spe14237-case study of a low-permeability volatile oil field using individual-well advanced decline...

Upload: tomk2220

Post on 01-Jun-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 SPE14237-Case Study of a Low-Permeability Volatile Oil Field Using Individual-Well Advanced Decline Curve Analysis

    1/20

    SPE

    SPE 14237

    Case Study of a Low-Permeability Volatile Oil Field Using

    Individual-Well Advanced Decline Curve Analysis

    by M J . Fetkovi ch,Phillips Petroleum Co.; ME. Vi enot, Phillips Petroleum Co. Europe-Africa;

    and R. D. J ohnson and B. A. Bowman,

    Phill ips Oil Co.

    .CPE Marnha ..

    “. - . ..”..,””.”

    Copyright1985, .%xiety of PetroletFrn-Engineers

    This paper waa prepsred for presentationat the 60th AnnualTechnical Conferenceand Exhibitionof the Society of PetroleumEngineera held in Las

    Vegaa, NV September 22-25, 1985.

    This paper was selected for presentationby an SPE Program Committee followingreview of informationcontained in an abstract aubmiwedby the

    author(s).Contents of the paper, as presented, have notbeen reviewed by the Society of Petroleum Engineers and are subject to correctionbythe

    author(a).Tha material, as presented, does not necessarily reflect any positionof the Societyof PetroleumEngineera, itaofficers,or members. Papers

    presented at SPE meetings are subject to publicationreview by EditorialCommitfaesof the Sodety of Petroleum Engineers. Permiaaicmto copy is

    restrictedtoan abetractof notmore than300 words.Illustration maynotbe copied.The abatractshouldcontainmnapicuouaacknowledgmentofwhere

    and by whom the paper iapresented.Write PublicationsManager, SPE, P.O. Sox 833836, Richardson,TX 750S34S36. Telex, 730389 SPEDAL,

    Am.7. .*T

    AD> I KIW I

    rMTnnnlm*TTn.t

    111 I   uuub I lull

    Thi s paper presents a detai l ed case hi story study

    I n sol uti on gas dri ve reservoi rs, decl i ne curve

    of a l ow permeabi l i ty vol at i l e oi l f i el d l ocated

    anal ysi s of rate-ti me data for predi cti ng future

    i n Campbel l County, Wyomng. The fi el d was anal -

    - producti on and determni ng recoverabl e reserves for

    yzed on an i ndi vi dual wel l basis usi ng advanced

    a fai rl y l arge number of wel l s i s conwnonl ydone

    decl i ne curve anal ysi s for 40 i ndi vi dual wel l com

    using the Arpsl empi ri cal equati ons and a compu-

    pl eti ons. Wel l permeabi l i t i es, ski ns and ori gi nal

    teri zed stati sti cal approach to arri ve at answers

    oi l i n pl ace are cal cul ated for each wel l f romrate-

    fai r ly qui ckl y. For wel l s i n hi gh permeabi l i ty

    ti me anal ysis usi ng constant wel l bore pressure type

    reservoi rs produci ng essenti al l y w de- open$ wf thout

    curve anal ysi s techni ques.

    future backpressure changes and w thout future

    sti mul ati on treatments, the resul ts obtai ned shoul d

    Origi nal oi l i n pl ace val ues cal cul ated fromrate-

    be reasonabl y good provi di ng the l i mts of thede-

    t i me anal ysi s for i ndi vi dual wel l s are used w th

    cli ne exponent b of between O and 1. 0 are honored.

    recoverabl e reserve proj ecti ons fr omthe decl i ne

    anal ysi s to obtai n fracti onal recoveri es for each

    At the other extreme i n anal yzing rate-t i me data

    wel l .

    Gas-oi l rati os versus fracti onal recovery

    for predi cti ng future producti on and recoverabl e

    curves are al so made for each wel l usi ng hi stori cal

    reserves, a reservoi r si mul ati on study coul d be

    cumul ati ve production and the cal cul ated oi l i n

    undertaken.

    However, thi s approach coul d take as

    pl ace val ues. Ul ti mate fr acti onal recovery numbers

    much as a year to accompl i sh and normal l y woul d not

    and GOR vs fracti onal recovery curves, pl otted for

    be considered acceptabl e, parti cul arl y f or ti me-

    each wel l , are shown to suggest di ff erent rock types

    constrai ned property acqui sit i on or sal es sit uati ons

    and reservoi r fl ui ds.

    Mul ti -wel l decl l ne curve

    where f ew of the detai l ed reservoi r parameters

    anal ysi s shows the val i di ty of the varfabl es s

    necessary for a si mul ati on study are avai l abl e.

    (ski n), k, OOI P, ul t i mate fracti onal recovery and

    GOR vs fr acti onal recovery eval uated fr omeach

    Many of the newer oi l and gas fi el ds bei ng di scov-

    wel l ’ s type curve eval uati on.

    These vari abl es must

    ered and produced are i n the l ow permeabi l i ty class-

    al l gi ve consi stent and reasonabl e numbers when

    i fi cati on, where transi ent behavi or can l ast for

    compared w th each other. A si ngl e wel l anal ysi s

    years, and therefore are not amenabl e to anal ysi s

    can easi l y gi ve resul ts that are not recogni zed as

    using the Arps equati on al one.

    Al so, a model study

    bei ng i nval i d unl ess compared w th other wel l s i n

    of such l ow permeabi l i ty reservoi rs woul d requi re a

    the f i el d.

    very fi ne gri d systemto correctl y si mul ate and

    match the earl y transi ent rate-t i me decli ne data.

    The study al so i l l ustrates fl ow ng and pumpi ng wel l

    backpressure changes i n a wel l ’ s decl i ne, the method

    An approach to the probl emof anal yzi ng l ow petme-

    of handl i ng such changes, and thei r effect on ul t i -

    abi l i ty wel l s and total f i el d rate-t i me decl i ne has

    mate recoverabl e reserves predi cti ons. Conventi onal

    been given in papersz 3 q 5 6 that i l l ust rate

    decl i ne curve anal ysi s can not handl e backpressure

    methods of handl i ng both the transi ent and depl eti on

    chant-m. haeaii.n of ~~~ .-nq.+o..+n+ +k.+ A..* ---+--I-

    ,.-,.=-- “-----=

    stages Of ‘ atQ- tj me decl i ne.

    *v, =bI 91111,briat. WIIaI. Lurlbrui>

      .ah414A.-..

    K l? ~t?rmcautl Ibles,

    t he decl i ne i n t he past w l l al so cont i nue i n t he

    ski ns fr omsti mul ati on treatments and ori gi nal oi l

    future.

    i n pl ace or ori gi nal gas-i n-pl ace can be cal cul ated

    for each wel l from rate-t i me data using constant

    wel l bore pressure type curve anal ysi s techni ques.

    References and 111ustratl ons at end of paper.

  • 8/9/2019 SPE14237-Case Study of a Low-Permeability Volatile Oil Field Using Individual-Well Advanced Decline Curve Analysis

    2/20

    CASE STUDY OF A LOWPERMEABI LITY VOLATI LE OI L FIELD

    USi?K

    iNDIViWAIL-klELL ADVA

    Wth a f ield case study of the School Creek Fi el d i n

    Campbel l County, Wyomng, a l ow permeabi l i ty vol a-

    t i l e oi l f i eld, we w l l present a stepw se procedure

    for doi ng a total f i el d study usi ng i ndi vi dual wel l

    advanced decl i ne curve anal ysi s techni ques.

    Ori g-

    i nal oi l i n pl ace val ues cal cul ated fromrate-ti me

    anal ysi s for i ndi vi dual wel l s are used w th recover-

    abl e reserve proj ecti ons fr omthe decl i ne anal ysi s

    to obtai n fracti onal recoveri es for each wel l .

    Gas-o~l rati o versus fr acti onal recovery curves are

    al so made for each wel l usi ng hi stori cal cumul ati ve

    producti on and the cal cul ated oi l i n pl ace val ues.

    Ul ti mate f racti onal recovery val ues and GOR versus

    fracti onal recovery curves, pl otted for each wel l ,

    are shown to suggest di ff erent rock types and reser-

    voi r f l ui ds. Mul t i -wel l decl i ne curve anal ysi s

    shows the val i di ty of the var iabl es s (ski n) , k,

    OOIP, ul ti mate fr acti onal recovery and GOR versus

    fr acti onal recovery eval uated fr omeach wel l ’ s type

    curve match poi nt. –- These vari abl es must al l gi ve

    consi stent and reasonabl e numbers when compared w th

    each other . A si ngl e wel l anal ysi s can of ten gi ve

    resul ts that are not recogni zed as bei ng i nval i d

    unl ess compared w th several other wel l s i n the

    fi el d.

    The study al so i ncludes and i l l ustrates

    f l ow ng and pumpi ng

    well

    backpressure changes i n a

    wel l ’ s decl i ne, the method of handl i ng such changes

    and thei r eff ect on ul ti mate recoverabl e reserves

    predi cti ons. Conventi onal decl i ne curve anal ysi s

    approaches do not consi der backpressure changes and

    thei r eff ect on proj ected recoverabl e reserves.

    School Creek Fi el d - Wyomng

    - .

    The School Creek Fi el d i s l ocated on the eastern

    fl ank of the south central porti on of the Powder

    Ri ver Basi n i n Campbel l and Converse Counti es,

    Wyomng. Fol l ow ng deposi ti on of the underl yi ng

    Skul l Creek Shal e, the l ower Cretaceous sea receded

    fromthe area of the Powder Ri ver Basi n. Subse-

    quentl y, a w de- spread drai nage systemdevel oped and

    carved i ts pattern i nto the Skul l Creek Shal e. As

    the l ower Cretaceous sea tr ansgressed east, Muddy

    del tai c sedi ments buri ed the previ ousl y deposi ted

    channel sedi ments as the sea conti nued to i nundate

    the basi n. Conti nuous basi n f i l l by deposi t i on of

    +k- - . , f i - l . . i - -“”, . Ck. l a m.ae,,7+aA ;“

    the ~W,~~~

    Gil= UVCI IJ ITIY IW.IWIJ .I - C C=UtbCU b

    reservoi r sands bei ng i deal l y “sandw ched” between

    two mari ne hydrocarbon source shal es.

    In

    the School Creek Area, a north- south pal eodrai n-

    age patt ern

    was

    devel oped upon the underl yi ng Skul l

    Creek Shal e and control l ed the di stri buti on of the

    producti ve ti dal channel and poi nt- bar sands of the

    l ower Muddy formati on. Younger upper Muddy mari ne

    faci es uni ts were then deposi ted as the Cretaceous

    sea transgressed east resul ti ng i n some wel l devel -

    QPQd Producti ve rnarj neof f shore b? ’ Se l ( s

    it n t

    fi el d area.

    In the School Creek Fi el d, the Lower Muddy channel

    sands have 35 wel l compl eti ons w th an average of 11

    net feet of pay per wel l and an average porosi ty and

    water saturati on of 13. 6%and 39% respecti vel y.

    Upper Wddy bar sands have 5 wel l compl eti ons w th

    an average of 12 net feet of pay per wel l and an

    average porosi ty and water saturati on of 22%and

    14% respecti vel y. Producti on has al so been estab-

    l i shed i n secondary obj ecti ves, whi ch i ncl ude the

    Sussex, Turner, and Dakota formati ons. These wel l s

    - - -

    are i i Oti ncl uded i i ithi s Study.

    rn llrn lNC @ lDllE ANhl vCTC

    L

    IJLJLL lIIL bUnVL _lllAL1.lAti

    CDF 1A9

    4, b .T*

    Fi gure 1 i s a pl at show ng the wel l l ocat ions, thei

    rel ati onshi p to the Channel Sand and Bar Sand and

    the three wel l s fr omwhi ch PVT sampl es were taken.

    Fi gure 2 is a type l og for a School Creek Fi el d

    Muddy formati on compl eti on.

    The School Creek Fi el d was di scovered i n 1980 when

    the Matheson

    E-1

    wel l was dri l l ed to 10,000 feet an

    compl eted i n the Muddy formati on.

    The i ni t ial res-

    ervoi r pressure was approxi matel y 3700 - 3600 psi.

    Basi c fl ui d properti es are gi ven fromthree di ffer-

    ent PVT studi es i n Tabl e 2 and Fi gure 3. Two qui te

    di ff erent fl ui d sampl es were obtai ned i n the Channe

    Sand:

    the Federal EE-1 sampl e w th a bubbl e poi nt

    pressure of 3400 psi , GOR of 1557 SCF/ BBL and the

    Matheson E-1 sampl e w th a bubbl e poi nt pressure of

    2705 psi , GOR of 736 SCF/ 8BL. Based on reported

    i ni ti al produci ng gas-oi l rati os, the Federal EE-1

    sampl e was used to represent wel l s i n the southern

    porti on of the fi el d whi l e the Matheson E-1 sampl e

    was used for wel l s i n the northern portion of the

    fi el d.

    The Federal

    J-1

    sampl e was onl y usedl ~~ rep

    resent the fi ve Bar Sand wel l compl eti ons.

    bubbl e poi nt pressure was 2838 psi w th a gas-oi l

    rati o of 1189 SCF/ BBL.

    Basi c Decl i ne Anal ysi s Equati ons

    The Arpsl empi ri cal decl i ne equati ons that can be

    used for anal ysi s and forecasti ng future producti on

    when depl eti on i s cl earl y i ndi cated are, for

    b>O

    qi

    q(t) =

    . . . . . . . . . . ..o... lj

    [1 + b~it]l/b

    and f or b =

    O (exponenti al )

    q t .

    _l I-

    eDi t

    where the l i m ts of b

    For type curve ai i al ys’

    q(t)

    qDd = —

    qi

    and

    tod = Dj t

    . . . . . . . . . . . . . 0. . ( 2)

    are between O and 1.

    s

    . . . . . . . . . . ...0..(3)

    . ..0............(4)

    ~p~fi

    1,-.-1-”+,,-

    -,,”..a

    “1=+,.h;m”

    +hc. ,n.+.h a+ ~~e

    I“Y-,WJ

    t J @ L“ .C WZkb ty L C 11.b “

    rate- t ime data yields b, t -

    tDd$ and q(t) - qDd.

    Fromthese val ues qi and Di are eval uated and can

    then be used i n the predi ct i ve equati orrs1 or 2

    above to forecast future producti on and to obtai n

    ul ti mate recoverabl e reserves.

    As gi ven i n reference 3, we can al so eval uate the

    producti vi ty factor fromq(t) - qod match poi nt, the

    same match poi nt as woul d be used w th the above

    ~ equat i ons.

  • 8/9/2019 SPE14237-Case Study of a Low-Permeability Volatile Oil Field Using Individual-Well Advanced Decline Curve Analysis

    3/20

    ~E 14237

    M J . FETKOVICH M E. VI ENOT, I

    kn

    ‘ “’

    S.ah’i,.h +ha” SIlm.,e ,..” —

    la \p* j, WIIILI1 Lllclt al tuna Lall-

     

    el l at i on of the vi scos ty terms i n equati on 10.

    For cases where pwf < pb and~R > pb, as i s the case

    for most of the School Creek Fi el d wel l s i n thi s

    study, the producti vi ty factor i s eval uated from

    kh

    141. 2 (P6)1

    q(t)

    . - . .

    (11)

    .()]f

    ‘e

    i n — -~

    ~R -

    1

    b) pb2pwf2) qDd

    rw

    2 2pb

    and

    (B)E

    t

    q(t)

    ~ .—.—

    .~

    (12)

    ‘ P

    1

    (et) - (TR -

    1

    pb)+(pb2 - pwf2)

    ‘ Dd

    ql )d

    P

    “R L

    Equat~ons

    11

    when pR < pb

    Appendi x~.

    To cal cul ate

    we have

    and 12 reduce to a si mpl e APZ form

    (see for exampl e equati on A-9 i n the

    a drai nage radi us fr omthe pore vol ume,

    d

    p x5. 615

    re =

    nh$

    and oi l i n pl ace at

    ysi s i s

    Vp(1 - Sw)

    OIP =

    . . . . . . . . . . . . . . . . . . . ( 13)

    the start of the decl i ’ neanal -

    . . . . . . . . . . 00. . . . . . . ( 14)

    R

    Fi nal l y, the or igi nal oi l i n pl ace i s determned

    from

    ~~ p = ~~p + $ f l K\

    P

    . . . . . . . * . . . . . . . . . . . . 4- .

    where Np i s the cumul ati ve producti on to the start

    of the decl i ne anal ysi s.

    Changes i n Backpressure

    Si nce many of the wel l s i n the School Creek Fi el d

    were eval uated under fl ow ng condi ti ons w th more

    than one change i n backpressure occurri ng, we have

    extended the si ngl e backpressure change superpo-

    sit i on equati on gi ven i n reference 20

    Expressed i n

    terms of mp)oi l , for si mpl i ci ty, we have

  • 8/9/2019 SPE14237-Case Study of a Low-Permeability Volatile Oil Field Using Individual-Well Advanced Decline Curve Analysis

    4/20

    .’.

    CASE STUDY OF A LOWPERMEABI LI TY VOLATILE

    OIL

    FI ELD

    }

    USING INDIVIDUAL-WELLADVA

    (71 ~

    .m i.. .

    ~-l

    kh

    cm{p/

    R

    111~wt

    ]J

    q( t) =

    1

    [ () ]

    1

    141. 2 I n 3 - —

    t-w

    2

    qDd

     tD~

    mpwf l ) -mPwf2) mpwf2)- mpwf3)

    qDd(tD@odl ) +

    + m~R)-mp~l )

    mFR)- mpwfl )

    mPwfn- l ) -mPwfn)

    “ q~(t~ -

    tDd2) + . . . +

    mFR)- (pwf l )

     

    qf)d(tod tDdn ~)

    -1

    . . . . . . . . . . . . . . .(16)

    The rate change Aq for any backpressure change i s

    a constant fract ion of the i ni t ial rate at the same

    i ni ti al transi ent tfme peri od, as the rate change

    r et races t he or i gi nal q~ - t~ cur ve. The same

    value of the decl i ne exponent b i s used for al l r ate

    change superposi ti on cal cul ati ons.

    [

    m

    (Ptil) -

    m (pwf2)

    Aql = q2 = ql

    1

    . . . . . . (17)

    m (FP) - m (Pwf l )

    ..

    .

    [

    m (pwf2)

    1

    mpwf3)

    and Aq2 = q3 = ql . . ..00.(18)

    m (TR) - m (pwf l )

    Not e t hat t he ql / [m ( TR) - m (pwf l ) ] i s t he i ni t i al

    producti vi ty i ndex i n BOPD/ psi or BOPD/ psi2, whi ch-

    ever i s appropr i ate, t i mes a Ap or A(p2) termfor

    successi ve f l ow ng pressure changes.

    For the more general expressi on used i n thi s study

    for pressure above and bel ow the bubbl e poi nt pres-

    sure-

    Aql “ qz s

    and

    Aq2 =q?J =

    AI

    [Pti$::l

    ““”””””(19)

    P~2*”Pq2

    1

    ..... . (20)

    ZPb

    J

    ED DECLINE CURVE ANALYSI S

    SPE 14237

    I f nd when~R < pb the expressi on reduces to the

    9

    A(p ) fOr’M.

    Si i i i i l ar l ywhen p f > pb the Ap form

    i s obtai ned.

    Y

    he Ap formwou d be appropri ate for

    use w th decl i ne exponent val ues of b =

    O and AP2

    ~orm for b val ues greater than zero.

    For A(P2),

    PRSPbt the fi rst backpressure change rel ati onshi p

    becomes

    q (PM12 - Pwf22)

    Aql= qz =

     

    . . . (22)

    (~R2

    - Pwf12)

    For Ap, pwf > pb, the fi rst backpressure change

    rel ati onshi p becomes

    q

    (Pwfl - Pwf2)

    Aql

    .

    . . . ..(23)

    = ‘2 = (FR -

    Pwf )

    Successi ve rate changes woul d be handl ed as shown i n

    the previ ousl y gi ven equati ons.

    One shoul d note that i f (n) were correct l y eval u-

    ated frommp)oi l using the i nfl ow performance rel a-

    ti onshi p di scussed i n the Appendi x, al l the decl i ne

    cl i ne curve anal ysi s coul d be done di rect l y i n

    pressure terms i . e.

    (IF) =

    FR - Pwf

    . . . . . . . . . . . . . . . ( 24)

    m (FR)

    - m (pwf)

    A detai l ed exampl e i l l ustrati ng two backpressure

    changes i s gi ven for the Federal

    A-1

    wel l , Fi gures 9

    and 10 and Tabl es 9 and 9A. The exampl e i s carr ied

    out usi ng the type curve match poi nt and the basfc

    Arps formof the decli ne equati on. The procedure i s

    qui te simpl e usi ng the concept of superposi ti on

    gi ven by equati on 16.

    A conveni ent equati on8 that can be used for cal cu-

    l ati ng the total Aq as a resul t of n pressure

    changes i s,~a

    Ap

    case,

    I

    R

    - Pwfl

    P~n

    = P@ -

    I

    [Aql + Aq2 +. . . +

    Aqn] (25)

    ql

    ..,.,

  • 8/9/2019 SPE14237-Case Study of a Low-Permeability Volatile Oil Field Using Individual-Well Advanced Decline Curve Analysis

    5/20

    SPE 14237

    M J . FETKOVI CH, M E. VI ENOT,

    for l l l (p)~i l

    /

    i

    (2~R Pb-Pb

    2- Pwf 12) (Aq1 z

    Aq +. . .

    Aqn)

    Pwfn= Pwf12-

    ql

    . . . . . . (26)

    The Aq val ues are al l speci f i cal l y def i ned at a

    common poi nt i n ti me w th respect to the i ni t i al

    rate ql ; 1 day or 1 month, for exampl e. A one month

    t ime per iod i s used i n thi s study. The Federal

    A-1

    exampl e i l l ustrates thi s poi nt.

    (See Fi gure 9).

    One can al so back cal cul ate i ntermedi ate fl ow ng

    pressures and rate changes

    Aq

    whi l e performance

    matchi ng know ng the i ni ti al fl ow ng pressure and

    rate, and the f inal f l ow ng pressure. Thi s al so

    w l l be di scussed w th the Federal A-1 exampl e.

    METHOD OF DECLI NE ANALYSI S

    Log- Log Data Pl ots

    The fi rst step i n approachi ng the rate-ti me l og-l og

    anal ysi s i n the study of the School Creek Fi el d was

    to make a l og- l og pl ot of al l the rate- t i me data

    for each wel l . We next ex~ned each wel l ’ s pl ot to

    f i nd when i t actual l y started on decl i ne. The rate-

    t i me data was then rei ni t i al i zed at the poi nt of

    decl i ne to t = O and a new l og- l og pl ot for each

    wel l was prepared.

    We have thus el i mnated the

    constant rate or excess capaci ty ti me peri od whi ch

    actual l y represents the constant rate sol uti on i n-

    stead of the constant wel l bore Dressure sol uti on.

    For l og-l og type curve anal ysis: we can’ t- do-decii ne

    anal ysi s unti l the wel l

    i s actual l y on decl i ne.

    Based on the assumpti on that each wel l was drai ni ng

    i ts 160 acre spaci ng and that al l wel l s had been

    equal l y st imul ated - i .e. re/ rw woul d then be the

    same for each wel l , a School Creek Fi el d Type Curve

    was constructed by ~v~rl~vino @ach we~~ls ~q-lnn

    . . .= -----

    curve, w th the axi s al l kept paral l el , unt i l a-=

    singl e curve was obtai ned. Fi gure 5 represents thi s

    attempt to obtai n a total f i el d type curve usi ng

    data from19 wel l s that exhi bi ted a cl ear decl i ne i n

    thei r data.

    Wote the “apparent” l ong tr ansi ent

    peri od demonstrated by wel l s D-1, RA-1, and K-3. I f

    thi s f i el d type curve were val i d, we woul d have a

    simpl e and qui ck method of prepari ng an oi l produc-

    ti on forecast and of determni ng ul ti mate recover-

    abl e reserves for these wel l s and the remai ni ng

    compl eti ons. I &woul d take the rei ni ti al i zed l og-

    l og pl ot for each wel l , f i nd the best match on the

    fi el d +. . l . . a. , - - - - -.. . A4. . - , . . 1

    4 . . 4.L.-.. *L- J.*. J----

    k~pe QUI v=, aIIU ur aw a I

    Irle brrr-u brws

    udcd sown

    the depl et ion stemof b = 0.30. Future

    rates would

    be read di rect ly f romthe real t ime pl ot . Ul t imate

    recovery woul d then be a summati on of forecasted

    rates pl us the cumul ati ve producti on to the start of

    decl i ne, pl us any addi ti onal producti on as a resul t

    of pl acing the wel l on pump, where appl i cabl e.

    Ta Aa+.s-.lms 46 +h,. .-,..-.-..+   . . ...-4--- ---- . ..- -.-I

    Iv Ucbcrllllllc 1 I LIIC appaf CIIL LI arl>lerlb >Lem was real ,

    wel l s D-1, BA-1, and K-3 were al l eval uated for k

    and ski n (s) froma l og- l og type curve match on the

    c@stant w~~~h~r~ nraccllr~ cnl tinn /FimIr.nc ~ A- ~

    -“,-”,”,, {,

    ,Yul=- w,

    The eval uati on of the match-poi nts

    of reference 3)0 “-”- - ’

    l ead to unreasonabl e val ues of permeabi l i ty and,

    more speci f i cal l y ski ns for al l three wel l s,

    None

    of the wel l s were massi vel y hydraul i cal l y fr actured.

    .

    D. J OHNSON, and B. A. BOWMAN

    Wel 1 k- red s

    D-1 0.017 -7.6

    BA-1

    0.040 -8.2

    K-3 0.024

    -8.0

    It was therefore concluded that the data for these

    three wel l s was not real l y transi ent and shoul d be

    pl aced i n the earl y depl eti on peri od of the total

    f i eld type curve. Fi gure 6 i s our f inal School

    Creek Fi el d Type Curve that does not exhi bi t a l ong

    t ransi ent stem The f i el d type curve i s pr imar i l y a

    depl et i on type curve w th a b = 0.30. (We w l l

    l ater di scuss the b =

    0. 30 sel ected for thi s study. )

    Bl i nd matchi ng of l og-l og data to a type curve and

    extrapol ati on can someti mes l ead to erroneous pro-

    ducti on forecasts.

    An eval uati on of the match

    poi nts to obtai n reservoi r vari abl es for al l wel l s

    bei ng studi ed shoul d gi ve consi stent and reasonabl e

    numbers when compared w th each other thus conf i rm

    i ng the val i di ty of the forecast and the ul t i mate

    reserves numbers devel oped.

    The el i mnati on of the

    apparent transi ent stemi n thi s case i s a good exam

    pl e of such a checki ng procedure. The composi te

    type curve, Fi gure 4 of reference 2, was used for

    al l match poi nt eval uati ons performed i n thi s study.

    Basi c Wel l and Reservoi r Data

    Tabl e 1 l i sts basi c i ndi vi dual wel l i nformati on and

    the match poi nts obtai ned froma l og-l og type curve

    eval uati on for 40 wel l compl eti ons.

    Three of the

    wel l s are commngl ed. The tabl e l i sts f i rst produc-

    ti on, the start of decl i ne anal ysi s and the cumul a-

    t i ve producti on to the start of the decl i ne anal ysi s.

    Ini t i al l y, vi r tual l y al l wel l s came on f low ng w th

    several on curtai l ed or restri cted producti on before

    starti ng on decl i ne.

    Many wel l s, because of earl y

    hi gh gas-oi l - rati os and gas di sposi ti on probl ems,

    were shut i n for as much as a year before bei ng

    returned to producti on. Thi s accounts for the

    di ff erence i n ti me of as much as one year between

    fi rst ~f’ ndl l ~ti ~nnd start of rl nel +na with li++la

    . ----

    . . . . . -, “ , “o, , , ““ , =

    cumul ati ve producti on for some wel l s duri ng thi s

    i nterval .

    Reservoi r shut- i n pressures, TR, were general l y

    assumed to be cl ose to the ori gi nal pressure of

    approxi matel y 3600 psi except i n a fewcases where

    bott omhol e pressure surveys were avai l abl e to i ndi -

    cate otherw se. Fl ow ng pressures were esti mated

    f romgeneral pressure surveys conducted on 10 wel l s

    i n l ate 1982 and ear ly 1983. Fl ui d l evel s shot on

    pumpi ng wel l s i ndi cated a mnimum bottomhol e f l ow ng

    pressure of approxi matel y 100 psi .

    Porosi ty, thi ckness and water saturati on for each

    wel l were furni shed by a l og anal yst.

    Fi gure 4 i s a

    permeabi l i ty-porosi ty pl ot devel oped f rom43 pl ug

    sampl es taken on four wel l s i n the f i el d. The core

    porosi t i es, i n general , are si gni f i cantl y l ess than

    the average val ues determned froml og anal ysi s.

    Thi s w l l be di scussed further under cal cul ated re

    . . - 7, - -

    vamue>.

    The f i nal four col umns of the tabl e l i st the match

    nninte nhtstnad frm ~~e Ifi–-I,w. +..-,. -.,---- .-.I...:-

    r“.,,-.. -“-=,,,=-

    IVS-IUy I,ypc LUI ve aflalysl>

    f or each of the wel l compl et ions i n terms of t - tDd

    and q(t )

    - q~ obtai ned using the composi te type

    curve (Fi gure 4 of r~f~r~n~~ ~) and a ~ecl i ne ~xPo-

    nent b

    = 0.30.

  • 8/9/2019 SPE14237-Case Study of a Low-Permeability Volatile Oil Field Using Individual-Well Advanced Decline Curve Analysis

    6/20

    CASE STUDY OF A LOWPERMEABI LITY VOLATI LE OI L FI ELO

    I

    USING I NDI VI DUAL-WELL ADVA

    PVT Data

    PVT properti es requi red for eval uati on of reservoi r

    vari abl es fromthe type curve match poi nts are pre-

    sented i n Tabl e 2 and al so Fi gure 3.

    These are U,

    B and~t, al l eval uated at reservoi r shut- i n- pres-

    sure, pR. The total compressi bi l i ty term et, was

    3 ~ ,O- l i P5, - {

    cal cul a ed us”ng a water compressi bi l i ty, Cw of

    and pore vol ume compressi bi l i ty, Cf ,

    obtai ned fr omHal l ’ s13 correl ati on. The product

    (~) was “mechani cal l y” eval uated at the average

    pressure (pR + p~)/ 2.

    I ni ti al l y onl y two PVT sampl es were avafl abl e for

    thi s study, the Federal EE- 1 bottomhol e sampl e to

    represent Channel Sand compl eti ons and the Federal

    J-1

    bott omhol e sampl e to represent Bar Sand compl e-

    ti ons. The Matheson E-1 PVT surface recombi ned

    sampl e became avai l abl e onl y aft er our i nft i al

    studi es were vi rtual l y compl ete.

    Thi s sampl e, be-

    cause of the vastl y di fferent gas-oi l -rati o (763

    SCF/ B versus 1557 SCF/ B for the Federal EE-1 wel l )

    and because of bei ng a surf ace recombi ned sampl e,

    had been l abel ed an unrepresentati ve sampl e.

    I nspecti on of i ni ti al GORS pl otted for each wel l

    and a gas-oi l -rati o versus fracti onal recovery

    curve, based on ori gi nal oi l i n pl ace devel oped from

    the match poi nt eval uati ons, cl earl y suggested that

    the Matheson

    E-1

    sampl e was val i d. The f i nal sum

    mary of the eval uati on of reservofr vari abl es from

    type curve anal ysi s was made using the Federal EE-1

    PVT data for al l wel l s south of and i ncl udi ng wel l s

    LL-1, H-1 and R-3.

    See Fi gure 1 and Tabl es 3 and 4.

    For wei i s to the north of these wel l s we used the

    PVT data f romthe Matheson E-1 wel l sampl e.

    Because the study had been vfrtual l y compl eted when

    the Matheson

    E-1

    sampl e resul ts became avai l abl e, we

    have I ncl uded the resul ts of al l channel sand wel l s

    eval uated usfng both f l ui d sampl es.

    Basfc patt erns

    of eval uati on resul ts remai ned essenti al l y the same

    between the northern and southern wel l s, i . e. ,

    hi gher percentage recoveri es for the sc t hernwel l s

    than the northern wel l s si nce thei r actual rate-ti me

    perf ormance was based on the real fl ui d present, not

    what we sel ected to use for the ffnal eval uati on

    summary. The more undersaturated a wel l was, the

    l ess recovery woul d be obtai ned as compared wft h a

    wel l w th a f l ui d saturated at i t s f ni t f al shut - i n

    pressure, al l el se being equal . Tabl es 5, 6, 7, and

    8 summari ze the~esul ts of the match poi nt eval ua-

    tiOtIS

    based on (pR -

    pwf) / (~) and mp)oi l

    eval uati on.

    Cal cul ated Resul ts FromDecl i ne Curve Anal ysi s

    The f i nal resul ts of the type curve eval uati on fn

    terms of cal cul ated reservoi r varfabl es are pre-

    sented i n Tabl es 3 and 4; the wel l s have been

    arranged on the basis of PVT areas.

    ~ mP)oi l

    eval uati ofl was used for al l resul ts gfven i n Tabl e

    3 and a (pR -

    pwf) / (ZK) eval uat ion for al l

    val ues fn Tabl e 4.

    Pore Vol ume (Vn)

    The pore vol ume cal cul ati ons are based on equatf ons

    6 and 12, where

    ED DECLI NE CURVE ANALYSI S SPE 1423

    ,— .

    [Y8)

    t ‘ “’

    Vp=

    q(t)

    .—* —

    . . ...(6)

    ( l l ct )_ ( FR - Pwf l )

    tDd

    qDd

    PR

    and

     t3)F t

    q(t)

    .~. .

     

    ‘ P

    [

    1

    12)

    (ct)F

    (TR-Pwf )+(Pb

    *- Pq2)

    tDd

    qDd

    R

    2p

    b

    Equati on 6 woul d most certai nl y appl y to reservoi rs

    where the si ngl e phase l i qui d sol uti on i s appl i ca-

    bl e, i .e. , where the decl i ne curve exponent b = O.

    The i ntroducti on of the (~) termeval uated at

    ~R + Pwf ) / 2 w th the Ap form i s simpl y an attempt

    to account for sol uti on-gas drfve or two phase fl ow

    behavfor. A ri gorousl y deri ved (~) frommp)

    concepts, as di scussed previ ousl y, woul d be the

    approach to make equati on 6 and 12 equi val ent.

    For sol utfon gas dri ve reservoi rs, reference 2

    demonstr ates that the

    A(p2)

    formof IPR (of l wel l

    backpressure curve w th n = 1. 0) used w th a non-

    l i near~R versus Np materi al bal ance rel ati onshi p

    produces a decli ne exponent b = 0. 33. Levi ne and

    Prats~, fn thefr simul ati on study of a sol uti on

    gas dri ve reservoi r produci ng under a constant wel l -

    bore pressure condi ti on, presented a l og qD - l og tD

    type curve. (See thei r Ffgure

    11. )

    The depl etfon

    stemof thefr type curve basi cal l y f fts a decl i ne

    exponent b s 0.33. Fi gure 7 i l l ustrates one of

    several wel l s i n the School Creek Fi el d that ex-

    hi bi ted rate-tf me data fn a suffi ci ent stage of

    decl fne to hel p us establ i sh a si ngl e decl fne expon-

    ent h . tl ‘M

    ~~~ ~~~ Anel+na -II-M- .ma~y~j~ ~fi~

    -..” - - “.””.

    “.=.-n ,81.= GUI v= all

    rate predi cti ons were based on matchfng and fore-

    cast i ng on b = 0.30 f or al l wel l s. Al l f or ecast s

    for thi s study were done~ graphi cal nrntoc+:nn-

    . -u-””. ”. , .

    Fi gure 8 fs a pl ot of percent recovery versus

    bottomhol e f l ow ng pressure for the Federal A-1

    wel l . Usfng equati ons 6 and 12, the bottomhol e

    fl ow ng pressure was vari ed between 1600 psi to 100

    psi and the pore vol ume Vp and

    OOIP

    cal cul ated.

    Ul tfmate recovery was fi xed at 36, 000 60 for both

    Ap/(fi) and Alll(p)ojl cases to arr ive at a percent

    recovery. Note the l ack of sensftfvfty i n percent-

    age recovery for the

    Alll(p)ojl

    case w th the vari a-

    ti on of bottomhol e fl ow ng pressure. Sfnce the

    Amp)oi l case i s effecti vel y a di f ference i n pres-

    sures squared eff ect, we do not see a propO@onal

    i ncrease i n rate w th drawdown as i n the (UB) case

    even though (~) was eval uated at each fl ow ng-

    pressure.

    Thf s i s vi r tual l y fdent i cal w th the

    effect found for gas wel l s. The precfse determn-

    ati on of f l ow ng pressure, p~, may not then greatl y

    affect our f i nal resul ts.

    Oi l in Pl ace

    Oi l i n place fs cal cul ated di rectl y fromVp usi ng

    equatf on 14

  • 8/9/2019 SPE14237-Case Study of a Low-Permeability Volatile Oil Field Using Individual-Well Advanced Decline Curve Analysis

    7/20

    SPE 14237

    M J . FETKOVI CH, M E. VI ENOT, R. O. J OHNSON, and B. A. BOWMAN

    Vp

    (1-SW)

    OIP =

    . . . . . . . . . . . . ..(14)

    (B)T

    R

    The cal cul ated oi l i n pl ace i s at the star t of

    decl i ne whi ch, when added to the cumul ~ produc-

    t ion up to the start of the decl i ne anal ysi s, yi el ds

    the or iginal oi l i n place, OOIP, equati on 15. The

    or igi nal oi l i n pl ace i s l ater used to cal culate

    fracti onal oi l recoveri es, Tabl e 10, and GOR versus

    fracti onal recovery, i n an attempt to hel p i denti fy

    or confi rmdi ff erent fl ui d properti es used i n the

    f i el d anal ysi s and al so to possi bl y i denti fy di f fer-

    ent rock types.

    Cal cul ated Drai nage Radi us (rP)

    A “cal cul ated” drai nage radi us i s determned fromVp

    w th equati on 13

    II

    Vp X 5. 615

    re =

    . . . . . . . . . . . . . . . . ( 13)

    nh$

    The cal cul ated val ue of re i s not onl y a funct ion of

    pore vol ume Vp determned fromthe type curve anal -

    ysi s match poi nt but al so of porosi ty $ and thi ck-

    ness h. In thi s type of reservoi r , w th i ndi cated

    thi n “di rty” sands and possi bl e l i mted areal

    extent, the val ue of average h used as determned

    fromthe l ogs may be too hi gh. Thi s woul d resul t

    i n a cal cul ated re val ue i n some cases much l ess

    than re = 1490 feet for 160 acres.

    Al so, very few

    of the core sampl e pl ugs obtai ned fromwel l s i n the

    fi el d (see Fi gure 4) appear to approach the average

    porosit y val ues reported fromthe l og anal ysi s

    l i sted on Tabl e 1.

    If

    one were to bui l d a si mul a-

    t i on model of the School Creek Fi el d, outl i ned i n

    Fi gure 1, based on the l og deri ved val ues of +, h,

    and 160 acre spacing for each wel l , we woul d have

    to cut the pore vol ume to match the type curve

    anal ysis deri ved reservoi r vari abl es, specif i cal l y

    oi l i n pl ace, that have al ready been hi story matched

    to the rate-t i me decli ne data.

    To come up w th cal cul ated val ues of re approachi ng

    on average the 160 acre fi el d spaci ng, the $h pro-

    duct woul d have to be decreased. Otherw se, the

    rather tenuous concl usi on that many wel l s are not

    drai ni ng the exi sti ng spaci ng coul d l ead to a con-

    si derat i on of i nf i l l dr i l l i ng.

    Producti vi ty Factor (P. F. )

    The producti vi ty factors for each wel l are cal cu-

    l ated fr omequati ons 5 and

    11,

    where (m i s eval uated at average pressure

    (PR + Pwf) / 2

    and

    141. 2 (Pf3)5

    . . . . . . .

    .. 11

    ........,--,

    Si nce there i s a l ack of ear ly t ime transi ent rate

    data to suf f i ci ent ly def i ne an re/ rw stem uni que

    val ues of permeabi l i ty and ski n cannot be cal cul ated

    for each wel l .

    We know that al l compl eti ons were

    i ni ti al l y stimul ated.

    The core data i ndi cates an

    ari thmeti c average permeabi l i ty of 0. 650 md and a

    geometri c average of 0. 195 md, w th a range of 0. 2

    md to 7 md.

    We al so had one bui l dup test conducted

    on the KK-1 wel l where the fi nal f l ow ng pressure

    pri or to shut- i n was above the bubbl e poi nt pressure.

    The anal ysi s yi el ded a val ue of k = 2.5 md and s =

    - 3. 4.

    A range of val ues of ski n f romO to -4 was sel ected

    to eval uate permeabi l i ti es for each wel l . When we

    f i x rw

    on the basi s of ski n, rw = r e- s, and

    havi ng previ ously cal cul ated re from

     he pore vol ume

    cal cul ati on we can then cal cul ate kh and k fromequa-

    t ions 5 and 11.

    The ranges of values of k l i sted on tabl es 3 and 4

    for vari ous val ues of ski n are surpri si ngl y narrow

    w thi n a gi ven tabl e and even between the two meth-

    ods of cal cul ati on used. I t shoul d be poi nted out

    that the val ues of permeabi l i ty and ski n cal cul ated

    fromthe decl i ne curve anal ysi s are those at the

    start of the decl i ne anal ysi s.

    If a good correl ati on fromthe core deri ved $ - k

    pl ot had been obtai ned and i f l og deri ved average

    porosi ti es were consi dered reasonabl y rel i abl e, we

    coul d have used i t to determne k and then i ts cor -

    respondi ng ski n fromthe tabl es for each wel l .

    Based sol el y on the KK-1 bui l d-up anal ysis resul ts

    and the fact that al l wel l s were sti mul ated, one

    coul d al so sel ect the -3 ski n col umns on Tabl e 3 or

    4 to arr ive at speci f i c val ues of permeabi l i ty at

    the star t of decl ine for each wel l . There are no

    unreasonabl e val ues of permeabi l i ti es l i sted on

    ei ther tabl e.

    Near ly al l l i e w thin the range of

    the core permeabi l i ti es shown on Fi gure 4. Val ues

    of permeabi l i ti es i n the 10s or 100s md on any wel l

    woul d, of course, be suspect.

    Exampl e of Ef fect of Backpressure Change on Recovery

    and Decl i ne

    The equati ons to cal cul ate the change i n produci ng

    rates w th backpressure changes have been gi ven

    previ ousl y as equati ons 16 - 26. The Federal A-1

  • 8/9/2019 SPE14237-Case Study of a Low-Permeability Volatile Oil Field Using Individual-Well Advanced Decline Curve Analysis

    8/20

    CASE STUDY OF A LOWPERMEABI LI TY VOLATILE OIL FI ELD

    USING I NDI VI DI J AL-WELLADVA

    wel l produced agai nst three di ff erent fl ow ng pres-

    sures that resul ted i n two rate changes.

    Fi gure 9

    i s a l og- l og pl ot of the rate- t ime data w th the

    sol i d l i ne through the poi nts cal cul ated fromthe

    type curve match poi nts used w th the Arps hyper-

    bol i c decl i ne equat i on. Onl y the f i rst and l ast

    fl ow ng pressures of 1400 psi and 100 psi , respec-

    ti vel y, were known. Equati on 26, sol ved i n terms

    of Aq total w th pwf3 = 100 psi yi elded a total

    Aq = 747 BOPM A tri al and error cal cul ati on was

    then made varyi ng Aql unt i l a best f i t of both

    rate changes was obtai ned. Thi s resul ted i n a pwf2

    = 1069 psi.

    Tabl es 9 and 9-A i l l ustrate i n detai l the method of

    devel opi ng a forecast w th two backpressure changes

    usi ng the mp)oi ~ approach.

    Note speci fi cal l y that

    si nce the rate-t i me decl i ne i s undergoi ng depl eti on,

    the Arps equati on i s used for al l the cal cul ati ons.

    One does not have to deal w th the reservoi r vari -

    abl es, kh, s, re/ rw , obtai ned fromthe match eval u-

    at i ons. Thi s, however , woul d not be the case for a

    transi ent si tuati on.

    Theoreti cal l y, the rates for

    the fi rst fewmonths shoul d be cal cul ated at the

    md-poi nt of the t ime i ntervai , i . e. , 0.5, 1.5,

    2. 5, to represent average monthl y producti on rates.

    For simpl i cit y of presentati on of the superposi ti on

    exampl e, the rates have been eval uated at ful l month

    ti me i nterval s.

    Tabl e 9-A col umn 2 l i sts the rates for the i ni t i al

    f~ow ngpressure, pwfl , cal cul ated fr om~rps’ equa-

    t i on w t t l b = 0. 3, qi = 4545. 5 t+l J t JMna LJ i = O.Zi Z

    - - - - - -

    me- l . The rate change as a resul t of a choke change

    t o pwf z = 1069 psi i s l i st ed i n col umn 3. I t i s

    si mpl y a constant fracti on of the i ni t i al decl i ne

    rates. The second backpressure change, when the

    wel l was pl aced on pump to pwf3 = 100 psi , i s

    treated si ml arl y. For superposi ti on, col umns 3

    and 4 are retabul ated at a ti me 1 month past the

    actual ti me of the pressure change.

    Total rate i s

    then the sums of col umns

    2, 5,

    and 6. Addi ng the

    cumul ati ve producti on to the start of decli ne

    anal ysi s (2633 go), we have

    Nn Ul ti mate, BO

    Ah(p)njl A(p)

    No backpressure change

    30, 347

    30, 347

    Fi rst backpressure change

    32, 667 34, 668

    Second backpressure change

    35, 858 47, 226

    The Ap numbers i n the above tabl e were generated

    for compari son by recal cul ati ng

    Aql

    and

    Aq2

    on

    the basi s of a

    Ap

    superposi ti on usi ng equati on 23.

    Fromthi s approach, a procedure usi ng actual produc-

    t i on data (and i ts proj ected rates for a known

    i ni ti al f l ow ng pressure) coul d be devel oped to

    determne the eff ect of a backpressure change on

    ui ti mate recovery, as foi i ows.

    Determne Np at pwf l to t = T, where T = total t ime

    of rate- ti me forecast,

    T- ~ (a pwf

    Aql

    E

    2

    then

    ANP1 = — “

    q actual

    ql

    t l

    .

    FIl llFCi TNF CIIRVF ANAIYSIS

    SPE 142

    ------- ... . . . . . .. ... Q---

    T- t@ pwf3

    Aq2

    and

    ANP2 = — “

    L

    q actual

    ql

    t=l

    where q actual may al so be actual producti on pl us

    that proj ected for the i ni t i al f l ow ng pressure,

    Pwf l

     

    Ul ti mate Recoverabl e = Np + ANpl + ANP

    2

    Si ml arl y, actual earl y ti me producti on rates i n-

    stead of cal cul ated val ues can be used to generate

    the rate-ti me superposi ti on as i l l ustrated i n Tabl e

    9-A. Thi s i n essence woul d have the ef fect of i n-

    cl udi ng a downti me i f any earl y ti me rate vari ati ons

    were due to downti me.

    Fi gure 10 i l l ustrates one more poi nt about backpres-

    sure changes w th regard to the decl i ne exponent.

    As has been previ ousl y poi nted out i n references 2

    and 3, the sumof two forecasts, both havi ng the

    same vai ue of deci i ne exponent b, w l l rarel y

    resul t i n a total forecast havi ng the same decl i ne

    exponent. I n general , the total forecast decl i ne

    exponent w l l be l arger . Rei ni t ial i zi ng the rate-

    ti me data af ter the second backpressure change

    whi ch al so has b =

    0.3 resul ted i n a decl i ne

    exponent b = 0. 40.

    Fi nai i y, uni ess ai i wei i s are pi aced on pump at the

    same ti me, a backpressure change can cause a wel l ’ s

    drai nage radi us to i ncrease w th respect to offset

    wel l s. The gi ven superposit i on exampl e i mpl i ci tl y

    assumes that re remai ns constant.

    Commngl ed Wel l s

    There are three wel l s i n the School Creek Fi el d

    where Bar Sand producti on and Channel Sand produc-

    ti on are presentl y commngl ed. Fi gures 11 and 12

    - . LL. P. , . , , .

    ~or tne teaeral K-1 wei i i l l ustrate the method of

    anal ysi s used to eval uate these wel l s. A di ff erence

    curve was devel oped between the forecast rates of

    the Channel Sand producti on onl y and the connni ngl ed

    producti on whi ch came on producti on l ater. Separate

    forecasts were then made and added together.

    Surmnaryof School Creek Fi el d OOIP and Ul t i mate

    Recoverv

    Tabl e 10 summari zes the resul ts of the cal cul ated

    ori gi nal oi l i n pl ace and ul ti mate recovery forecast

    for each wel l based on anmp)oi l and a

    AP/(ti)

    eval uati on. The superposi t i on of rates as a resul t

    of backpressure changes usi ng equati ons 19 and 23

    have al so been i ncl uded where appropri ate.

    Channel Sand compl eti on resul ts are di vi ded i nto the

    northern and southern areas of the fi el d based on

    the two PVT sampl es di scussed previ ousl y. Both

    eval uati on methods i ndi cate a much l ower percentage

    recovery for wel l s i n the northern porti on of the

    fia ld dC r ~ ndP a d With wane +. th~ =~,ith~m~ ~er~fefi-

    . . . . . . “., u“.,,~”, -“

    “,”., “=, ta ,,, .am= a“ubtac, ,,

    Wel l s i n the southern porti on have percentage recov-

    er ies near twce those of wel l s to the nor th. Thi s

    woul d be consi stent sol el y on the basi s of the

    di ff erences i n bubbl e poi nt pressures between the

  • 8/9/2019 SPE14237-Case Study of a Low-Permeability Volatile Oil Field Using Individual-Well Advanced Decline Curve Analysis

    9/20

    ‘ 3PE14237

    M J. FETKOVI CH, M E. VI ENOT\

    two fl ui d sampl es. Val ues of percentage recoveri es

    are al ways l ower for the mp)oi l eval uati on method.

    Wth regard to the addi ti onal recoverabl e reserves

    that coul d possi bl y be obtai ned by pl aci ng al l wel l s

    on pump to a fi nal bottomhol e fl ow ng pressure of

    100 psi, the fol l ow ng tabl e summari zes those re-

    sul t s. (Near l y hal f of t he wel l s were i ni t i al l y at

    or near 100 psi bottomhol e fl ow ng pressure at the

    start of decl i ne.)

    Reserves Increase of

    I ncrease of

    for mo}. . +l hoi (ZJ

    I ni ti al R&&~~&

    - r , \ l - w

    Reserves

    Fl ow ng

    to pwf to pwf

    Pressure

    of 100 psi

    of 100 psi

    %

    %

    STB

    STB I ncrease STB I ncr ease

    Northern

    Wel 1s 223,900

    15, 594 7% 51, 361 23%

    Southern

    Wel 1s

    312, 105 19, 220 6% 67, 605

    22%

    Total

    Fi el d 819, 484 68, 354 8% 230,346 28%

    I f , i n fact the i nf l ow performance rel ati onshi p

    based on

    Ap~

    appl i es, the percentage i ncrease as

    a resul t of placing al l wel l s on pump to a f i nal

    fl ow ng pressure of 100 psi woul d be approxi matel y

    8%or 68, 000 BO.

    If

    the i nf l ow perf ormance rel a-

    ti onshi p were to fol l ows Ap (PI) behavi or, the

    anti ci pated i ncrease i n reserves woul d be 28%or

    230, 000 BO. Perhaps the real i ncrease i n reserves

    due to l oweri ng the fi nal bottomhol e fl ow ng pres-

    sure l i es somewhere between these two l i mt s.

    I ndi vi dual Wel l Gas-Oi l -Rati o Perf ormance

    Fi gures 13 thru 16 refl ect gas-oi l -rati o performance

    of i ndi vi dual wel l s i n the f i el d based on expressi ng

    ~~~ Pa?- l ”a. ”

    .t-+tl. +“ +ame m+ a..h I.m.11 Is ~c~,da~

    , -“ ” .=,J ,“GI,” , ,,, l.=,,,,= “ , cat.,, “ c, ,

    cumul ati ve producti on di vi ded by the

    OOIP

    cal cul ated

    fromthe mp)oi l eval uati on. Ei ther method of cal -

    cul ati ng OOIP shoul d show siml ar trends.

    Gas and

    oi l rates are metered separatel y for each wel l and

    are not based on al l ocati on fromtests.

    Fi gures 13 and 14 are on an expanded gas-oi l -rati o

    scal e i n an attempt to hel p i dent i f y rock types fn

    each area of the f i el d.

    If

    one assumes the fl ui ds

    are the same for each area, three di ff erent rock

    types and/ or i ni ti al water saturati ons are possi bl y

    i ndi cated i n the southern porti on of the f i el d.

    Fi gures 15 and 16, prepared on a scal e where the

    enti re gas-oi l -r ati o performance of each wel l can

    be shown cl earl y, i ndi cate two di fferent fl ui ds,

    based mai nl y on the wel l s’ peak gas-oi l -rati o al one

    whi ch i s not a functi on of the method of cal cul ati ng

    an OOI P number.

    Note that the gas-oi l -rati o has

    turned over on several wel l s.

    The peak gas-oi l -

    rati os for the northern wel l s i s general l y much

    l ower than those of the southern wel l s. These gas-

    oi l -rati o curves coul d be used i n devel opi ng a gas

    forecast to go w th the oi l rate forecast devel oped

    fr omthe decl i ne curve anal ysi s.

    .

    D. J OHNSON, and B. A. BOWMAN

    CONCLUSIONS

    Or igi nal oi l i n pl ace val ues can be cal cul ated f rom

    rate-ti me anal ysi s for i ndi vi dual wel l s and can

    al so be used w th reserves proj ecti ons devel oped

    fromthe decl i ne anal ysis to obtai n fracti onal

    recover ies for each wel l i n a f iel d. These f rac-

    ti onal recovery numbers shoul d be reasonabl e,

    consideri ng the fl ui d type and the permeabi l i ty of

    the reservoi r.

    Each wel l ’ s eval uati on of the r~s~rv~i r Vari ab~eS

    k, s ( ski n) ,

    OOIP

    and fr acti onal recovery, obtai ned

    from i ndi vi dual wel l rate-t i me decli ne anal ysis,

    shoul d gi ve consi stent and reasonabl e numbers when

    compared w th other wel l s i n the f ield. A si ngl e

    wel l anal ysi s can gi ve resul ts that are not recog-

    ni zed as bei ng i nval i d unl ess compared w th other

    wel l s i n the f iel d.

    Fai l ure to consi der a future l oweri ng of a wel l ’s

    fl ow ng bottomhol e pressure fr omthat causi ng a

    wel l ’s i ni t i al rate- t i me decl i ne can resul t i n

    underesti mati ng ul ti mate recoverabl e reserves.

    A method of tr eati ng future backpressure changes

    based on the superposit i on pri ncipl e and an oi l

    Nel l i nfl ow performance rel ati onshi p i s easil y

    appl i ed to decli ne curve anal ysis.

    An oi l wel l

    i nfl owperf ormance rel ati onshi p can be uti l i zed

    Over an enti re producti on forecast, not onl y at

    an i nstant i n ti me.

    NOMENCLATURE

    b=

    8

    =

    Cf =

    -Ct .

    Cw =

    Di =

    ~.

    h

    .

    k

    =

    kro =

     ( p)oi l =

    n

    .

    oh’ :

    OOI P =

    M=

    PR =

    Pwf =

     

    .

    J : .

    re =

    rw =

    rw =

    =

    s: =

    t

    =

    tod =

    T=

    “~ ;

    ‘ $=

    reci proca’

    fo~: ; ; : n

    of decl i ne curve exponent

    vol ume factor,

    res vol / surf ace vol

    effecti ve rock compressi bi l ty, psi - l

    total compressi bi l i ty, psi-

    1

    water compressi bi l i ty, p i - l

    i ni t i al decl ine rate, t -

     

    nat lral lrmarithm haca 9 71Q9Q

    ,,..””, “,

    ,“~”, , “,,,,, ““== G., S“CU

    thi ckness, ft

    ef f ecti ve permeabi l i ty, md

    rel ati ve permeabi l i ty to oi l , f racti on

    oi l pseudo pressure, psi/ cp

    exponent of backpressure curve

    cumul ati ve oi l producti on, STB

    oi l i n pl ace at st ar t of decl i ne

    anal ysi s, STB

    or iginal oi l i n pl ace, STB

    bubbl e poi nt pressure, psi a

    reservoi r shut- i n pressure, at start

    of decl i ne, psi a

    bottomhol e f l ow ng pressure, psi a

    decl i ne curve di mensi onl ess rate

    sur face rate of f l owat t ime t

    external boundary radi us, ft

    wel l bore radi us, ft

    effecti ve wel l bore radi us, ft

    ski n factor, di mensi onl ess

    water saturati on

    ti me, mo.

    decl i ne curve di mensi onl ess ti me

    total t ime of forecast , m

    reservoi r pore vol ume, ft

      ”

    vi scosi ty, Cp

    porosit y, fracti on of bul k vol ume

  • 8/9/2019 SPE14237-Case Study of a Low-Permeability Volatile Oil Field Using Individual-Well Advanced Decline Curve Analysis

    10/20

    CASE STUDY OF A LOWPERMEABI LITY VOLATILE OI L FIELD

    o

    USI NG I NDI VI DUAL-WELL AOVANCED DECLI NE CURVE ANALYSIS

    SPE 142:

    ACKNOWLEDGEMENTS

    We w sh to thank Phi l l i ps Petrol eumCompany for

    permssi on to publ i sh thi s paper . We al so w sh to

    thank U. G. Ki esow M D.

    Bradl ey, and S. D. Dunstal

    for thei r t i mel y assi stance i n parts of thi s study.

    REFERENCES

    1.

    2.

    3.

    40

    5.

    6.

    7.

    8.

    9.

    10.

    11.

    12.

    13.

    Arps, J . J . : “Anal ysi s of Decl i ne Curves,”

    TRANS, AIME (1945) 160, 228- 247.

    Fetkovi ch, M J. : “Decl i ne Curve Anal ysi s

    Using Type Curves,” J . Pet. Tech (J une 1980)

    1065- 1077.

    Fetkovi ch, M J . , Vi enot , M E. ,

    Bradl ey, M D., and Ki esow U. G. : “Decl i ne

    Curve Anal ysi s Usi ng Type Curves: Case

    Hi stori es,”

    paper SPE 13169 presented at the

    59th Annual Fal l Meeti ng of SPE of AI ME,

    Houston, Texas, September 1984.

    Carter, R. D. : “Characteri sti c Behavi or of

    Fi ni te Radi al and Li near Gas Fl ow Systems -

    Constant Termnal Pressure Case, ” SPE/ DOE 9887

    presented at the 1981 SPE/ DOE Low Permeabi l i ty

    Symposi um Denver, CO, May 27- 29, 1981.

    Carter, R, D. :

    “Type Curves for Fi ni te Radi al

    and Li near Gas-Fl ow Systems:

    Constant Term nal

    Pressure Case, ” SPE 12917 presented at the 1984

    Rocky Mountai n Regi onal Meeti ng, Casper, WY,

    May 1984.

    Da Prat, Gi ovanni , Ci nco- Ley, Heber and

    Ramey, H.

    J., Jr.:

    “Decl i ne Curve Anal ysi s

    Usi ng Type Curves for Two-Porosi ty Systems,”

    Sot. Pet. Eng. J ( J une 1981) 354-362.

    Fetkovi ch, M J . and Vienot , M E. : “Shape

    Factor, CA, Expressed as a Ski n, SCA,” J . Pet.

    Tech. (February 1985) 321- 322.

    Bradl ey, M D. : Personal communi cati on.

    Levi ne, J . S. and Prats, M: “The Cal cul ated

    Perf ormance of Sol uti on Gas Dri ve Reservoi rs, ”

    Sot. Pet. Eng. J . (Sept. 1961) 145-152.

    Fetkovi ch, M J . :

    “The I sochronal Testi ng of

    Oi l Wel l s, ” paper SPE 4529 presented at the

    48th Annual Fal l Meeti ng, Las Vegas, Nev. ,

    Sept . 30 -

    October 3, 1973. (SPE Repri nt

    Seri es No. 14, 265. )

    Vogel , J . V. :

    “Inf l ow Perf ormance Rel ati on-

    shi ps for Sol uti on Gas Dri ve Wel l s, ” J . Pet.

    Tech. (J an. 1968), 83.

    Whi tson, C. H. :

    “Reservoi r Wel l Performance

    and Predi cti ng Del i verabi l i ty, ” Unsol i ci ted

    paper SPE 12518, U. of Trondhei m

    Craf t, B. C. and Hawki ns, M F. , J r . :

    “& &

    Petrol eumReservoi r En i neeri n

    I nc.

    kngl ewood

    cl i f f *i J rf i i : ce ‘ a’ ”

    S1 METRI C CONVERSION FACTORS

    acre x 4. 046873

    bbl X 1.589873

    bbl / D X 1.589873

    Cp x

    1.0*

    f t X 3.048*

    ft3/ D X 2.831685

    md x 9. 869233

    psi x 6. 894757

    E+I )3=

    M2

    E-01 =

    m3

    E-01 =

    m3/ D

    E-03 = Pa*3

    E-01 = m

    E-02 = M3/ D

    E- 04 = pm2

    E- 03 = MPa

    *conversion factor i s exact

    APPENDI X

    Oi l Pseudo Pressure, mp)oi l For Decl i ne Curve

    Anal vsi s

    Reference 10) i ntroduced the concept of a pseudo-

    pressure mp) for oi l wel l drawdown tests si ml ar to

    that now commonl y used for gas wel l s. I t was pre-

    sented al ong w th a general i nfl ow perf ormance

    rel ati onshi p devel oped frommul ti - poi nt test data of

    some 40 oi l wel l tests.

    A general i nf l ow perf ormance equati on for decl i ne

    anal ysis that treats fl ow both above and bel ow the

    bubbl e poi nt pressure for an undersaturated oi l wel l

    assumng no non-Darcy f l ow component i s

    qo

    =

    J* (FR - pb) + J “ ( pb2 - pwf 2) . . . . . . ..(A-l)

    where J* =

    ()

    141. 2 i ~~~ - I I

    “‘ °F-“ ”

    and J * =

    J *

    R

    a2

    l @o)_ “ ;

    . . . . . . . . (A-3)

    PRs p.

    b

    Assumng (UOBO) i s a constant val ue above the

    bubbl e poi nt pressure equal to (BOB )b (the basis

    for the constant

    PI

    assumpti on for

    ?1OWabove the

    bubbl e poi nt pressure, pb) then (See al so Appendi x

    of reference 10)

    1

    %2 = . . . . . . . . . . . . . . . ( A- 4)

    pb( l @o)

    P

    b

    ‘or l / @ to go through a zero i ntercept on draw-

    i own, we are real l y l ooki ng at a (kro)

    / (B0130),

    Pwf

    i pseudo (poB ). Thi s then woul d reproduce f i el d

    i at a 10 - l og PR curves w th n =

    1.DO and also

    i

    I ogel ’ s 1 Fi gure 7, a computer generated I PR.

    {Fi gure 17 i n thi s paper. )

    I

  • 8/9/2019 SPE14237-Case Study of a Low-Permeability Volatile Oil Field Using Individual-Well Advanced Decline Curve Analysis

    11/20

    .,.

    ------- .. . .. ..-

    .... ....-

    m -

    . -. . .--. -— . r

    ma, ,., ”,,

    PE

    14237

    M J . FklKUVICH, M t . Vl tNUl , K. u WINXJN, ana D. H. UUWI’IMII

    1

    Thus

    J* (@o)p

    Jir

    Vogel form 12

    :(;);[+:)

    Ill(p) oil = -

    J“ =

    b ._

    . . . . . . . . .

    (A-5)

    2Pb(l@ )

    2p

    R

    P

    b

    b . . ...**.... .

    (A-n)

    Substi tuti ng equati on (A-5) i nto (A-1) we obtai n the

    f i nal formof the si ngl e phase and two phase I PR

    equati on

    [

     TR- Pb)

    (Pbz - Pwf2)

    q~

    . J*

    +

    1

    . 0. . . . . (A-6)

    2pk

    u

    or i n terms of reservoi r var iables, w th kro = 1

    at start of decl i ne anal ysi s

    kh

    1

    [

    1

    ~R-pb)+(pb2-pwf2)

    qo =

    [( ) ]

    1 “ =). 2pb

    141. 2 i n ~ - —

    pR

    rw

    2

    . . . . . . . . . . . . ( 7) 7)

    or i n terms of I l l ( p) oi l

    For t he case of~ SP

    Rb

    we have f romequati on (A- 7)

    kh

    1

    (~R2-pwf2,

    q. =

    .— .

    [ ]

    1 l@30 _

    2~

    141.2

    i n ~ -—

    R

    ‘ R

    ‘ w‘

    2

    . . . . . . . (A-9)

    Wth pR < p we can compare the Vogel and the AP2

     ?”

    nf l ow r=l a l onshi p i n terms of mp)oi ~. We have

    The Vogel formwoul d be extr emel y cumbersome i f

    entered i nto the constant wel l bore pressure s l u-

    ti ons as an mp)oi l expression whereas the

    AP

    ?

    formresul ts i n a si mpl e expressi on i denti cal i n

    formto the l ow pressure gas wel l backpressure

    equat ion. Oi l wel l IPR curves, j ust as gas wel l

    backpressure curves are most appl i cabl e to the

    -. . . -- +. -+. 61kfi -- ~-- . . , evecnlii++nn rnnfi$tinnc

    GullaLallti w=, Iuul c pt Gaaul = ou~uv~”,s .-”, . . . . . ..”~.a. .A

    compari son of the AP 2 formof IPR and Vogel ’s IPR

    equati on (both these forms assume a non-Darcy f l ow

    component of zero) can be seen i n f i gure 17. The

    resul ts shown on Vogel ’ s fi gure 7 are the onl y com

    pl ete set of curves gi ven i n hi s paper w th whi ch

    we coul d make a compari son of the two methods when

    usi ng the same match poi nt. Vogel ’ s poi nts of match

    A thru H were used to devel op the compari son. Note

    fr omthe fi gure 17 compari son that the

    Ap2

    form

    of the equati on better fi ts hi s computer cal cul ated

    I PR over the enti re range of depl eti on than hi s own

    di mensi onl ess formof the

    R equat ion. At very l ow

    fl ow ng pressures approachi ng O fl ow ng pressure, a

    regi on we sel domdeal w th, the Ap2 formis sl i ght ly

    l ess than the si mul ati on run resul t but sti l l cl oser

    than usi ng Vogel ’ s di mensi onl ess equati on.

    Reference 2 i l l ustrates that when the

    Ap~

    formof

    the I PR equati on i s combi ned w th a non-l i near p

    versus N rel ati onshi p for sol uti on gas dri ve reser-

    E

    oi rs, t e expected decl i ne curve exponent b =

    0.333. Thi s i s practi cal l y the same val ue as that

    found and used i n thi s study.

    1

    ()

    k

    P2

    Ap2 fOf’ M

    ro

    : mp)oi l = ~   —  

    ..(A-1O)

    ‘“R \

    @“/~

    R

  • 8/9/2019 SPE14237-Case Study of a Low-Permeability Volatile Oil Field Using Individual-Well Advanced Decline Curve Analysis

    12/20

    TA 8L E I

    S 25 P3 0L C RE EK F IE LD , c P 6E LL - C ON 2E RS E C O. , U fE U1 f fi

    f lA 21 c R CS ER VO IR O AT A N KI 0 2C LI II E C mV 2 W AT CH P Wf ~

    T18LE 2 SC1030 2REEK FIELD, CNQBELL - COWERSE CO,, W3511m

    Channe sand PvT Data Bar Sand PVT Data

    Federa M- Pw--(ph . 340+3] Hat h

     

    m E-

    P VT [ Ph

    .

    2705] Fed

     ra J-1

    (Pb

    53]

    P

    FA

    @ .9P

    @&

    @p P

    .

    u

    ~ R$B cjii& “ ,O~?St- $ RII;%8 CP,$ ji x ,0- P _

    &R, - & &;B .p,~;B x 10-:

    UCI1

    Oate

    (m . VP)

    F4rst

    ‘ r

    0

    M 1

    Oecliin

    Pm du ct f c dl m ly sf s

    A-1

    c-

    D-2

    00-1

    EE-1

    F-1

    FF-1

    G.]

    G&1

    6G-2

    74-1

    1-1

    J-1 (B)

    JJ-1

    K-1

    K-1 (B )

    F.-4

    m-

    KK-2

    LL-1

    L::: (B]

    0-1

    R-1

    R-2

    R-3

    R-3 (B )

    k-4

    s-1

    S -1 ( 0)

    T-1

    T-2

    T-3

    r-d

    0.150

    0.1S3

    0.150

    D.224

    0.200

    0.154

    0.180

    0.1342

    0.150

    0.15D

    0.150

    O.m

    1.90

    1.9D

    1.9D

    1.70

    1.70

    1.9D

    1.70

    1.90

    1.9D

    1.90

    1.9D

    1.?0

    D.366

    D.420

    0.40D

    0.431

    0.405

    0.4.3U

    0.41317

    0.366

    0.37.s

    0.405

    0.420

    0.425

    27.4

    24.6

    22.1

    24.5

    21.6

    15.9

    21.4

    24.5

    24.5

    24.5

    24.5

    ?7.5

    0.46

    0.46

    0.46

    0.43

    0.44

    0.46

    0.45

    0.46

    0.46

    0.46

    0.46

    0.43

    1.47

    1.47

    1.41

    ;::

    1.47

    1.47

    1.47

    1.47

    1.47

    1.47

    1.48

    0.647

    0.6%

    0.677

    0.707

    0.682

    0.6%

    0.677

    0.638

    0.658

    0.68?

    D.696

    0.702

    15.7

    14.5

    13.2

    15.0

    13.4

    11.6

    15.6

    14.2

    14.7

    14.7

    14.1

    15.5

    9-61

    10-81

    1-22

    2-83

    3-ss3

    10-63

    1~-~

    9-82

    6-82

    10-81

    9-62

    5-63

    2-63

    6-82

    3-83

    12-82

    5-63

    7-83

    5-.93

    6-83

    4-02

    6-E33

    8-83

    8-83

    12-82

    5-83

    5-83

    5-.92

    3-83

    6-83

    8-83

    7-83

    5-83

    4-83

    7-22

    2-83

    10-81

    5-02

    12-81

    12-62

    6-81

    3-93

    6-83

    11-63

    11-83

    10-81

    9-83

    12-82

    7-83

    3-83

    6-83

    6-83

    3-83

    7-83

    4-83

    11-53

    lD-80

    3-82

    12-82

    2633

    6226

    7821

    13839

    764;

    3?2

    :

    3839

    1761

    4287

    501

    74;

    R:

    1468

    3327

    21473

    689

    1635

    1169

    6643

    1223;

    24533

    231 9;

    8146

    1383

    7693

    245

    1871

    .919

    10776

    786;

    H

    D-z

    m-1

    [E-1

    F-1

    FF-1

    6-1

    so-1

    62-2

    H-

    ;: (8)

    JJ-1

    K-1

    K -1 ( 8)

    K-4

    KK-I

    KK-2

    LL-1

    L L-; (B )

    Q-1

    K-1

    R-2

    R-3

    n-3 (B )

    R-4

    6-81

    6-81

    1-83

    6-S2

    5-82

    10-83

    4-82

    6-62

    6-22

    6-82

    10-81

    %81

    5-s2

    8-82

    5-22

    3-83

    5-63

    8-82

    8-92

    8-82

    8-62

    11-81

    1-83

    6-82

    9-82

    7-62

    5-83

    4-82

    4-22

    S-83

    3-22

    5-m

    5-W

    7-82

    2-83

    6-82

    9-82

    10-80

    5-23

    7-81

    .137

    .13s

    .161

    .103

    .134

    .1OD

    .145

    .16D

    .120

    .125

    .165

    .158

    .240

    .149

    .134

    .240

    .150

    .130

    .140

    .132

    .170

    .148

    .14D

    .123

    .120

    .1$3

    .2DD

    .132

    .134

    .210

    .142

    .156

    .153

    .13a

    .134

    .143

    .1$2

    .160

    .143

    ,1s2

    .70

    .64

    .52

    :2

    .30

    .70

    .6D

    :%

    .6D

    .70

    .85

    .75

    .60

    .90

    .40

    .50

    .70

    .65

    .70

    .75

    .50

    .6D

    ,60

    .60

    .XT

    .6o

    .70

    .85

    . 7s

    .20

    .75

    .s.5

    .65

    .60

    .70

    .52

    .70

    .64

    0.212 1030 0.220

    0.0s9

    l lk 30 0 .6 80

    0.156

    10 0.110

    0.334 lCQD 0.ss0

    0.313 lDOO 0.432

    0.21D 10 0.076

    0.510 100 0.086

    0.100

    lm 0.270

    0.130 IDm 0.430

    0.098

    l GW 0.914

    0.083 1~ 0.670

    0.29D

    low 0.19D

    0.146

    l oD Ll 0 .2 Q5

    0.115

    I rm 0.1 3D

    D.07$

    l DI M 0.580

    0.185

    1000 0. 7B

    0.210 i

    0S4 0. 17

    0.229 IDOD 0.527

    0.190

    100 0. 098

    0.079

    10 0.550

    0.250

    l DD 0. 092

    0.178 1003 0.231

    0.144

    100 0.310

    0.130 1233 0.380

    0.092

    100 0. 670

    0.063

    l fX l 0.2.95

    0.115

    1 0D 0 .0 67

    0.118

    1 L1 3 0 .0 70

    0.115

    l DD O 0 .2 64

    0.203

    100D 0. 2W

    0.220

    100 0. 069

    0.270

    ]m 0.25D

    D.20D

    l DO 0 .2 2J 3

    0.239

    I DO 0 .2 01

    Om

    l DD 0.028

    0.165

    1C430 0.33D

    0.018

    l @J 0 ,1 70

    :.;}3

    1 Y 3 0 .1 31

    0:111 I& ::74

    0.20

    1.70

    0.355 25

    0. 20 1.70 0.368 26

    0.180

    0.150

    0.155

    0.155

    0.150

    D.150

    0.134

    0.150

    0.1s

    0.150

    0.150

    1.73

    1.411

    1.88

    1.89

    1.9D

    1.90

    ;::

    1.9D

    1.90

    1.90

    ;:Z

    0.420

    0.378

    28.9

    24. $

    0.44

    0.46

    1.48

    1.47

    0.6%

    0.658

    16.2

    14.5

    0.447

    0.351

    0.420

    0.420

    24.5 0.45 1.47 0.712

    21.6 0.45

    1.89

    0 .63S

    27.5 0.46 1.47 D.6%

    26.0 0.46

    1.47

    0 .6%

    0.46 1.47 D.640

    16.2

    0.46 1.47 0.696

    13.2

    0.46

    1.47

    D.6%

    14.7

    0.46 1.41 0.6% 14.7

    0.46

    1.47

    0.668

    14.3

    14.3

    13.3

    20.8

    15.2

    0.20 1.70

    D.368 22

    0.355

    0.42D

    0.43D

    0.420

    0.378

    28,9

    21.7

    24.6

    24.6

    24.5

    D.20 1.70 0.368

    26

    0.20

    1.70 o.36a 25

    0.1s3

    0.13D

    0.374

    0.378

    24.3

    27.4

    0.46

    0.46

    1.47

    1.47

    0.655

    0.658

    0.670

    0.670

    0.696

    0.672

    0.696

    0.647

    0.696

    0.712

    0.626

    0.6?2

    14.5

    15.5

    0.180

    O.KI

    0.150

    0.18 3

    0.150

    D.130

    0.154

    0.154

    0.150

    0.130

    1.70

    1.72

    1.72

    1.9D

    1.72

    ;::

    lea

    1.9D

    1.93

    0.391

    0.391

    0.420

    0.382

    0.420

    0.36?

    0.420

    0.437

    0.410

    0.382

    28.9

    30.4

    29.0

    23.2

    26.D

    24.5

    27.4

    22.1

    27.4

    24.4

    0.45

    0.45

    0.46

    0.45

    0.46

    0.46

    0.46

    0.45

    0.45

    0.86

    1.47

    1.47

    1.47

    1.47

    1.47

    1.47

    1.47

    1.47

    1.47

    1.47

    16.3

    16.7

    16.o

    13.9

    15.3

    14.4

    15.4

    13.1

    15.6

    14.2

    T-

    1-3

    7-4

    T-5

    A-1

    8-1

    6-1

    D-1

    E-1

    i-5

    A-1

    9-1

    B-1

    0-1

    E-1

    Ford

    F . r d

    15Mh

    7Sath

    75th

    Ford

    Fold

    F7ath

    Math

    Math

    T ML F. 3

    3 2H 00 L C RE EK F IE LO - c ti c* A TE D D EC L1 71 E c u Av E A 71 AI YS I s R ES UL TS

    “(0).,,

    EVAL JA710N

    St

    @

    07

    Po re WJl . cul t” ,

    Pm-1.

    taccor

    Cal cultcd~

    v

    s- o

    OIP

    mw

    S.-1

    S.-2

    S--3 S--4

    r - 1 rw, = .328 FwO . ..99,? .W- . 2.424

    RB

    S76

    ~ f&

    1“ *I 2

    rw - -&3 ,W, - 17.90

    k+d

    k-rid

    k-red

    k-d

    TML[ 4

    T ~D EC L1 l E C (R WE M IA LY S S R ES UL TS

    Ud.

    s tar t .ar

    EVNUATILW

    Pore VO1. Owl f..

    Ca c ”l at d

    orP

    ~

    mrp

    S.O

    s~-1 S.-2

    S.-3 S.-4

    kkll

    S78i *

    ~ F ‘ = . 328 ,,0 . .892

    f$t

    1“+- 2 w &ti

    rWB ;-:424

    . . . ; -gss ~, . 17.9

    __b L.._— ——

    k-d

    e 1

    &l

    1265

    944

    216

    240

    552

    539

    2363

    P48

    377

    467

    328

    698

    471

    993

    722

    1369

    721

    697

    335

    1535

    626

    997

    815

    1365

    ::

    1073

    2D68

    712

    1137

    369

    205

    315

    316

    420

    725

    957

    637

    59D

    563

    7.8542

    2.0367

    0.1297

    0.1050

    0.8261

    1.1995

    2.6253

    3.7269

    0.4511

    0.368D

    0.2081

    4.9183

    0.8227

    ::%

    8.5120

    1.9285

    2.7416

    1.0641

    1.7561

    0.7718

    1.0406

    6.0.964

    2.5211

    0.7114

    0.0126

    3.7613

    2.5496

    1.19+36

    2.9606

    1.3s07

    0.2&42

    n.2745

    0.49%

    0.7923

    4.2D95

    2.2628

    0.8064

    1.6814

    4.5877

    1104447

    1144663

    29481

    35358

    272785

    315066

    14e-5687

    EL13336

    I1109D

    ~;o

    %6626

    320361

    617476

    2m739

    2550551

    525927

    467301

    10629

    7216

    111137

    15%62

    6D6811

    246261

    37785

    36793

    295.97

    393443

    15246,9

    212427

    99399

    1041061

    52n5m

    473427

    10429

    7216

    111436

    163949

    m7312

    253721

    38575

    38628

    30632

    397314

    152%7

    229203

    99399

    1D48901

    92310

    142234

    45148

    253605

    1457W

    231%1

    342154

    187379

    73541

    26130

    435740

    783552

    130371

    3D4674

    112833

    34163

    38201

    42158

    50124

    66Q946

    325555

    66675

    309774

    465072

    6.77

    1.03

    0.11

    0.10

    0.57

    0.64

    6.29

    2.79

    $x

    0:13

    2.43

    0.33

    1.29

    0.98

    4.17

    1.73

    1.64

    0.68

    2.79

    0.39

    D.98

    3.18

    5.02

    0.12

    0.D1

    2.60

    3.12

    0.86

    1.82

    0.45

    0.15

    0.22

    0.23

    0.48

    1.7.9

    4.25

    1.43

    ;:;;

     %4

    :::

    0.49

    0.54

    :::

    0.25

    0.35

    0.11

    2.10

    0.28

    1.12

    0.24

    3.64

    1.49

    1.41

    0.34

    2.44

    0.36

    n .85

    2.75

    4.38

    0.10

    0.01

    2.25

    2.74

    0.74

    1.59

    $:

    0.18

    0.19

    0.41

    ::;

    1.22

    0.67

    1.56

    5.02

    0.76

    0.07

    0.07

    0.41

    0.45

    4.79

    2.03

     3.21

    0.29

    0.09

    1.78

    0.23

    0.95

    0.71

    3.11

    1.25

    1.18

    0.47

    2.09

    0.28

    0.72

    2.31

    3.75

    0.08

    0.01

    1.91

    2.36

    0.62

    1.35

    0.31

    o.D

    0.15

    0.16

    o.3a

    1.29

    3.11

    1.02

    0.56

    1.30

    4.15

    0.62

    ::%

    0.32

    0.36

    4.06

    1.65

    D.16

    0.23

    0.07

    1.45

    0.18

    0.78

    0.57

    2.57

    1.01

    0.95

    0.36

    1.74

    0.23

    0.59

    :::

    0.D6

    .01

    1.57

    1.98

    0.50

    1.11

    0.24

    0.08

    0.12

    0.12

    0.26

    1.04

    2.55

    0.82

    0.45

    1.05

    3.28

    0.48

    0.04

    0.06

    0.24

    13.27

    3.29

    1.27

    0.11

    0.17

    0.05

    1.12

    ::;

    0;44

    2.D6

    0.77

    D.72

    0.26

    1.39

    0.17

    0.46

    1.44

    2.49

    0.D6

    .01

    1.23

    1.60

    0.38

    0.8T

    0.17

    0.05

    O.ov

    0.08

    0.19

    0.79

    1.98

    0.62

    0.34

    0.79

    A-1

    c-

    0-2

    F-1

    6-1

    J+]

    K-1

    K-4

    Q-1

    R-1

    R-2

    ;;

    B-1

    D-1

    E-1

    Lm-1

    EE-1

    FF-1

    a-1

    26-2

    77-1

    1-1

    KK-1

    KK-2

    LL-1

    0-1

    R-3

    R-4

    s-

    7-1

    7-2

    T-3

    t-4

    T-5

    898366

    755925

    2D959

    23350

    241168

    226619

    114768V

    394865

    73S64

    5952D

    47709

    779935

    211699

    4D4097

    16DSD4

    1989906

    1831D6

    246668

    73%5

    7077C43

    3e4481

    38718D

    637459

    655552

    156235

    57674

    995812

    2142759

    326993

    1369126

    16913D

    46W6

    5+3964

    90675

    116550

    427784

    302541

    7414

    1141

    R37

    ::

    519

    457

    2091

    685

    306

    379

    266

    606

    38s

    903

    613

    1209

    63o

    620

    301

    1451

    626

    891

    711

    1601

    229

    279

    1D45

    19D9

    677

    1077

    326

    186

    317

    289

    375

    675

    872

    560

    538

    610

    6.3885

    1.3583

    0.0922

    0.1215

    0.7317

    0.8621

    2.0267

    2.4783

    0.2979

    D.2431

    0.1379

    3.9593

    0.5433

    0.7889

    0.4917

    6,6410

    1,4752

    2.1772

    0.8641

    1.5704

    0.6432

    0.8319

    4.7225

    2.3797

    0.5687

    O.OID1

    3.569+3

    4.1245

    1.7J79D

    4.4526

    1.1444

    0.3158

    0.2787

    0.4203

    0.6334

    3.6561

    2.3648

    0.672@

    1.3987

    3.8847

    5.43

    0.66

    O.on

    0.07

    0. 43

    0.45

    4.78

    1.77

    0.19

    D.27

    0.09

    1.93

    0.21

    0.82

    0.69

    3.20

    1.30

    1.28

    0.55

    2.48

    0.32

    0.77

    2.43

    4.72

    0.09

    0.01

    2.46

    4.81

    0.77

    2.82

    0.37

    0.12

    D.2z

    0.19

    0.38

    1.53

    3.49

    1.17

    D.64

    1.52

    4.72

    0.57

    0.D6

    0.05

    0.43

    0.38

    4.20

    1.52

    0.16

    0.22

    0.07

    1.66

    0.18

    0.71

    0.59

    2.79

    1.12

    1.10

    0.46

    2.17

    0.2.9

    0.67

    :::

    ::H

    2.13

    4.22

    0.64

    2.45

    0.31

    0.10

    0.19

    0.16

    0.32

    1.32

    3.03

    :::

    1.30

    4.01

    3.30

    0.48

    0.39

    0.05

    6.24

    0.04

    0.03

    0.36

    0.28

    0.31 0.25

    3.62

    3.05

    1.28

    1.03

    D.13

    0.10

    0.18

    0.14

    0.06

    0 .M

    1.413

    1.14

    0.15

    0.11

    0.60

    0.48

    0.50

    0.40

    2.37

    1.96

    c 1

    D-2

    F-1

    6-1

    JJ-1

    K-1

    K-4

    o-1

    R-1

    R-2

    Ford A-1

    Ford 8-1

    Mth 8-1

    Math

    o-1

    FWh

    E-1

    430417

    314767

    7414

    4765

    98725

    119D26

    468945

    16%21

    25643

    25933

    20642

    320212

    101128

    153722

    71811

    8213D67

    7.2453

    1158DD

    3m98

    227066

    121415

    185425

    266322

    177D69

    5909$

    21199

    414557

    9am38

    119287

    5%

    29553

    28606

    S6$87

    40117

    522163

    270813

    56189

    257686

    393m5

    2.59

    0.30

    0.02

    D.02

    0.21

    0.18

    2.47

    0.78

    0.07

    0.10

    0.0s

    D.87

    0.08

    D.37

    0.30

    1.54

    0.56

    0.55

    0.20

    1.22

    0.14

    D.35

    1.08

    2.34

    0.03

    .01

    1.16

    2.46

    0.34

    1.33

    0.14

    0.04

    0.08

    0.07

    0.15

    0.67

    ::8

    0.27

    D.65

    4765

    98436

    114739

    4613444

    17,1161

    24966

    p&

    318341

    1m809

    142946

    71.911

    812207

    Ford

    Ford

    Itnth

    Math

    Math

    Do-1

    EE-1

    FF-I

    z:

    H-1

    1-1

    CK-1

    KK-2

    LL-1

    o-1

    n-s

    R-4

    s-1

    T-1

    T-2

    T-3

    T-4

    T-5

    ,~; ;i

    ::? l:)

    239366

    436564

    91066

    791422

    4613%

    734543

    621613

    696523

    19s445

    72349

    U349477

    2463%6

    376D30

    1202959

    E135575

    55937

    67929

    107785

    145800

    64482

    136395

    373D6

    249923

    1457D6

    231%1

    336311

    183736

    :&

    414267

    776m5

    118124

    Wo61

    89640

    2m17

    2601s3

    34466

    49879

    0.93

    0.75

    0.92

    0.73

    0.37

    1.85

    0.29

    1.54

    0.23

    0.19

    0.56

    0.46

    1.75

    1.41

    3.53

    2.93

    0.06

    0.05

    .01

    .01

    1..s1

    1.48

    3.64

    3.05

    0.55

    0.45

    2.08

    1.71

    D.25

    0.19

    0.08

    0.06

    0.15

    0.12

    D.13

    0.10

    1136370

    614936

    1343s0

    585130

    9s0145

    599185

    W5555

    63548

    309774

    463072

    0.26

    0.20

    1.10

    0.89

    2.56

    2.07

    0.67

    ::8

    0.36

    1.09

    0.87

    J-1 (6) 1060205

    K-1 (6) 511535

    LL-2 [6) 126393

    R-3 (B) 436739

    S-1 (8) 787611

  • 8/9/2019 SPE14237-Case Study of a Low-Permeability Volatile Oil Field Using Individual-Well Advanced Decline Curve Analysis

    13/20

    3 CW 13 L C RE EK F IE LD . C fi Ca AT ED D EC LI NE CURVE AHUY S RESWTS

    T 6L[ 5 mm 07t FEDEIML EE.I (CHANNEL SAfiD) m m(p).,, EVALUATION

    Me 1

    A-1

    c-

    0-2

    ::;

    F-1

    FF-1

    G-1

    R-1

    GG-2

    H-1

    r-

    J-1 (B ]

    JJ-1

    K-

    K -1 ( B)

    K-4

    KK-1

    IX-2

    LL-1

    L L- : ( 7J )

    o-1

    R-1

    R-2

    R-3

    R- 3 ( B)

    R-4

    s-1

    3-1 (B )

    T-1

    T-2

    T-3

    1-4

    r-5

    Ford A-1

    Ford

    B-1

    Math

    8-1

    Mdth

    D-1

    ndth

    E-1

    3564913

    3319589

    73589

    9231D

    142234

    6227

    45148

    75141

    253505

    14s704

    231961

    34.215D

    6G3946

    1DS125

    423067

    325555

    177106

    187379

    73541

    26150

    6687 5

    4357413

    278715

    27641

    22D1 )1

    7835313

    2D9774

    1303711

    5D457l

    46507

    )12835

    34161

    282DI

    4215tl

    5012%

    274214

    1D18WI

    163591

    667191

    727232

    1183

    z

    721

    697

    253

    335

    515

    1535

    %

    815

    725

    463

    2258

    967

    lifi

    256

    313

    637

    ID73

    363

    447

    314

    2068

    590

    712

    1137

    663

    334

    205

    315

    316

    420

    848

    436

    939

    673

    1294

    Start of —

    Pore V.31. kcl ine

    Pr ti . Fac t..

    CRI CUItcd

    OIP

    mlP

    ~ S.o

    $.-1

    S.-2 S.-3 5 .-4

    ,mrL; 1 rw, ;-~28 r. ;-$92 W, . 2.424

    :8

    376

    ~_

    }-t

    r. 3

    rw ; - :5 88

    r. - 17.90

    k-d _

    ——

    l=

    9659D 6 35586o

    1 03 14 82 3 257 33

    26689

    7359

    239354

    34482

    436544

    128395

    39437

    6227

    91D84

    375133

    237031

    74852

    791422 249923

    461396

    145704

    734543 231961

    821613 338311

    1198370 599185

    2 3Z 6D D 1 03 83 8

    1 33 81 89 4 .2 25 E6

    W 325555

    169646

    694523

    183736

    195445

    72DD6

    72149

    24682

    154333

    63548

    lDW; 414267

    27187

    S2352

    2602+

    659+9

    20842

    2463%6

    778095

    585130 309774

    374090

    118134

    1 30 29 69 4 84 30 41

    930145 465072

    205575

    8%40

    55937

    26D17

    67939

    26818

    1D778S

    34466

    145824

    49873

    362420 272343

    27S450

    101481

    552404

    152815

    181095

    66719

    2278011

    719372

    3.34

    0.51

    0.05

    1.73

    1.64

    0.05

    0.68

    D.28

    2.79

    0.39

    0.98

    3.18

    1.78

    0.34

    3.D

    4.25

    1.44

    5.02

    0.12

    0.01

    1.43

    2.60

    0.15

    0.21

    0.D7

    3.12

    0.78

    0.86

    1.82

    1.81

    0.45

    D.15

    0.22

    0.23

    0.48

    1.19

    0.16

    0.68

    0.49

    2.07

    2.91

    D.44

    0.0s

    1.49

    1.41

    0.04

    ::H

    2.44

    0.34

    0.85

    2.75

    1.54

    0.29

    2.73

    3.68

    1.24

    4.38

    0.10

    D.01

    1.22

    2.25

    0.12

    0.17

    0.D6

    2.74

    0.67

    0.74

    1.59

    1.56

    ::fi

    0.18

    0.19

    D.41

    1.D3

    D.14

    0.59

    0.42

    1..91

    2.47

    0.37

    D.04

    1.25

    1.18

    0.03

    0.47

    0.2D

    2.D9

    0.28

    D.72

    2.31

    1.29

    0.24

    2.36

    3.11

    1.04

    3.75

    0.D8

    D.01

    1.DZ

    1.91

    O.D

    0.14

    0.05

    2.36

    0.56

    0.62

    1.35

    1.30

    D.31

    0.10

    0.15

    D.16

    0.34

    0.87

    D.11

    0.50

    0.35

    1.54

    3 CH DD L C RE EK F IE LD - C NC UL fl TE O O EC LI NE c WE A NA LY 31 3 R ES UL TS

    8 6S ED O IH M A 77 0E SON E -1 P VT ( CH A W L S AN D) A ND . ( P) O , E VMU AT IO N

    2.D4

    0.31

    0.03

    1.D1

    0.95

    D.D3

    0.36

    D.16

    1.74

    0.23

    D.59

    1.88

    :::

    1.99

    2.55

    D.85

    3.12

    0.24

    .00

    0.83

    1.57

    0.08

    D.11

    0.03

    1.98

    D.45

    D.50

    1.11

    1.D5

    D.24

    0.08

    0.12

    0.12

    0.26

    0.71

    0.09

    D.41

    0.29

    1.27

    3.60

    ID.24

    10.02

    ,0.77

    ID.72

    ID.02

    IO26

    10.12

    1.39

    10.17

    ID.46

    1.44

    10.79

    lD.14

    1.61

    1.98

    ID.65

    ,2.49

    10.04

    .00

    lD.62

    1.23

    10.06

    lD.08

    ID.02

    I..sa

    ( ). 3 4

    (1.38

    17.87

    (0.79

    (1.17

    11.05

    17.08

    (1.D8

    11.19

    (0.54

    13.D6

    10.32

    ().22

    1[.01

    start or

    Prod . Fac to r

    Po re vo l. Decl i,w

    C ac ul at d

    OIP

    kh

    mrp

    s-o

    ,&

    ,=-4

    ~T rw, . .328 ,W: : :j92 rwO ‘.”2;;24 ,Wm‘.”6 82 .Ws .

    Me 1 ll

    3T8

    E __

    in +o-~ ~~

    k-md

    17.90

    k-red

    k-rid

    k-Id

    Ford

    F.ar.J

    Nath

    Math

    Math

    H

    o-2

    20-1

    EE-3

    F-1

    FF- 1

    6-1

    GG-1

    6s-2

    H-3

    1-1

    . 3- 1 ( 8)

    .3J-

    K-1

    K -1 ( 8)

    K-4

    KK-1

    KK-2

    LL-1

    U-; (6)

    o-1

    R-1

    R-2

    R-3

    R -3 ( 8)

    t-4

    s-3

    S -1 ( 8)

    7-1

    T-2

    T-3

    T-4

    T-5

    ::

    8-3

    g:;

    1104447

    I: :u;

    318987

    536453

    353sa

    317453

    272285

    861264

    503362

    824839

    1189435

    1198370

    313464

    1485687

    614938

    603332

    974655

    169D18

    80723

    154330

    1243778

    111093

    3D143

    72243

    2775676

    585130

    409477

    151U57

    930345

    264622

    73903

    81065

    120935

    162D61

    966636

    32W561

    617476

    2D8739

    2530551

    625927

    4672o1

    10429

    139319

    18$666

    7216

    55934

    113337

    353993

    2Q6454

    34D751

    562571

    599163

    15%62

    2&w1

    325555

    246261

    257865

    60485

    35694

    63568

    6343&1

    37786

    26793

    29487

    1132929

    309774

    167133

    721170

    465072

    33s313

    40263

    41380

    46969

    7166D

    396443

    152U2

    218427

    99393

    3041041

    528560

    473427

    10429

    137147

    202503

    7216

    63572

    313426

    357575

    206454

    340751

    356410

    6DD946

    163949

    607312

    325555

    253721

    261424

    R202D

    37162

    66875

    656D53

    38475

    3n42a

    2Q656

    113$372

    309714

    179370

    745703

    466D72

    158306

    48409

    42743

    56641

    719Q3

    397314

    152%7

    229203

    29393

    1048301

    1265

    994

    216

    832

    ;:

    3m

    552

    1207

    717

    11D53

    ‘%0

    725

    ’539

    2.38D

    ‘w 7

    l~g

    :331

    (537

    3][69

    :377

    1167

    32.9

    21174

    W3

    ],45

    12 26

    C*3

    4102

    2 36

    w

    348

    4143

    ::

    9193

    1;5

    6.77

    1.D3