space-time positioning at the quantum limit with optical frequency combs workshop ohp september 2013...

28
Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL , Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER, Claude FABRE, Nicolas TREPS Laboratoire Kastler Brossel Brahim LAMINE Laboratoire de Physique Théorique Toulouse

Upload: sherilyn-park

Post on 17-Dec-2015

217 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,

Space-time positioning at the quantum limit

with optical frequency combs

Workshop OHPSeptember 2013

Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,Claude FABRE, Nicolas TREPS

Laboratoire Kastler Brossel

Brahim LAMINE

Laboratoire de Physique Théorique Toulouse

Page 2: Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,

Valérian THIEL

Contents

2

Ranging experiment at the Standard Quantum Limit

Problematic of the laser source noise

Ranging in the air independent of dispersion

Page 3: Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,

Valérian THIEL

Space-time positioning concept

Ranging or clock synchronization protocols:2 observers exchange regularly emitted light pulses

Precision = sensitivity in the estimation of the delay

3

Lamine, Fabre & Treps, PRL 101, 123601 (2008)

Page 4: Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,

Valérian THIEL

The notion of modes

1.Spatial (transverse) modes :

2.Temporal (longitudinal) modes :

3.Polarization modes :

4

Mode = solution of Maxwell’s equations that contains information on the electric field.

Page 5: Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,

Valérian THIEL

Detection mode

Detection protocol : projective measurements

Measurement strategy for estimating p:Balanced homodyne detection scheme

Signal-to-noise ratio of 1

Pinel et al., PRA 85, 010101 (2012)5

This corresponds to the limit in the parameter estimation theory for coherent light = Standard quantum limit (SQL) for the estimation of p

Page 6: Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,

Valérian THIEL

Detection mode

Detection protocol : projective measurements

Measurement strategy for estimating p:Balanced homodyne detection scheme

Signal-to-noise ratio of 1

Pinel et al., PRA 85, 010101 (2012)6

Variance of detection mode

This corresponds to the limit in the parameter estimation theory for coherent light = Standard quantum limit (SQL) for the estimation of p

Page 7: Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,

Valérian THIEL

Application to ranging

7

Estimation of delay : 3 projection modes

• 1 : Carrier displacement : phase velocity mode.

• 2 : Envelope displacement : group velocity mode.

• 1 + 2 : Detection mode for by linear combination.

1 2

Detection mode for

Page 8: Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,

Valérian THIEL

SQL for space-time positioning

Analysis of the two terms:- coherent interferometric phase measurement

- incoherent time-of-flight measurement

Measurement with the detection mode = SQL for space-time positioning

Lamine et al., PRL 101, 123601 (2008)8

Page 9: Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,

Valérian THIEL

SQL for space-time positioning

Analysis of the two terms:- coherent interferometric phase measurement

- incoherent time-of-flight measurement

Measurement with the detection mode = SQL for space-time positioning

Lamine et al., PRL 101, 123601 (2008)9

Page 10: Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,

Valérian THIEL

Experimental protocol

Ti:Sapph laser @ 800 nm, 50 nm FWHM

22 fs pulse @ 156 MHz

At shot noise > ~1 MHz

640 pixels0.2nm / pixel

10

Page 11: Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,

Valérian THIEL

Results on timing measurement

11

Sensitivity (ys)

Modulation @ 2MHzRBW 1kHzVBW 1Hz

No noise at 2MHz !Can we do this for lower frequencies ?

Phase mode

Time-of-flight mode

Page 12: Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,

Valérian THIEL

Noise of a frequency comb

12

Fluctuation of parameters : Output power CEO Frequency Repetition rate Spectral center

Origin of noise :

Spontaneous emission, pump fluctuations, temperature variation, etc…

Page 13: Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,

Valérian THIEL

Typical noise of a Ti:Sa Oscillator

13

Intensity noise : balanced detection

Phase noise : standard interferometer and phase lock loop

Page 14: Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,

Valérian THIEL

Typical noise of a Ti:Sa Oscillator

14

Intensity noise : balanced detection

Phase noise : interferometer and phase lock loop

Page 15: Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,

Valérian THIEL

Influence on timing measurement

Sensitivity of detection mode for :

15

Phase noise has the biggest impact on sensitivity

Solutions : Take measurements at frequencies where noise is at SQL Heterodyning Filtering using a passive cavity

Page 16: Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,

Valérian THIEL

Filtering cavity

16

Transmissive high finesse cavity ()

• Low dispersion, resonant over 100 nm at 50 mbar air pressure

• Passive low-pass filter, cutoff frequency kHz

• Contra-propagative Pound-Drever-Hall locking scheme

Page 17: Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,

Valérian THIEL

Filtering cavity

17

Spectral transmission Amplitude excess noise

Filtering of amplitude noise beyond 800 kHz, but high incident phase noise at low frequencies leads to excess noise by noise interconversion

Page 18: Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,

Valérian THIEL

Phase to amplitude noise conversion

18

Page 19: Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,

Valérian THIEL

Homodyne detection

19

• Homodyne detection allows for measurement of amplitude or phase noise of the signal beam.

• Independent of local oscillator noise

Page 20: Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,

Valérian THIEL

Homodyne detection

20

Homodyne detection with a filtering cavity => measurement of relative phase noise

Phase quadrature analysis shows filtering of incident phase noise

Page 21: Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,

Valérian THIEL

Phase noise filtering for timing experiment

21

Sensitivity for timing measurement

Page 22: Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,

Valérian THIEL

Summary

22

Projective measurements : different shaping modes allow for detection of phase or group velocity by the push of a button

Possibility to go beyond with filtering

What other modes can we construct ? What other parameters can we access?

=> Usefulness for long distance free-space ranging experiments ?

Page 23: Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,

Valérian THIEL

Space-time positioning in air

Effect of a dispersive medium on a ranging experiment:

How to remove this parasitic effect?

Find a mode insensitive to the environmental parameters orthogonal to the detection mode of pressure, temperature, etc

Trade-off between sensitivity (detection mode) and accuracy (purified mode)

Jian et al., Opt. Exp. 20, 27133 (2012)23

Page 24: Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,

Valérian THIEL24

Parameter Detection mode Purified mode

Phase

GVD

Jian et al., Opt. Exp. 20, 27133 (2012)

Phase measurement : sensitive to GVD because modes not orthogonal !

=> Construction of purified phase mode that is orthogonal to GVD

=> Phase measurement becomes insensitive to GVD, but decrease in precision

Measuring the phase in dispersive medium

Page 25: Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,

Valérian THIEL

All-optical and real time ranging protocol in air

Optimal mode

Mode insensitive to environment

25

Page 26: Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,

Valérian THIEL

Proposed experiment

26

Modulation of the distance traveled in vacuum

=> Effective dispersion modulation

Page 27: Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,

Valérian THIEL

Conclusion and perspective

A very precise and versatile scheme…

• Measurement of various parameters at the standard quantum limit

• For ranging, combines high sensitivity and high dynamics• In dispersive medium, no post-processing needed

• Same scheme for a large range of parameters thanks to pulse shaping

… and beyond…

• Possibility to enhance sensitivity by using quantum resources:measurement below the standard quantum limit becomes possible with squeezing

27

Page 28: Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,

Valérian THIEL

Thank you for your attention

28