spe distinguished lectured

Upload: smithyry2014

Post on 06-Jul-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 SPE Distinguished Lectured

    1/30

  • 8/17/2019 SPE Distinguished Lectured

    2/30

    Birol Dindoruk

    Reservoir Fluid Properties (PVT):

    Issues, Pitfalls and Modeling Aspects

    Shell International Exp. & Prod. Inc.

    Society of Petroleum Engineers

    Distinguished Lecturer Programwww.spe.org/dl

  • 8/17/2019 SPE Distinguished Lectured

    3/30

    3

    Outline

    Purpose/Motivation• Impact (Examples)

     – Well Testing

     – Surface Oil Volume, Reservoir Depletion Performance• Sources of PVT data

     – Main Focus Areas

    • QC Considerations/Modeling Issues – Measurement errors/Sample consistency

     – Rules-of-thumb/Difficult Fluids

     – OBM

     – Compositional Grading/Multiple PVT’s

     – Viscosity

     – EOR

    • Summary

  • 8/17/2019 SPE Distinguished Lectured

    4/30

    4

    Why Do We Need PVT Data?

    • Many petroleum engineering calculations

    require PVT data: – Reserves, reservoir connectivity  – Reservoir simulation/Material balance

     – Pressure transient testing – EOR/Injection processes

     – Flow-line, wellbore hydraulics calculations

     – Flow assurance – Production allocation and calibration

     – Tax implications/qualifications/quotas

     – Production Sharing Agreements (PSA’s) – Drilling and completion fluids

  • 8/17/2019 SPE Distinguished Lectured

    5/30

    5

    Example(s): Well testing equation(s), MBE

    Bottom Line: Most of the equations that we use

    have coefficients/parameters that are functions of

    fluid properties.

    oo Bmh

    qk     6.162

  • 8/17/2019 SPE Distinguished Lectured

    6/30

    6

    From reservoir to surface –Pressure, Volume and Temperature changes

    Surface

    Oil Reservoir 

    GOR behavior, Boi

    G

    OO

    PVT

    Description

  • 8/17/2019 SPE Distinguished Lectured

    7/30

    7

    0

    5000

    10000

    15000

    20000

    0 200 400 600 800 1000 1200 1400 1600

    CUMULATIVE OIL PRODUCTION (MSTB)

       G   O   R   (   S   C   F   /   S   T   B   )

    0

    1000

    2000

    3000

    4000

    GOR (SCF/STB) Pressure (psia)

    From Craft & Hawkins

    Reservoir Performance/Time Dependent Behavior 

    Pbp

    0.0

    0.4

    0.8

    1.2

    1.6

    2.0

    0 500 1000 1500 2000 2500 3000 3500 400

    Pressure (psia)

       O   i   l   V   i  s  c  o  s   i   t  y   (  c  p   )

  • 8/17/2019 SPE Distinguished Lectured

    8/30

    8

    Sources of PVT data

    • PVT Experiments/Measurements(need fluid samples)

     – Surface/Subsurface Samples

    • Correlations/Analog Data

    • Equation of State (EOS)

    representation (i.e., cubic)

    Estimation/Calculation of

    PVT Properties

    Sutton (2005)

    22

    2   bbV V 

    a

    bV 

     RT  P 

     

  • 8/17/2019 SPE Distinguished Lectured

    9/30

    9

    What Happens From Reservoir to

    Separators?

     

     

    Plants, etc.

    Surface

    FacilityModeling

    Reservoir/ Process

    Modeling

    WellboreSimulation

  • 8/17/2019 SPE Distinguished Lectured

    10/30

    10

    RE: Main Focus Areas

    • Primary and Secondary Production

     – Typically fluid properties/depletioncharacteristics from reservoir to separators

    • Interaction with non-native (i.e., EOR)

    fluids – Experiments/Modeling to capture EOR

    processes (i.e., IFT 0)

    • Modeling the desired processes (“EOSwork”)

  • 8/17/2019 SPE Distinguished Lectured

    11/30

    11

    Some Aspects of QC Considerations

    • Fluid Type• Data Quality

     – Sample

     – Lab Data

    • Minimum Data Requirements

    • Transport Properties (Viscosity)

    • EOS vs Data

  • 8/17/2019 SPE Distinguished Lectured

    12/30

    12

    P-T Diagrams/Phase Envelope

    70%

    50%

    20%

    90%

    10%

    “GAS”

    Pdp

    2

    1

    Tsep&Psep

    CP

    PiPi

    “OIL”

    100% L

    T

    1=wet gas

    2=dry gas

    P

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    36 37 38 39 40 41 42 43 44

    TIME (hr)

       I  n  s   t  a  n   t  a  n  e  o  u  s   G   O

       R   (   M   S   C   F   /   S  e  p   B   B   L   )

    0

    10

    20

    30

    40

    50

    60

    70

    80

    0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

    P (psia)

       L   i  q   %   @    T  r  e  s

    Liq % (Data)

    Liq % (Calc)

  • 8/17/2019 SPE Distinguished Lectured

    13/30

    13

    Classification of Reservoir Fluids

     – “Cut off”/”rule of thumb” (i.e., Mc Cain)

     – P-T diagramsProperty Black  

    Oil 

    Volatile

    Oil 

    Retrograd 

    e Gas

    Wet Gas Dry Gas

    Initial GOR

    (SCF/STB)

    3200 >15000

    (100,000

    (40 20% 20-

    12.5%

  • 8/17/2019 SPE Distinguished Lectured

    14/30

    14

    80

    100

    120

    140

    160

    180

    80 100 120 140 160 180 200 220

    Separator Temperature (F)

       C   G   R   (   S   T   B

       /   M   M   S   C   F   )

    #1#2Extended Flow1st Stage CGR: Psep = 389.7 psia (139.3 STB/MMSCF)1st Stage CGR: Psep =389.7 psia (119.5 STB/MMSCF)

    1st Stage CGR: Psep =550 psia (119.5 STB/MMSCF)

    Impact of Test Separator Conditions on CGR

    10000

  • 8/17/2019 SPE Distinguished Lectured

    15/30

    15

    PCP

    Pbp

    T

    P1 & T1

    TresT1

    P1 & T1

    Low-T Extrapolation

    Pres & Tres

    Pres & Tres

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    10000

    -200 0 200 400 600 800 1000 1200 1400

    T (F)

       P   (  p  s   i  a   )

    DATA

    CRIT

  • 8/17/2019 SPE Distinguished Lectured

    16/30

    16

    Oil Base Mud (OBM) Contamination

    • Specially designed HC/Oil-Base Fluids

    • Pose challenges to get clean samples

    0.01

    10.01

    20.01

    30.01

    40.01

    50.01

    7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

    Carbon Number 

       W  e   i  g   h   t   %

    A c c e p t   a b l   e

     C  o

    n t   ami  n a t  i   on

    Black OilDry Gas

    10%

    A c c e p t   a b l   e

     C  o

    n t   ami  n a t  i   on

    Black OilDry Gas

    10%

    ?

  • 8/17/2019 SPE Distinguished Lectured

    17/30

  • 8/17/2019 SPE Distinguished Lectured

    18/30

    18

    Oil Base Mud Contamination: Condensate

    0

    10

    20

    30

    0 2000 4000 6000 8000 10000 12000 14000

    Pressure (psia)

       L   i  q  u   i   d

       V  o   l  u  m  e   (   %   )

    Liq %_exp (199 F) -- CONTAMINATED

    Liq %_cpk (199 F) -- CONTAMINATED

    Liq %_cpk (199 F) -- UNCONTAMINATED

    0

    10

    20

    30

    0 2000 4000 6000 8000 10000 12000 14000

    Pressure (psia)

       L   i  q  u   i   d

       V  o   l  u  m  e   (   %   )

    Liq %_exp (199 F) -- CONTAMINATED

    Liq %_cpk (199 F) -- CONTAMINATED

    Liq %_cpk (199 F) -- UNCONTAMINATED0.01

    10.01

    20.01

    30.01

    40.01

    50.01

    7 8 9 101112131415161718192021222324252627282930

    Carbon Number 

       W  e   i  g   h   t   %

  • 8/17/2019 SPE Distinguished Lectured

    19/30

  • 8/17/2019 SPE Distinguished Lectured

    20/30

    20

    Compositional Grading

    • Compositional Grading

     – Equilibrium

     – Non-equilibrium

    • No data = No problem (“no

    brain & no headache”)

    Depth

    Detailed review is in SPE109284

    Enabling Technologies:

     Advances in Subsurface Sampling

    Techniques

     Anshultz Ranch SPE14412, As described by Metcalfe et al.

    r1

    r1

    r4

    r3

    r2

    SPE116243 & 124264

  • 8/17/2019 SPE Distinguished Lectured

    21/30

    21

    Compositional Grading: GOR versus DepthCompositional Grading: GOR versus Depth

    9000

    9500

    10000

    10500

    11000

    11500

    0 10000 20000 30000

    GOR (SCF/STB)

       D  e  p   t   h

       (   f   t   )

    GOC

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    4500

    -200 0 200 400 600 800 1000T (F)

       P   (  p  s   i  a   )

    Critical Point

    Black OilGas

    Pres

    Tres

    GAS

    OIL

  • 8/17/2019 SPE Distinguished Lectured

    22/30

    22

    9000

    9500

    10000

    10500

    11000

    11500

    12000

    12500

    13000

    13500

    14000

    7500 8500 9500 10500 11500 12500 13500

    Pressure/Saturation Pressure (psia)

       D  e  p   t   h   (   f  e  e   t   )

    OIL/LIQUID

    CONDENSATE/VAPOR

  • 8/17/2019 SPE Distinguished Lectured

    23/30

    23

    • Inferred quantity (transport property)

    • Leading Industrial Measurement Techniques – Electromagnetic Viscosity Measurement

     – Rolling Ball Techniques – Capillary Tube

     – Fann-Type Devices

    Liquid Phase Viscosity

    (Measurement Aspects)

  • 8/17/2019 SPE Distinguished Lectured

    24/30

    24

    Liquid Phase Viscosity

    (Computational Aspects)

    • Heavy ends have the largest impact on liquidviscosity

    • Better characterization of the plus fractions

    can improve the results significantly:granularity matters!

    • Viscosity Models

     – Lohrenz-Bray-Clark/Jossi et al. Model – Corresponding States models

     – Friction models

     – Black oil correlations

  • 8/17/2019 SPE Distinguished Lectured

    25/30

    25Stalkup

    EOR Aspects

    Dependence of residual oil saturation to

    capillary number 

     

     u N Ca  

  • 8/17/2019 SPE Distinguished Lectured

    26/30

    26

    Impact of Temperature: Viscosity

    Farouq Ali (1982) SPE 9897

  • 8/17/2019 SPE Distinguished Lectured

    27/30

    27

    EOS The Final “Assembly” Step:

    • Limitations inherent to two-constant cubic

    EOS (Mainly Peng and Robinson EOS andSoave modified Redlich and Kwong EOS) – Semi-empirical nature of the EOS

     – Volume prediction

     – Mixing rules

     – Having a fixed critical Z-factor for all the

    components, etc.• Inexact fluid description (Single Carbon

    Number grouping rather than detailed

    compositional breakdown)

    PREDICTIVE CAPABILITY ISSUES:

  • 8/17/2019 SPE Distinguished Lectured

    28/30

    28

    Summary

    • Proper PVT data/work is needed to capture – Depletion performance of the reservoir and

     – Interaction of injectants and the in-situ fluids

    • Consistent fluid description is needed from thereservoir to the delivery point.

    • “Difficult fluids” (near-critical systems, heavyfluids, contaminated fluids, lean condensates,graded systems) pose challenges – Characterization/modeling aspects

     – Computational aspects

     – Initialization aspects

     – Measurement aspects

  • 8/17/2019 SPE Distinguished Lectured

    29/30

    29

    Summary

    • PVT/Fluid Properties should be used to

    complement the G&G information

    • EOS/Computational Aspects: – QC of the data is a must

     – Better viscosity prediction/modeling is needed

     – Sample characterization/representation with minimum

    # of components

     – Multiple (PVT’s) sample characterizations poses a

    challenge

  • 8/17/2019 SPE Distinguished Lectured

    30/30

    30

    QUESTIONS ?