • farsighted  (hypermetropic)  eye:  image  

focused  behind  retina  – corrected  by  helping  cornea  and  lens  

to  focus  with  convex  lens  • astigmatism:  irregular  shape  of  cornea  

or  lens  – causes  blurring  in  part  of  field  of  

vision  – corrected  by  irregularly  shaped  glass  

lens  or  contact  that  compensates  for  defect

Convergence

• field  of  vision  from  left  and  right  eye  overlaps  tremendously  – creates  single  binocular  vision  

• brain  perceives  one  image  seen  by  two  eyes  

• convergence:  eyes  must  rotate  medially  as  object  we  are  viewing  moves  closer  to  eyes  – failure  to  do  this  is  called  “lazy  eye”  and  is  

common  in  children

Physiology  of  Vision• first  step  is  bleaching  of  

photopigment  – light  strikes  photopigment  – photopigment  (rhodopsin)  

consists  of  opsin  (glycoprotein)  and  retinal  (vitamin  A  derivative)  • retinal  portion  isomerizes  (changes  shape)  from  cis-­‐retinal  to  trans-­‐retinal  

• trans-­‐retinal  separates  from  opsin  

• isomerization  causes  previously  OPEN  Na+  channels  to  close

Physiology  of  Vision

• closing  of  Na+  channels  inhibits  release  of  neurotransmitter  to  bipolar  cells  

• bipolar  cells  are  inhibited  by  neurotransmitter  release  when  rods  and  cones  are  at  rest  

• when  the  cones  and  rods  are  stimulated,  they  cease  to  release  neurotransmitter,  allowing  the  bipolar  neurons  to  fire  

• retinal  isomerase  (enzyme)  converts  trans-­‐retinal  to  cis,  effectively  resetting  the  rod  or  cone

Ear  Anatomy• external  ear  

– pinna  (auricle)  – external  auditory  canal  (meatus)  – ceruminous  glands  secrete  cerumen  (earwax)  – tympanic  membrane  (eardrum)  

• middle  ear  – auditory  (Eustachian)  tube  

• connects  to  throat  • when  opened  by  yawning  or  swallowing,  it  allows  for  equilibration  of  pressure  

on  both  sides  of  tympanic  membrane  so  that  it  may  vibrate  freely  – auditory  ossicles  

• malleus  (hammer)  • incus  (anvil)  • stapes  (stirrup)  • transmit  sound

waves  from  thetympanic  membraneto  the  oval  window

Ear  Anatomy

• inner  ear  – bony  labyrinth  surrounding  

membranous  labyrinth  – semicircular  canals  

• ampulla:  enlarged  end  of  each  semicircular  canal  

– vestibule  • utricle  and  saccule

Ear  Anatomy

– cochlea  • spiral  shaped  • contains  spiral  organ  (organ  of  

Corti)  for  hearing  – scala  vestibuli:  fluid  filled  

tunnel  in  contact  with  oval  window  

– scala  tympani:  fluid-­‐filled  tunnel  in  contact  with  round  window  

– cochlear  duct  (scala  media)  in  between  two  scala  

– helicotrema:  area  where  scala  vestibuli  and  scala  tympani  meet

Physiology  of  Hearing• sound  waves  cause  tympanic  membrane  to  vibrate  

– slowly  for  low-­‐pitch  sounds  – faster  for  high-­‐pitch  sounds  – deeper  for  louder  sounds  

• ossicles  moved  by  tympanic  membrane  • oval  window  moved  by  stapes

Physiology  of  Hearing• fluid  waves  within  perilymph  caused  by  movement  of  oval  window  

– causes  walls  of  scala  vestibuli  and  tympani  to  vibrate  – this  pushes  on  the  endolymph  in  the  cochlear  duct,  starting  endolymph  movement  – endolymph  movement  causes  the  basilar  membrane  supporting  the  hair  cell  

supporting  cells  to  vibrate

Physiology  of  Hearing– specific  areas  of  the  basilar  membrane  vibrate,  depending  on  the  characteristics  of  the  fluid  

wave  • near  the  oval  window,  the  membrane  is  narrow  but  stiff  

– sensitive  to  high  frequency  vibrations  • closer  to  the  end  of  the  cochlea,  the  membrane  is  wide  and  more  flexible  

– sensitive  to  low-­‐frequency  vibrations

Physiology  of  Hearing– as  the  basilar  membrane  vibrates,  the  hair  cells  move  against  the  tectorial  membrane,  

bending  the  hair  cells  • the  bending  causes  the  hair  cells  to  depolarize  by  opening  K+  channels  (unusual)  in  the  

hair  cell  membrane  • depolarization  causes  Ca+2  channels  in  the  hair  cell  base  to  open,  which  causes  exocytosis  

of  neurotransmitter

Equilibrium• utricle  is  oriented  in  a  horizontal  plane;  saccule  in  a  vertical  plane  • utricle  helps  determine  when  head  deviates  from  its  normal  upright  position  with  respect  to  

gravitational  pull  or  linear  acceleration  • saccule  probably  helps  orient  us  when  our  head  is  not  in  upright  position

Equilibrium• utricle  contains  calcium  carbonate  crystals  called  

otoliths  – if  we  bend  over,  for  example,  the  otoliths  are  free  

to  move  downward  due  to  gravity  – as  they  move  down,  the  gelatinous  material  they  

reside  in  moves  the  stereocilia  of  the  hair  cells,  causing  depolarization  

– the  utricle  can  also  detect  linear  acceleration  because  the  otoliths  have  great  inertia  • linear  acceleration  will  cause  the  otoliths  to  lag  

behind  the  hair  cells,  causing  them  to  bend  back  and  some  of  them  to  be  excited  

• hair  cells  are  directional;  they  will  only  depolarize  when  the  stereocilia  move  in  the  direction  of  the  kinocilium

Semicircular  Canals• detects  angular  acceleration  in  a  specific  plane  

– anterior  canal:  touching  head  to  shoulder  – posterior  canal:  nodding  head  “yes”  – lateral  canal:  shaking  head  “no”  

• when  movement  occurs,  the  canal  moves,  but  the  fluid  inside  (endolymph)  does  not  (no  forces  are  causing  it  to  move)  – this  gives  the  appearance  that  the  endolymph  moves  

against  the  direction  of  motion  • the  relative  movement  of  canal  with  respect  to  endolymph  

causes  the  cupula  (gelatinous  material  of  semicircular  canals)  to  bend  – this  bends  the  hair  cells,  depolarizing  them

Semicircular  Canals• semicircular  canals  adapt  within  20  seconds  

– it  takes  about  a  second  for  friction  acting  on  the  endolymph  to  overcome  its  inertia  

– the  endolymph  then  moves  with  the  canal  (no  relative  movement)  

– it  takes  15-­‐20  seconds  more  for  the  cupula  to  return  to  their  resting  state  

– therefore  you  must  continue  to  accelerate  to  continually  excite  the  semicircular  canals  

• by  sensing  acceleration,  the  semicircular  canals  allow  you  to  predict  that  you  are  about  to  fall  over  (for  example),  allowing  you  to  respond  before  you  actually  fall  – the  utricle  cannot  respond  until  you  have  already  fallen