sp-17-14_da

104
7/25/2019 SP-17-14_DA http://slidepdf.com/reader/full/sp-17-14da 1/104 An ACI Handbook The Reinforced Concrete Design Handbook A Companion to ACI 318-14 Volume 3: Design Aids SP-17(14)

Upload: marting69

Post on 24-Feb-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 1/104

An ACI Handbook

The Reinforced Concrete Design Handbook

A Companion to ACI 318-14

Volume 3: Design Aids

SP-17(14)

Page 2: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 2/104

Page 3: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 3/104

ACI SP-17(14)

THE REINFORCED CONCRETE DESIGN HANDBOOK

A Companion to ACI 318-14

VOLUME 1

BUILDING EXAMPLE

STRUCTURAL SYSTEMS

STRUCTURAL ANALYSIS

DURABILITY

ONE-WAY SLABS

TWO-WAY SLABS

BEAMS

DIAPHRAGMS

COLUMNS

STRUCTURAL REINFORCED CONCRETE WALLS

FOUNDATIONS

VOLUME 2

RETAINING WALLS

SERVICEABILITY

STRUT-AND-TIE MODEL

ANCHORING TO CONCRETE

Page 4: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 4/104

Page 5: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 5/104

ACI SP-17(14)

Volume 3

THE REINFORCED CONCRETE

DESIGN HANDBOOK

A Companion to ACI 318-14

Editors:

Andrew TaylorTrey Hamilton III

Antonio Nanni

Page 6: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 6/104

First PrintingSeptember 2015

THE REINFORCED CONCRETE DESIGN HANDBOOK

Volume 3 ~ Ninth EditionCopyright by the American Concrete Institute, Farmington Hills, MI. All rights reserved. This material may not bereproduced or copied, in whole or part, in any printed, mechanical, electronic, film, or other distribution and storagemedia, without the written consent of ACI.

The technical committees responsible for ACI committee reports and standards strive to avoid ambiguities,omissions, and errors in these documents. In spite of these efforts, the users of ACI documents occasionally findinformation or requirements that may be subject to more than one interpretation or may be incomplete or incorrect.Users who have suggestions for the improvement of ACI documents are requested to contact ACI via the erratawebsite at http://concrete.org/Publications/DocumentErrata.aspx. Proper use of this document includes periodicallychecking for errata for the most up-to-date revisions.

ACI committee documents are intended for the use of individuals who are competent to evaluate the significance andlimitations of its content and recommendations and who will accept responsibility for the application of the materialit contains. Individuals who use this publication in any way assume all risk and accept total responsibility for theapplication and use of this information.

All information in this publication is provided “as is” without warranty of any kind, either express or implied,including but not limited to, the implied warranties of merchantability, fitness for a particular purpose or non-infringement.

ACI and its members disclaim liability for damages of any kind, including any special, indirect, incidental, orconsequential damages, including without limitation, lost revenues or lost profits, which may result from the use ofthis publication.

It is the responsibility of the user of this document to establish health and safety practices appropriate to the specificcircumstances involved with its use. ACI does not make any representations with regard to health and safety issuesand the use of this document. The user must determine the applicability of all regulatory limitations before applyingthe document and must comply with all applicable laws and regulations, including but not limited to, United StatesOccupational Safety and Health Administration (OSHA) health and safety standards.

Participation by governmental representatives in the work of the American Concrete Institute and in thedevelopment of Institute standards does not constitute governmental endorsement of ACI or the standards that itdevelops.

Order information: ACI documents are available in print, by download, on CD-ROM, through electronic subscription,or reprint and may be obtained by contacting ACI. Most ACI standards and committee reports are gathered togetherin the annually revised ACI Manual of Concrete Practice (MCP).

American Concrete Institute38800 Country Club DriveFarmington Hills, MI 48331 USA+1.248.848.3700

Managing Editor: Khaled NahlawiStaff Engineers: Daniel W. Falconer, Matthew R. Senecal, Gregory M. Zeisler, and Jerzy Z. ZemajtisTechnical Editors: Shannon B. Banchero, Emily H. Bush, and Cherrie L. FergussonManager, Publishing Services: Barry BerginLead Production Editor: Carl Bischof Production Editors: Kelli Slayden, Kaitlyn Hinman, Tiesha ElamGraphic Designers: Ryan Jay, Aimee KahaianManufacturing: Marie Fuller

 www.concrete.org

Page 7: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 7/104

VOLUME 3: CONTENTS

APPENDIX A—REFERENCE TABLES 1

APPENDIX B—ANALYSIS TABLES 11

APPENDIX C—SECTIONAL PROPERTIES 25

APPENDIX D––COLUMN INTERACTIONDIAGRAMS 27

Page 8: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 8/104

Page 9: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 9/104

REINFORCED CONCRETE DESIGN HANDBOOK IN ACCORDANCE WITH ACI 318-14—SP-17(14) 1

American Concrete Institute Copyrighted Material—www.concrete.org

APPENDIX A—REFERENCE TABLES

Table A-1—Nominal cross section area, weight, and nominal diameter of ASTM standard reinforcing bars

Bar size designation Nominal cross section area, in.2 Weight, lb/ft Nominal diameter, in. Nominal perimeter, in.

 No. 3 0.11 0.376 0.375 1.18

 No. 4 0.20 0.668 0.500 1.57

 No. 5 0.31 1.043 0.625 1.96

 No. 6 0.44 1.502 0.750 2.36

 No. 7 0.60 2.044 0.875 2.75

 No. 8 0.79 2.670 1.000 3.14

 No. 9 1.00 3.400 1.128 3.54

 No. 10 1.27 4.303 1.270 3.99

 No. 11 1.56 5.313 1.410 4.43

 No. 14 2.25 7.650 1.693 5.32

 No. 18 4.00 13.600 2.257 7.09

 Note: The nominal dimensions of a deformed bar are equivalent to those of a plain bar having the same mass per foot as the deformed bars.

Example: #9 bar spaced 7-1/2 in. apart provides 1.60 in.2/ft of section width.

Table A-2—Area of bars in a section 1 ft wide

Spacing,in.

Cross section area of bar As (or As′ ), in.2

Spacing,in.

Bar size

#3 #4 #5 #6 #7 #8 #9 #10 #11 #14 #18

4.0 0.33 0.60 0.93 1.32 1.80 2.37 3.00 3.81 4.68 — — 4.0

4.5 0.29 0.53 0.83 1.17 1.60 2.11 2.67 3.39 4.16 6.00 — 4.5

5.0 0.26 0.48 0.74 1.06 1.44 1.90 2.40 3.05 3.74 5.40 9.60 5.0

5.5 0.24 0.44 0.68 0.96 1.31 1.72 2.18 2.77 3.40 4.91 8.73 5.5

6.0 0.22 0.40 0.62 0.88 1.20 1.58 2.00 2.54 3.12 4.50 8.00 6.0

6.5 0.20 0.37 0.57 0.81 1.11 1.46 1.85 2.34 2.88 4.15 7.38 6.5

7.0 0.19 0.34 0.53 0.75 1.03 1.35 1.71 2.18 2.67 3.86 6.86 7.0

7.5 0.18 0.32 0.50 0.70 0.96 1.26 1.60 2.03 2.50 3.60 6.40 7.5

8.0 0.17 0.30 0.47 0.66 0.90 1.19 1.50 1.91 2.34 3.38 6.00 8.0

8.5 0.16 0.28 0.44 0.62 0.85 1.12 1.41 1.79 2.20 3.18 5.65 8.5

9.0 0.15 0.27 0.41 0.59 0.80 1.05 1.33 1.69 2.08 3.00 5.33 9.0

9.5 0.14 0.25 0.39 0.56 0.76 1.00 1.26 1.60 1.97 2.84 5.05 9.5

10.0 0.13 0.24 0.37 0.53 0.72 0.95 1.20 1.52 1.87 2.70 4.80 10.0

10.5 0.13 0.23 0.35 0.50 0.69 0.90 1.14 1.45 1.78 2.57 4.57 10.5

11.0 0.12 0.22 0.34 0.48 0.65 0.86 1.09 1.39 1.70 2.45 4.36 11.0

11.5 0.11 0.21 0.32 0.46 0.63 0.82 1.04 1.33 1.63 2.35 4.17 11.5

12.0 0.11 0.20 0.31 0.44 0.60 0.79 1.00 1.27 1.56 2.25 4.00 12.0

13.0 0.10 0.18 0.29 0.41 0.55 0.73 0.92 1.17 1.44 2.08 3.69 13.0

14.0 0.09 0.17 0.27 0.38 0.51 0.68 0.86 1.09 1.34 1.93 3.43 14.015.0 0.09 0.16 0.25 0.35 0.48 0.63 0.80 1.02 1.25 1.80 3.20 15.0

16.0 0.08 0.15 0.23 0.33 0.45 0.59 0.75 0.95 1.17 1.69 3.00 16.0

17.0 0.08 0.14 0.22 0.31 0.42 0.56 0.71 0.90 1.10 1.59 2.82 17.0

18.0 0.07 0.13 0.21 0.29 0.40 0.53 0.67 0.85 1.04 1.50 2.67 18.0

Page 10: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 10/104

2 REINFORCED CONCRETE DESIGN HANDBOOK IN ACCORDANCE WITH ACI 318-14—SP-17(14)

American Concrete Institute Copyrighted Material—www.concrete.org

Table A-3—Minimum beam web widths required for two or more bars in one layer for cast-in-place non-

prestressed concrete

Reference: ACI 318-11, Sections 7.2.2, 7.6.1, 7.7.1(c), and AASHTO Standard Specifications for Highway Bridges (17th

edition, 2002) Division I, Sections 8.17.3.1, 8.21.1, 8.22.1, 8.23.2.2, and Table 8.23.2.1. For use of this Design Aid, see Flexure

Example 1.

Minimum beam width = 2(A + B + C) + (n – 1)(D + d b) where A + B + C - 1/2 d b ≥ 2.0 in. cover required for longitudinal bars

and these assumptions are made:

for ACI 318

For both ACI and AASHTO For AASHTO

Bar size

ACI 318-113/4-in. aggregateinterior exposure

#3 stirrups

ACI 318-111-in. aggregate

interior exposure#3 stirrups

AASHTO requirementscast-in-place concrete

1-in. aggregateexposed to earth or weather 

Minimumweb width for 

2 bars, in.

Increment for each added bar,

in.

Minimumweb width for 

2 bars, in.

Increment for each added bar,

in.

Minimumweb width for 

2 bars, in.

Increment for each added bar,

in.

#4 6 3/4 1 1/2 7 1/8 1 7/8 7.25 2.000

#5 6 7/8 1 5/8 7 1/4 2 7.37 2.125

#6 7 1 3/4 7 3/8 2 1/8 7.50 2.250

#7 7 1/8 1 7/8 7 1/2 2 1/4 7.62 2.375

#8 7 1/4 2 7 5/8 2 3/8 7.75 2.500

#9 7 1/2 2 1/4 7 3/4 2 1/2 8.32 2.820

#10 7 7/8 2 1/2 7 7/8 2 5/8 8.68 3.175

#11 8 1/8 2 7/8 8 1/8 2 7/8 9.52 3.525

#14 8 7/8 3 3/8 8 7/8 3 3/8 10.23 4.232

#18 10 1/2 4 1/2 10 1/2 4 1/2 11.90 5.642

B = 0.375 in. for #3 stirrups  = 0.500 in. for #4 stirrups

D = 1 d b

≥ 1 in.≥  1-1/3 nominal aggregate size

B = 0.375 in. for #3 stirrups (minimumstirrup size for #10 andsmaller longitudinal bars)

= 0.500 in. for #4 stirrups (minimumstirrup size for #11 and largerlongitudinal bars)

D = 1-1/2d b≥ 1-1/2 in.≥  1-1/2 nominal aggregate size

A = 1-1/2 in. concrete cover to stirrupB = 0.635 in. for #5 stirrups

= 0.750 in. for #6 stirrups

C = stirrup bend radius of 2 stirrup

 bar diameter for #5 and smaller 

stirrups

= stirrup bend radius of 3 stirrup

 bar diameters for #6 stirrups

≥ 1/2d b of longitudinal bars

 Notes

1. Stirrups: For stirrups larger than those used

for table above, increase web width by the follow-

ing amounts (in.):

2. ACI cover requirements: For exterior 

exposure with use of #6 or larger stirrups, add 1 in.

to web width.

3. AASHTO cover requirements: For interior 

exposure, 1/2 in. may be deducted from beam

widths.

4. Bars of different sizes: For beams with bars

of two or more sizes, determine from table the beam

web width required for the given number of largest

size bars; then add the indicated increments for each

smaller bar.

5. Example: Find the minimum web width for a

 beam reinforced with two #8 bars; a beam

reinforced with three #8 bars; a beam reinforced

with three #9 and two #6 bars.

Source

Mainreinforcement

size#4

stirrup#5

stirrup#6

stirrup

ACIrequirements

#4 through #11 3/4 1 1/2 2 1/4

#14 1/2 1 1/4 2

#18 1/4 3/4 1 1/2

AASHTOrequirements

#4 through #10 0.75 1.50 2.25

#11 through #14 — 0.75 1.50

#18 — 0.49 1.24

2 #8 3 #8 3 #9 + 2 #6

ACI (3/4 in. aggregate) 7 1/4 9 1/4 13 1/4

ACI (1 in. aggregate) 7 5/8 10 14 1/2

AASHTO 7.75 10.25 15.64

     T     A     B     L     E     S

Page 11: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 11/104

REINFORCED CONCRETE DESIGN HANDBOOK IN ACCORDANCE WITH ACI 318-14—SP-17(14) 3

American Concrete Institute Copyrighted Material—www.concrete.org

Table A-4—Minimum beam web widths for various bar combinations (interior exposure)Reference: ACI 318-11 Sections 7.2.2, 7.6.1, and 7.7.1(c)

 No. of  bars

ACI min. bw, in. Columns at left headed 1-5 and 6-10 bars arefor minimum web width bw of beam having bars

of one size only. Remaining columns are for combinations of 1 to 5 bars of each of two sizes.  Calculated values of beam web width  bw

rounded upward to nearest half inch.  Where bars of two sizes are used, larger 

 bar(s) assumed to be placed along outsideface(s) of beam.  Aggregate size assumed ≤ 3/4 in.

Barsize

1 to 5 bars

6 to 10 bars

1

#3

5.5 12.5

Sizeof

smaller bars

ACI min. bw, in.

A =B =C =

D =E =

clear cover of 1-1/2 in.3/4 in. diameter of #3 stirrupsfor #11 and smaller bars: twice diameter of #3 stirrups; for #14 and #18 bars: 1/2diameter of bar 1/2 diameter of larger bar 1/2 spacing for larger bar plus 1/2 spac-ing for smaller bar (spacing is d b for #9

and larger bars, 1 in. for #8 and smaller  bars)

2 7.0 13.5

3 8.0 15.0

 No. of smaller bars4 9.5 16.5

5 11.0 18.0 1 2 3 4 5

1

#4

5.5 13.0

#3

7.0 8.5 9.5 11.0 12.5

Sizeof

smaller bars

ACI min. bw, in.2 7.0 14.5 8.5 9.5 11.0 12.5 14.0

3 8.5 16.0 10.0 11.0 12.5 14.0 15.5

 No. of smaller bars4 10.0 17.5 11.5 12.5 14.0 15.5 17.0

5 11.5 19.0 13.0 14.0 15.5 17.0 18.5 1 2 3 4 5

1

#5

5.5 13.5

#4

7.0 8.5 10.0 11.5 13.0

#3

7.0 8.5 9.5 11.0 12.5

Sizeofsmaller bars

ACI min. bw, in.2 7.0 15.0 8.5 10.0 11.5 13.0 14.5 8.5 10.0 11.0 12.5 14.0

3 8.5 17.0 10.0 11.5 13.0 14.5 16.0 10.0 11.5 13.0 14.0 15.5 No. of smaller bars4 10.5 18.5 12.0 13.5 15.0 16.5 18.0 11.5 13.0 14.5 16.0 17.0

5 12.0 20.0 13.5 15.0 16.5 18.0 19.5 13.5 14.5 16.5 17.5 19.0 1 2 3 4 5

1

#6

5.5 14.0

#5

7.0 9.0 10.5 12.0 13.5

#4

7.0 8.5 10.0 11.5 13.0

#3

7.0 8.5 10.0 11.0 12.5

2 7.0 16.0 9.0 10.5 12.0 13.5 15.5 8.5 10.0 11.5 13.0 14.5 8.5 10.0 11.5 12.5 14.0

3 9.0 17.5 10.5 12.0 14.0 15.5 17.0 10.5 12.0 13.5 15.0 16.5 10.5 11.5 13.0 14.5 16.0

4 10.5 19.5 12.5 14.0 15.5 17.0 19.0 12.0 13.5 15.0 16.5 18.0 12.0 13.5 15.0 16.0 17.5

5 12.5 21.0 14.0 15.5 17.5 19.0 20.5 14.0 15.5 17.0 18.5 20.0 14.0 15.0 16.5 18.0 19.5

1

#7

5.5 15.0

#6

7.5 9.0 11.0 12.5 14.5

#5

7.0 9.0 10.5 12.0 13.5

#4

7.0 8.5 10.0 11.5 13.0

2 7.5 16.5 9.0 11.0 12.5 14.5 16.0 9.0 10.5 12.0 14.0 15.5 9.0 10.5 12.0 13.5 15.0

3 9.0 18.5 11.0 12.5 14.5 16.0 18.0 11.0 12.5 14.0 15.5 17.5 10.5 12.0 13.5 15.0 16.5

4 11.0 20.5 13.0 14.5 16.5 18.0 20.0 12.5 14.5 16.0 17.5 19.0 12.5 14.0 15.5 17.0 18.5

5 13.0 22.5 14.5 16.5 18.0 20.0 21.5 14.5 16.0 18.0 19.5 21.0 14.5 16.0 17.5 19.0 20.5

1

#8

5.5 15.5

#7

7.5 9.5 11.0 13.0 15.0

#6

7.5 9.0 11.0 12.5 14.5

#5

7.5 9.0 10.5 12.0 14.0

2 7.5 17.5 9.5 11.0 13.0 15.0 17.0 9.0 11.0 12.5 14.5 16.0 9.0 10.5 12.5 14.0 15.5

3 9.5 19.5 11.5 13.0 15.0 17.0 19.0 11.0 13.0 14.5 16.5 18.0 11.0 12.5 14.5 16.0 17.5

4 11.5 21.5 13.5 15.0 17.0 19.0 21.0 13.0 15.0 16.5 18.5 20.0 13.0 14.5 16.5 18.0 19.5

5 13.5 23.5 15.5 17.0 19.0 21.0 23.0 15.0 17.0 18.5 20.5 22.0 15.0 16.5 18.5 20.0 21.5

1

#9

5.5 17.0

#8

7.5 9.5 11.5 13.5 15.5

#7

7.5 9.5 11.5 13.0 15.0

#6

7.5 9.0 11.0 12.5 14.5

2 8.0 19.0 10.0 12.0 14.0 16.0 18.0 9.5 11.5 13.5 15.5 17.0 9.0 11.5 13.0 15.0 16.5

3 10.0 21.5 12.0 14.0 16.0 18.0 20.0 12.0 14.0 15.5 17.5 19.5 12.0 13.5 15.5 17.0 19.0

4 12.5 23.5 14.5 16.5 18.5 20.5 22.5 14.0 16.0 18.0 20.0 21.5 14.0 16.0 17.5 19.5 21.0

5 14.5 26.0 16.5 18.5 20.5 22.5 24.5 16.5 18.5 20.0 22.0 24.0 16.5 18.0 20.0 21.5 23.5

1

#10

5.5 18.0

#9

8.0 10.0 12.5 14.5 17.0

#8

8.0 10.0 12.0 14.0 16.0

#7

7.5 9.5 11.5 13.5 15.0

2 8.0 20.5 10.5 12.5 15.0 17.0 19.5 10.0 12.0 14.0 16.0 18.0 10.0 12.0 13.5 15.5 17.5

3 10.5 23.5 13.0 15.0 17.5 19.5 22.0 12.5 14.5 16.5 18.5 20.5 12.5 14.5 16.0 18.0 20.0

4 13.0 26.0 15.5 17.5 20.0 22.0 24.5 15.0 17.0 19.0 21.0 23.0 15.0 17.0 18.5 20.5 22.5

5 15.5 28.5 18.0 20.0 22.5 24.5 27.0 17.5 19.5 21.5 23.5 25.5 17.5 19.5 21.5 23.0 25.0

1

#11

5.5 19.5

#10

8.0 10.5 13.0 15.5 18.0

#9

8.0 10.5 12.5 15.0 17.0

#8

8.0 10.0 12.0 14.0 16.0

2 8.5 22.5 11.0 13.5 16.0 18.5 21.0 10.5 13.0 15.0 17.5 19.5 10.5 12.5 14.5 16.5 18.5

3 11.0 25.0 13.5 16.0 19.0 21.5 24.0 13.5 15.5 18.0 20.0 22.5 13.0 15.0 17.0 19.0 21.0

4 14.0 28.0 16.5 19.0 21.5 24.0 26.5 16.0 18.5 20.5 23.0 25.0 16.0 18.0 20.0 22.0 24.0

5 17.0 31.0 19.5 22.0 24.5 27.0 29.5 19.0 21.5 23.5 26.0 28.0 19.0 21.0 23.0 25.0 27.0

1

#14

5.5 22.5

#11

8.5 11.5 14.5 17.0 20.0

#10

8.5 11.0 13.5 16.0 18.5

#9

8.5 10.5 13.0 15.0 17.5

2 9.0 26.0 12.0 14.5 17.5 20.5 23.0 11.5 14.0 16.5 19.0 22.0 11.5 13.5 16.0 18.0 20.5

3 12.5 29.5 15.5 18.0 21.0 23.5 26.5 15.0 17.5 20.0 22.5 25.0 14.5 17.0 19.0 21.5 23.5

4 16.0 33.0 18.5 21.5 24.5 27.0 30.0 18.5 21.0 23.5 26.0 28.5 18.0 20.5 22.5 25.0 27.0

5 19.0 36.0 22.0 25.0 27.5 30.5 33.5 22.0 24.5 27.0 29.5 32.0 21.5 23.5 26.0 28.5 30.5

1

#18

6.5 29.0

#14

10.0 13.5 16.5 20.0 23.5

#11

9.5 12.5 15.0 18.0 21.0

#10

9.5 12.0 14.5 17.0 19.5

2 11.0 33.5 14.0 17.5 21.0 24.5 27.5 13.5 16.5 19.0 22.0 25.0 13.5 16.0 18.5 21.0 23.5

3 15.5 38.0 18.5 22.0 25.5 29.0 32.0 18.0 21.0 23.5 26.5 29.5 18.0 20.5 23.0 25.5 28.0

4 20.0 42.5 23.0 26.5 30.0 33.5 36.5 22.5 25.5 28.5 31.0 34.0 22.5 25.0 27.5 30.0 32.5

5 24.5 47.0 27.5 31.0 34.5 38.0 41.0 27.0 30.0 33.0 35.5 38.5 27.0 29.5 32.0 34.5 37.0

Examples: For 2 #6 bars, minimum bw = 7.0 in. For 8 #6 bars, minimum bw =17.5 in. For 2 #7 bars plus 3 #6 bars, minimum  bw = 12.5 in. 

For 3 #6 bars plus 5 #4 bars, minimum bw = 16.5 in.

Page 12: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 12/104

4 REINFORCED CONCRETE DESIGN HANDBOOK IN ACCORDANCE WITH ACI 318-14—SP-17(14)

American Concrete Institute Copyrighted Material—www.concrete.org

Table A-5—Properties of bundled bars

Reference: ACI 318-11 Section 7.6.6.5.

Equivalent diameter,

Centroidal distance, x 

For the bundled bars configurationshown here, the centroidal distance iscalculated by the following equation:

Bars Combination of bars

Equivalent diameters d be, in.

#8 1.42 1.74 2.01 #7 #6 1.15 1.37 1.45 1.56 1.63 1.69

9 1.60 1.95 2.26 7 5 1.08 1.25 1.39 1.40 1.52 1.64

10 1.80 2.20 2.54 8 7 1.33 1.59 1.67 1.82 1.88 1.94

11 1.99 2.44 2.82 8 6 1.25 1.46 1.60 1.64 1.77 1.89

9 8 1.51 1.81 1.88 2.07 2.13 2.20

9 7 1.43 1.67 1.82 1.89 2.02 2.14

10 9 1.70 2.04 2.12 2.33 2.40 2.47

10 8 1.62 1.90 2.06 2.15 2.29 2.42

11 10 1.90 2.28 2.36 2.61 2.68 2.75

11 9 1.81 2.13 2.29 2.41 2.55 2.69

Centroidal distance x , from bottom of bundle, in.

#4 0.25 0.39 0.50 #4 #3 0.23 0.38 0.33 0.43 0.40 0.46

5 0.31 0.49 0.62 5 4 0.29 0.47 0.43 0.55 0.53 0.58

6 0.37 0.59 0.75 5 3 0.28 0.46 0.37 0.49 0.44 0.55

6 5 0.35 0.57 0.53 0.67 0.66 0.71

7 0.44 0.69 0.87 6 4 0.34 0.55 0.47 0.61 0.57 0.67

8 0.50 0.79 1.00

9 0.56 0.89 1.13 7 6 0.41 0.67 0.62 0.80 0.78 0.83

7 5 0.39 0.65 0.56 0.73 0.69 0.79

10 0.63 1.00 1.27 8 7 0.47 0.77 0.72 0.93 0.90 0.95

11 0.70 1.11 1.41 8 6 0.46 0.75 0.66 0.86 0.81 0.92

9 8 0.54 0.86 0.82 1.05 1.03 1.08

9 7 0.52 0.85 0.75 0.98 0.94 1.04

10 9 0.60 0.98 0.92 1.19 1.16 1.22

10 8 0.58 0.95 0.86 1.11 1.07 1.1811 10 0.67 1.08 1.03 1.32 1.31 1.36

11 9 0.65 1.06 0.96 1.24 1.20 1.31

Example: Find the equivalent diameter of a single bar for 4 #9 bars. For 4 #9 bars, read d be = 2.26 in.,

and the centroidal distance x  equals 1.13 in.

d be

4

π--- As=

 x 

5

2--- Asi d b1  As2 d b1 d b2/2+( )+

Σ Asi

---------------------------------------------------------------=

     T     A     B     L     E     S

Page 13: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 13/104

5

American Concrete Institute Copyrighted Material—www.concrete.org

Calculated values of beam width bw rounded

upward to nearest half-inch.

Assumptions:Aggregate size: ≤ 3/4 in.

Clear cover of 1-1/2 in.

 No. 3 stirrups

Minimum beam web width bw, in.*

Bar size

Two bundles

#8 10.0 10.0 10.5

#9 10.5 11.0 11.0#10 11.0 11.5 12.0

#11 11.5 12.0 12.5

Three bundles

#8 13.5 14.0 14.5

#9 14.5 15.0 15.5

#10 15.5 16.0 17.0

#11 16.5 17.5 18.0

Four bundles

#8 17.0 17.5 18.5

#9 18.0 19.0 20.0

#10 20.0 21.0 22.0

#11 21.5 22.5 24.0

*For beams conforming to AASHTO specifications, add 1 in. to tabulated beam webwidth. Fore example, for two bundles of three #10, minimum bw = 11.5 in.

REINFORCED CONCRETE DESIGN HANDBOOK IN ACCORDANCE WITH ACI 318-14—SP-17(14)

Reference:Reference: ACIACI 318-11318-11 SectionsSections 7.2.2,7.2.2, 7.6.6.7.6.6.1,1, 7.6.6.2,7.6.6.2, 7.6.6.3,7.6.6.3, 7.6.6.7.6.6.5,5, andand 77.7.1.7.1

Table A-6—Minimum beam web widths b w  for various combinations of bundled bars (interior exposure) 

Page 14: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 14/104

6 REINFORCED CONCRETE DESIGN HANDBOOK IN ACCORDANCE WITH ACI 318-14—SP-17(14)

American Concrete Institute Copyrighted Material—www.concrete.org

For: ψ t = 1.0; ψ e = 1.0; and λ  = 1.0 (see notes below).

Basic development length ratios of bars in tension

Bar

size Category

 f  y 40,000 psi 60,000 psi 80,000 psi

 f c′3000

 psi

4000

 psi

5000

 psi

6000

 psi

3000

 psi

4000

 psi

5000

 psi

6000

 psi

8000

 psi

10,000

 psi

3000

 psi

4000

 psi

5000

 psi

6000

 psi

8000

 psi

10,000

 psiα

#3 to#6

I 1/25 29 25 23 21 44 38 34 31 27 24 58 51 45 41 36 32

II 3/50 44 38 34 31 66 57 51 46 40 36 88 76 68 62 54 48

#7 to

#18

I 1/20 37 32 28 26 55 47 42 39 34 30 73 63 57 52 45 40

II 3/40 55 47 42 39 82 71 64 58 50 45 110 95 85 77 67 60

 Notes:

1. See category chart for Categories I and II.

2. ψ t  = bar location factor (1.3 for bars placed such that more than 12 in. of fresh concrete is cast below the development length or splice; 1.0 for other bars).

ψ e = coating factor (1.5 = epoxy-coated reinforcement with cover < 3d b or clear spacing < 6d b; 1.2 = all other epoxy-coated reinforcement; and 1.0 =

uncoated and zinc-coated [galvanized] reinforcement).

λ  = lightweight-aggregate concrete factor (0.75 for lightweight concrete, and 1.0 for normalweight concrete).

3. Minimum development length l d  ≥ 12 in.

Development length ratios:

l d 

d b-----   α

ψ t ψ eλ 

------------ f  y

 f c′---------=

Table A-7—Basic development length ratios of bars in tension

Reference: ACI 318-11 Sections 12.2.2 and 12.2.4

     T     A     B     L     E     S

Page 15: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 15/104

REINFORCED CONCRETE DESIGN HANDBOOK IN ACCORDANCE WITH ACI 318-14—SP-17(14) 7

American Concrete Institute Copyrighted Material—www.concrete.org

Table A-7—Basic development length ratios of bars in tension (cont.)

CATEGORY CHART

or 

 

Category II: All other cases

Category I:

Clear spacing d b≥

Clear cover  d b≥

Code minimum stirrups or ties throughout l d 

Clear spacing 2d b≥

Clear cover  d b≥

Page 16: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 16/104

8 REINFORCED CONCRETE DESIGN HANDBOOK IN ACCORDANCE WITH ACI 318-14—SP-17(14)

American Concrete Institute Copyrighted Material—www.concrete.org

Table A-8—Basic development length l dh of standard hooks in tension

Reference: ACI 318-11 Sections 7.1 and 12.5.1 to 12.5.3

This table is calculated with ψ e = 1.0 and λ  = 1.0.

Basic development length l dh, in., of standard hooks in tension

Bar size

 f  y 60,000 psi 80,000 psi

 f c′

3000 psi 4000 psi 5000 psi 6000 psi 8000 psi 10,000 psi 3000 psi 4000 psi 5000 psi 6000 psi 8000 psi 10,000 psi 8d b , in.d b , in.

#3 0.375 8.2 7.1 6.4 5.8 5.0 4.5 11.0 9.5 8.5 7.7 6.7 6.0 3

#4 0.5 11.0 9.5 8.5 7.7 6.7 6.0 14.6 12.6 11.3 10.3 8.9 8.0 4

#5 0.625 13.7 11.9 10.6 9.7 8.4 7.5 18.3 15.8 14.1 12.9 11.2 10.0 5

#6 0.75 16.4 14.2 12.7 11.6 10.1 9.0 21.9 19.0 17.0 15.5 13.4 12.0 6

#7 0.875 19.2 16.6 14.8 13.6 11.7 10.5 25.6 22.1 19.8 18.1 15.7 14.0 7

#8 1 21.9 19.0 17.0 15.5 13.4 12.0 29.2 25.3 22.6 20.7 17.9 16.0 8

#9 1.128 24.7 21.4 19.1 17.5 15.1 13.5 33.0 28.5 25.5 23.3 20.2 18.0 9

#10 1.27 27.8 24.1 21.6 19.7 17.0 15.2 37.1 32.1 28.7 26.2 22.7 20.3 10

#11 1.41 30.9 26.8 23.9 21.8 18.9 16.9 41.2 35.7 31.9 29.1 25.2 22.6 11

#14 1.693 37.1 32.1 28.7 26.2 22.7 20.3 49.5 42.8 38.3 35.0 30.3 27.1 14

#18 2.257 49.5 42.8 38.3 35.0 30.3 27.1 65.9 57.1 51.1 46.6 40.4 36.1 18

 Note 1: To compute development length l dh* for a standard hook in tension, multiply basic development length l dh from table above by applicable modifica-

tion factors:

α = 0.7 for #11 and smaller bars with side cover normal to plane of hook not less than 2-1/2 in.; and for 90-degree hook, cover on bar extension

 beyond hook not less than 2 in.

α = 0.8 for #11 and smaller bars with a 90-degree hook enclosed vertically or horizontally within ties or stirrup ties spaced along the full develop-

ment length not greater than 3d b, where d b is diameter of hooked bar.

α = 0.8 for #11 and smaller bars with 180-degree hook that are enclosed within ties or stirrups perpendicular to the bar being developed, spaced

not greater than 3d b along l dh.

α = As required / As provided

 Note 2: Values of basic development length l dh above the heavy line are less than the minimum development length of 6 in. Development length l dh shall not

 be less than 8d b, nor less than 6 in., whichever is greater.

Development length, l dh* = αl dh ≥ 8db,

less than 6 in., where α  represents

modifiers from Note 1 below and l dh is

 basic development length of standard

hooks in tension

l dh

0.02ψ e f  y

λ   f c′---------------------d b=

     T     A     B     L     E     S

Page 17: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 17/104

9

American Concrete Institute Copyrighted Material—www.concrete.org

REINFORCED CONCRETE DESIGN HANDBOOK IN ACCORDANCE WITH ACI 318-14—SP-17(14) 

Table A-8—Basic development length l dh of standard hooks in tension (cont.)

Reference: ACI 318-11 Sections 7.1 and 7.21

Bar size #3 #4 #5 #6 #7 #8 #9 #10 #11 #14 #18

l dh, in. 6 7 7 8 9 10 13 14 15 19 25

Example: Find minimum embedment depth l dh that will provide 2 in. cover over the tail of a standard 180-degree end hook 

in a #8 bar. For #8 bar, readl dh = 10 in.

Page 18: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 18/104

10 REINFORCED CONCRETE DESIGN HANDBOOK IN ACCORDANCE WITH ACI 318-14—SP-17(14)

American Concrete Institute Copyrighted Material—www.concrete.org

     T     A     B     L     E     S

Page 19: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 19/104

REINFORCED CONCRETE DESIGN HANDBOOK IN ACCORDANCE WITH ACI 318-14—SP-17(14) 11

American Concrete Institute Copyrighted Material—www.concrete.org

APPENDIX B—ANALYSIS TABLES Reproduced with permission from the Canadian Portland Cement Association.

Page 20: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 20/104

12 REINFORCED CONCRETE DESIGN HANDBOOK IN ACCORDANCE WITH ACI 318-14—SP-17(14)

American Concrete Institute Copyrighted Material—www.concrete.org

     T     A     B     L     E     S

Page 21: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 21/104

REINFORCED CONCRETE DESIGN HANDBOOK IN ACCORDANCE WITH ACI 318-14—SP-17(14) 13

American Concrete Institute Copyrighted Material—www.concrete.org

Page 22: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 22/104

14 REINFORCED CONCRETE DESIGN HANDBOOK IN ACCORDANCE WITH ACI 318-14—SP-17(14)

American Concrete Institute Copyrighted Material—www.concrete.org

     T     A     B     L     E     S

Page 23: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 23/104

REINFORCED CONCRETE DESIGN HANDBOOK IN ACCORDANCE WITH ACI 318-14—SP-17(14) 15

American Concrete Institute Copyrighted Material—www.concrete.org

Page 24: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 24/104

16 REINFORCED CONCRETE DESIGN HANDBOOK IN ACCORDANCE WITH ACI 318-14—SP-17(14)

American Concrete Institute Copyrighted Material—www.concrete.org

     T     A     B     L     E     S

Page 25: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 25/104

REINFORCED CONCRETE DESIGN HANDBOOK IN ACCORDANCE WITH ACI 318-14—SP-17(14) 17

American Concrete Institute Copyrighted Material—www.concrete.org

Page 26: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 26/104

18 REINFORCED CONCRETE DESIGN HANDBOOK IN ACCORDANCE WITH ACI 318-14—SP-17(14)

American Concrete Institute Copyrighted Material—www.concrete.org

     T     A     B     L     E     S

Page 27: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 27/104

REINFORCED CONCRETE DESIGN HANDBOOK IN ACCORDANCE WITH ACI 318-14—SP-17(14) 19

American Concrete Institute Copyrighted Material—www.concrete.org

Page 28: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 28/104

20 REINFORCED CONCRETE DESIGN HANDBOOK IN ACCORDANCE WITH ACI 318-14—SP-17(14)

American Concrete Institute Copyrighted Material—www.concrete.org

     T     A     B     L     E     S

Page 29: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 29/104

REINFORCED CONCRETE DESIGN HANDBOOK IN ACCORDANCE WITH ACI 318-14—SP-17(14) 21

American Concrete Institute Copyrighted Material—www.concrete.org

Page 30: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 30/104

22 REINFORCED CONCRETE DESIGN HANDBOOK IN ACCORDANCE WITH ACI 318-14—SP-17(14)

American Concrete Institute Copyrighted Material—www.concrete.org

     T     A     B     L     E     S

Page 31: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 31/104

REINFORCED CONCRETE DESIGN HANDBOOK IN ACCORDANCE WITH ACI 318-14—SP-17(14) 23

American Concrete Institute Copyrighted Material—www.concrete.org

Page 32: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 32/104

24 REINFORCED CONCRETE DESIGN HANDBOOK IN ACCORDANCE WITH ACI 318-14—SP-17(14)

American Concrete Institute Copyrighted Material—www.concrete.org

     T     A     B     L     E     S

Page 33: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 33/104

REINFORCED CONCRETE DESIGN HANDBOOK IN ACCORDANCE WITH ACI 318-14—SP-17(14) 25

American Concrete Institute Copyrighted Material—www.concrete.org

APPENDIX C—SECTIONAL PROPERTIES

Dash-and-dot lines are drawn through centers of gravity

 A = area of section; I  = moment of inertia; R = radius of gyration

 A = bd 

 A d 2

=

 I 1d 

4

12------=

 I 2d 

4

3-----=

 R1 0.2887d =

 R2 0.57774d =

 A  πd 

2

4-------- 0.7854d 

2= =

 I vd 

4

64-------- 0.0491d 

4= =

 Rd 

4---=

 A d 2

=

 y 0.7071d =

 I d 

4

12------=

 R 0.2887d =

 A 0.8660d 2

=

 I  0.060d 4

=

 R 0.264d =

 I 1bd 

3

12--------=

 I 2bd 

3

3--------=

 R1 0.2887d =

 R2 0.5774d =

 A 0.8284d 2

=

 I  0.055d 4

=

 R 0.257d =

 A bd =

 ybd 

b2

d 2

+

--------------------=

 I b

3d 

3

6 b2

d 2

+( )------------------------=

 Rbd 

6 b2

d 2

+( )-----------------------------=

 Abd 

2------=

 I 1 bd 

3

36--------=

 I 2bd 

3

12--------=

 R1 0.236d =

 R2 0.408d =

 A bd =

 Ad 

2--- b b′+( )=

 yd  2b b′+( )3 b b′+( )

--------------------------=

 yd b 2b′+( )3 b b′+( )

--------------------------=

 I d 

2b

24bb ′ b′

2+ +( )

36 b b′+( )-----------------------------------------------=

 Rd 

6 b b ′+( )---------------------- 2 b

24bb ′ b′

2+ +( )=

 Rb

2 sin

2∞ d 

2cos

2∞+( )

12--------------------------------------------------------=

 ybsin∞ d    ∞cos+

2--------------------------------------=

Table C-1—Properties of sections

Page 34: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 34/104

26 REINFORCED CONCRETE DESIGN HANDBOOK IN ACCORDANCE WITH ACI 318-14—SP-17(14)

American Concrete Institute Copyrighted Material—www.concrete.org

Dash-and-dot lines are drawn through centers of gravity

 A = area of section; I  = moment of inertia; R = radius of gyration

Section of parabola

For parabola: For compliment:

 

Ellipse

Parabola

Equation:

 A bt bc′+=

 yd 

2b′ t 

2b b′ – ( )+

2 bt bc′+( )

---------------------------------------=

 y1 d y – =

 I b′ y1

3by

3b b′ – ( )  y t  – ( )

3 – +

3---------------------------------------------------------------------=

 R I 

 A---=

 y2 b

2

d ----- x =

 A2bd 

3---------=  A

bd 

3------=

 I 18

175---------bd 

3=  I 1

37

2100------------bd 

3=

 I 219

480---------b

3d =  I 2

1

80------b

3d =

 A bt bc′+=

 yd 

2b′ t 

2b b′ – ( )+

2 bt bc′+( )---------------------------------------=

 y1 d y – =

 I 

b′ y1

3by

3b b′ – ( )  y t  – ( )

3 – +

3---------------------------------------------------------------------=

 R I 

 A---=

 A d 2

a2

 – =

 I d 

4a

4 – 

12----------------=

 R d 2

a2

+12

----------------=

 A bt c a b′+( )

2----------------------+=

 y3bt 

23b′c d t +( ) c a b′ – ( ) c 3t +( )+ +

3 2bt c a b′+( )+[ ]--------------------------------------------------------------------------------------------=

 y1 d y – =

 I 4bt 

2c

33b′ a+( )+

12--------------------------------------------  A y t  – ( )

2 – =

 R I 

 A---=

 A bd ac – =

 I bd 

3ac

3 – 

12----------------------=

 Rbd 

3ac

3 – 

12 bd ac – ( )-----------------------------=

 A 0.7854bd =

 I 1wbd 

3

64------------- 0.0491bd 

3= =

 I 2wb

3d 

64------------- 0.0491b

3d = =

 R1

4---=

 R2

b

4---=

 A  π d 

2d 1

2 – ( )

4------------------------ 0.7854 d 

2d 1

2 – ( )= =

 I   π d 

4d 1

4 – ( )

64------------------------ 0.0491 d 

4d 1

4 – ( )= =

 R 1 4 ⁄  d 2

d 12

+=

 y2 b

2

4d  x 

--------=

 A2bd 

3---------=

 A 0.8284d 2

0.7854d 12

 – =

0.7854 1.055d 2

d 1

2 – 

( )=

 I  0.0547d 4

0.0491d 14

 – =

0.0491 1.115d 4

d 14

 – ( )=

0.0491 1.056( )2d 

4d 1

4 – [ ]=

 R 1 4 ⁄  1.056d 2

d 12

+=

Table C-2—Properties of sections

     P     R     O     P .

Page 35: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 35/104

APPENDIX D –– COLUMN INTERACTION DIAGRAMS (DESIGN AIDS)

D.1 — Column interaction diagrams

The column axial load-bending moment interaction diagrams illustrated in D.5 conform to ACI 318-14. The

equations used to generate data for plotting the interaction diagrams were originally developed for ACI SP-7 (Everard

and Cohen 1964). In addition, complete derivations of the equations for square and circular columns having the steel

arranged in a circle have been published in the  ACI Structural Journal   (Everard 1997). The interaction diagrams

contained in SP-7 were subsequently published in SP-17A (ACI Committee 340 1970). The related equations were

derived considering the following:

(a)  For rectangular and square columns having steel bars placed on the end faces only, reinforcement was assumed

to consist of two equal thin strips parallel to the compression face of the section;

(b)  For rectangular and square columns having steel bars equally distributed along all four faces, the reinforcement

was considered to consist of a thin rectangular or square tube; and

(c)  For square and circular sections having steel bars arranged in a circle, the reinforcement was considered to consist

of a thin circular tube. 

The interaction diagrams were developed using the rectangular stress block (ACI 318-14, Section 22.2.2.4). In

all cases, for reinforcement within the compressed portion of the depth perpendicular to the compression face of the

concrete (a = 

1c), the compression stress in the steel was reduced by 0.85 f c′ to account for the concrete area that is

displaced by the reinforcing bars within the compression stress block.

The interaction diagrams were plotted in nondimensional form. The vertical coordinate [ K n = P n/( f c′ A g )] represents

the nondimensional form of the nominal axial load strength of the section. The horizontal coordinate [ Rn = M n/( f c′ A g h)]

represents the nondimensional nominal bending moment strength of the section. The nondimensional forms were

used so that the interaction diagrams could be used with any system of units (SI or in.-lb units). Because ACI 318-14

contains different φ factors in Chapter 21, the strength reduction factor  φ was considered as 1.0 so that the nominal

values in the interaction diagrams could be used with any set of φ factors. 

 Note that the 

φ factors provided in Chapter 21 of ACI 318-14 are based on strain values in the tension reinforcement

farthest from the compression face of a member, or at the centroid of the tension reinforcement.

Also note the eccentricity ratios (e/h = M / P ), sometimes included as diagonal lines on interaction diagrams, are

not included in the interaction diagrams. Using the eccentricity ratio as a coordinate with  K n or  Rn could lead to

Page 36: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 36/104

inaccuracies because the e/h lines converge rapidly at the lower ends of the diagrams. Straight lines for the tension

steel stress ratios f  s/ f  y have been plotted to assist in designing splices for the reinforcement. Further, the ratio

 f  s/ f  y = 1.0 represents steel strain ε y = f  y/ E  s, which is the boundary point for the compression control φ factor, and the

 beginning of the transition zone for linear increase of the φ factor to that for tension control.

To provide interpolation for the   factor, other strain lines were plotted. The strain line for   εt   = 0.005, the

 beginning of the zone for tension control, has been plotted on all diagrams. The intermediate strain line for  

εt  

= 0.0035

has been plotted for steel yield strength 60.0 ksi. The intermediate strain line for εt  = 0.0038 has been plotted for steel

yield strength 75.0 ksi. Note that all strains refer to the reinforcing bar or bars farthest from the compression face of

the section. Discussions and tables related to the strength reduction factors are contained in two publications in

Concrete International  (Everard 2002a,b).

Straight lines for  K max  are also provided on each interaction diagram. Here,  K max  refers to the maximum

 permissible nominal axial load, P n,max, on a column that is laterally reinforced with ties or hoops (ACI 318-14, Section

22.4.2.1).

0.8 0.85n,max c g st y st  

 P f A A f A

  (D.1a)

Then,

/max max c g   K p f A

  (D.1b)

For columns with spirals, values of K max from the interaction diagrams are multiplied by 0.85/0.80 ratio.

The number of longitudinal reinforcing bars is not limited to the number shown on the interaction diagrams. The

diagrams only illustrate the type of reinforcement patterns. However, for circular and square columns with steel

arranged in a circle, and for rectangular or square columns with steel equally distributed along all four faces, 12 bars

are preferred; using at least 8 bars is good practice. Although side steel was assumed to be 50 percent of the total steel

for columns having longitudinal steel equally distributed along all four faces, accurate and conservative designs can

result when side steel is only 30 percent of the total steel. The maximum number of bars used in any column cross

section is limited by the maximum allowable steel ratio of 0.08, the cover, and spacing between bars.

Tension axial loads are not included in the interaction diagrams.

Page 37: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 37/104

REFERENCES

ACI Committee 340, 1970, “Ultimate Strength Design Handbook,” V. 2, Columns, ACI Special Publication 17 -

A, American Concrete Institute, Farmington Hills, MI, 226 pp.

Bresler, B., 1960, “Design Criteria for Reinforced Concrete Column under Axial Load and Biazial Bending,” ACI

JOURNAL Proceedings, V. 57, No. 5, Nov. pp. 481-490.

Column Research Council, 1966, “Guide to Design Criteria for Metal Compression Members,” second ed ition,

Fritz Engineering Laboratory, Lehigh University, Bethlehem, PA, 217 pp.

“Concrete Design Handbook,” 2005, third edition, Cement Association of Canada, Ottawa, ON.

Everard, N.J., 1997, “Axial Load-Moment Interaction for Cross-Sections Having Longitudinal Reinforcement

Arranged in a Circle”, ACI Structural Journal , V. 94, No. 6, Nov.-Dec., pp. 695-699.

Everard, N. J., 2002a, “Designing With ACI 318-02 Strength Reduction Factors,” Concrete International , V. 24,

 No. 7, July, pp. 71-74.

Ever ard, N. J., 2002b, “Strain-Related Strength Reduction Factors (Φ) According to ACI 318-02, Concrete

International, Aug, V. 34, No. 8, pp. 91-93.

Everard, N. J., and Cohen, E., 1964, “Ultimate Strength Design of Reinforced Concrete Columns,” SP -7,

American Concrete Institute, Farmington Hills, MI, pp. 152-182.

MacGregor, J. G., 1997, Reinforced Concrete: Mechanics and Design, third edition, Prentice Hall, Englewood

Cliffs, New Jersey, 939 pp.

Parma, A. L.; Nieves, J. M.; and Gouwens, A., 1966, “Capacity of Reinforced Rectangular Columns Subject to

Biaxial Bending,” ACI JOURNAL Proceedings, V. 63, No. 9, Sept., pp. 911-923.

Page 38: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 38/104

D.2 — Columns subject to biaxial bending

D.2.1 General  — Most columns are subjected to significant bending in one direction while subjected to

relatively small bending moments in the orthogonal direction. These columns are designed using the interaction

diagrams discussed in the preceding section for uniaxial bending and, when required, checked for strength in the

orthogonal direction. Other columns, such as corner columns, are subjected to equally significant bending moments

in two orthogonal directions and, therefore, might have to be designed for biaxial bending.

A circular column subjected to moments about two axes may be designed as a uniaxial column acted upon by

the resultant moment

2 2 2 2

 x ux uy n nx ny M M M M M    (D.2.1)

For the design of rectangular columns subjected to moments about two axes, this Handbook provides design

aids for two methods: The reciprocal load (1/ P i) method (Bresler 1960) and the load contour method (Parme et al.

1966). The reciprocal load method is convenient for making a trial section analysis. The load contour method is

suitable for selecting a column cross section. Both methods use a failure surface to reflect the interaction of three

variables: the nominal axial load P n and the nominal biaxial bending moments M nx and M ny. In combination, these

variables cause failure strain at the extreme compression fiber; that is, the failure surface reflects the strength of

short compression members subject to biaxial bending and compression. Figure D.2.1a illustrates the bending axes,

eccentricities, and biaxial moments.

 Fig. D.2.1a —  Notation used for column sections subjected to biaxial bending. 

A failure surface S 1 may be represented by P n, e x, and e y, as in Fig. D.2.1b, or it may be represented by surface

S 2 represented by P n, M nx, and M ny, as shown in Fig. D.2.1c. Note that S 1 is a single curvature surface having no

discontinuity at the balance point, whereas S 2 has discontinuity.

 Note that when biaxial bending exists with a nominal axial force smaller than the lesser of P b or 0.1 f c′  A g , it is

sufficiently accurate and conservative to ignore the axial force and design the section for bending only.

Page 39: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 39/104

  Fig. D.2.1b —  Failure surface S 1.

 Fig. D.2.1c —  Failure surface S 2.

D.2.2 Reciprocal load method  — In the reciprocal load method, S 1 is inverted by plotting 1/ P n as the vertical

axis, giving S 3, shown in Fig. D.2.2a. As Figure D.2.2b shows, a true point (1/ P n1, e xA, e yB) on this reciprocal failure

surface can be approximated by a point (1/ P ni, e xA, e yB) on a plane S 3′  passing through points A, B, and C. Each

 point is approximated by a different plane, that is, the entire failure surface is defined by an infinite number of

 planes.

Point A represents the nominal axial load strength P ny when the load has an eccentricity of e xA with e y = 0. Point

B represents the nominal axial load strength P nx when the load has an eccentricity of e yB with e x = 0. Point C is

 based on the axial strength P o with zero eccentricity. The equation of the plane passing through the three points is

0

1 1 1 1

ni nx ny P P P P    (D.2.2a)

where

 P ni  = approximation of nominal axial load strength at eccentricities ex and ey 

 P nx = nominal axial load strength for eccentricity ey along the y-axis only (x-axis is axis of bending)

 P ny  = nominal axial load strength for eccentricity ex along the x-axis only (y-axis is axis of bending)

 P 0  = nominal axial load strength for zero eccentricity

Page 40: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 40/104

  Fig. D.2.2a —  Failure surface S 3 which is reciprocal

of surface S 1.

 Fig. D.2.2b — Graphical representation of reciprocal

load method. 

For design purposes, when φ is constant, 1/ P ni in Eq. (D.2.2a) can be used. The variable K n = P n /( f c′A g ) can be

used directly in the reciprocal equation, as follows (D.2.2b)

0

1 1 1 1

ni nx ny K K K K    (D.2.2b)

where the K values refer to the corresponding P n values as defined above.

Once a preliminary cross section with an estimated steel ratio ρ g  is selected, calculate Rnx and Rny using the

actual bending moments about the cross section x- and y-axes. Obtain the corresponding values of  K nx and K ny from

the interaction diagrams presented in this chapter as the intersection of  Rn value and the assumed steel ratio curve

for ρ g . Then, obtain the theoretical compression axial load strength  K 0 at the intersection of the steel ratio curve and

the vertical axis for zero Rn.

D.2.3 Load contour method  — The load contour method uses the failure surface S 2 (Fig. D.2.1c) and works with

a load contour defined by a plane at a constant value of  P n (Fig. D.2.3a). The load contour defining the relationship

 between M nx and M ny for a constant P n can be expressed nondimensionally as

1nynx

nox noy

 M  M 

 M M 

    

  (D.2.3a)

Page 41: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 41/104

 

 Fig. D.2.3a —  Load contour constant Pn  on failure

 surface. 

 Fig. D.2.3b —  Nondimensional load contour at constant

Pn. 

For design, when each term is multiplied by , the equation is unchanged. Thus, M ux, M uy, M ox, and M oy, which

should correspond to  M nx,  M ny,  M nox, and  M noy, are used in the remainder of this section. To simplify the equation

for application, a point on the nondimensional diagram (Fig. D.2.3b) is defined such that the biaxial moment

capacities M nx and M ny are in the same ratio as the uniaxial moment capacities  M ox and M oy; thus 

nx ox

ny oy

 M M 

 M M    (D.2.3b)

or

nx ox ny oy M and M M    (D.2.3c)

In a physical sense, the ratio β is the constant portion of the uniaxial moment capacities that may act

simultaneously on the column section. The actual value of β depends on the ratio  P n/ P og , as well as properties of the

material and cross section. The usual range is 0.55 to 0.70 and an average value of 0.65 is suggested for design.

The load contour equation (Eq. (D.2.3a)) may be written in terms of β, as shown 

l 0.5 /0.5/

1

og log  log log  

nynx

nox noy

 M  M 

 M M 

 

  (D.2.3d)

Page 42: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 42/104

Figure D.2.3b illustrates the relationship using β. The true relationship between Points A, B, and C is a curve, but

for design purposes, it may be approximated by straight lines. The load contour equations as straight line

approximation are

For ny oy

nx ox

 M M 

 M M  ,

1oy

oy ny nx

ox

 M  M M 

 M 

 

  (D.2.3e)

For ny oy

nx ox

 M M 

 M M  ,

1ox

ox nx ny

oy

 M  M M 

 M 

   

  (D.2.3f)

For rectangular sections with reinforcement equally distributed on all four faces, the above equations can be

approximated by

1oy ny nx

b M M 

h

 

  (D.2.3g)

For ny oy

nx ox

 M M 

 M M   or ny

nx

 M    b

 M h   (D.2.3f)

where b and h are dimensions of the rectangular column section parallel to x- and y-axes, respectively. Using the

straight line approximation equations, the design problem can be solved by converting nominal moments into

equivalent uniaxial moment capacities M ox or M oy. This is accomplished by:

(a) Assuming a value for b/h 

(b) Estimating β as 0.65 

(c) Calculating the approximate equivalent uniaxial bending moment using Eq. (D.2.3e) or (D.2.3f)

(d) Choosing the trial section and reinforcement using the methods for uniaxial bending and axial load.

The trial section should be verified using the load contour method or the reciprocal load method.

Page 43: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 43/104

D.3 — Column examples using interaction diagrams (D.5)

D.3.1 Column Example 1 — Determination of required area of steel for a rectangular tied column with bars on fourfaces with slenderness ratio below critical value.

For a rectangular tied column with bars equally distributed along fourfaces, find steel area.

Given:

 Loading  ––  

 P u = 560 kip, and M u = 3920 in.-kipAssume 

φ = 0.70

 Nominal axial load P n = 560 kip/0.70 = 800 kip

 Nominal moment M n = 3920 in.-kip/0.70 = 5600 in.-kip

 Materials ––  Compressive strength of concrete f c′ = 4 ksiYield strength of reinforcement f  y = 60 ksi

 Normalized maximum size of aggregate is 1 in.

 Design conditions ––  Short column braced against sidesway 

ACI 318-14

section  Discussion  Calculation  Design aid 

Determine column section size. Given: h = 20 in. and b = 16 in.

Determine reinforcement ratio ρ g  using known values of variables

on appropriate interactiondiagrams and compute required

cross section area A st  oflongitudinal reinforcement. 

 P n = 800 kip M n = 5600 in.-kip

h = 20 in.b = 16 in.

 A g  = b × h = 20 × 16 = 320 in.2 

Computen

n

c g 

 f  

 P  K 

 A  

8000.625

(4)(320)n K    

Computen

n

c g  f  

 M  R

 A h  

56000.22

(4)(320)(20)n R    

Estimate5

h

 

20 50.75

20

 

10.5 Determine the appropriateinteraction diagrams.

For a rectangular tied column with bars along fourfaces, f c’ = 4 ksi, f  y = 60 ksi, and an estimated γ of0.75, enter diagram R4-60.7 and R4-60.8 with

 K n = 0.625 and Rn = 0.22, respectively.

Read ρ g  for K n and Rn values from

appropriate interaction diagrams.

Read ρ g  = 0.041 for γ = 0.7 and ρ g  = 0.039 for

γ = 0.8. Interpolating ρ g  = 0.040 for γ = 0.75

R4-60.7

R4-60.8

Compute required A st  from

 A st = ρ g  A g . Required A st = 0.040 × 320 in.2 = 12.8 in.2 

Page 44: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 44/104

D.3.2 Column Example 2 — For a specified reinforcement ratio, selection of a column section size for a rectangulartied column with bars on end faces only. 

For minimum longitudinal reinforcement (ρg= 0.01) and column sectiondimension h = 16 in., select the column dimension b for a rectangular tied

column with bars on end faces only. 

Given:

 Loading  ––   P u= 660 kip and M u= 2790 in.-kip

Assume φ = 0.70 Nominal axial load P n = 660 kip/0.70= 943 kip

 Nominal moment M n = 4200 in.-kip/0.70= 3986 in.-kip

 Materials ––  Compressive strength of concrete f c’  = 4 ksi

Yield strength of reinforcement f  y = 60 ksi Nominal maximum size of aggregate is 1 in.

 Design conditions ––  Slenderness effects may be neglected because k ℓ u/h  is known to be below

critical value. 

ACI 318-14

section  Discussion  Calculation Design

aid 

Determine trial column dimensionb corresponding to known valuesof variables on appropriateinteraction diagrams. 

 P n = 943 kip M n = 3986 in.-kiph = 16 in.ρ g  = 0.039

Assume a series of trial columnsizes b, in inches, and compute

 A g  = b x h, in.2 

b 24 26 28

 A

 g  384 416 448

Compute’

c

n

 g 

n

 f   P  K 

 A   943 0.61

(4)(384)   943 0.57

(4)(416)   943 0.53

(4)(448)  

Compute’

c

n

 g 

n

 f  

 M  R

 A h  

39860.16

(4)(384)(16)  

39860.15

(4)(416)(16)  

39860.14

(4)(448)(16)  

Estimate5

h

  0.7 0.7 0.7

10.5 Determine the appropriate

interaction diagrams.

For a rectangular tied column with bars along four

faces, f c’ = 4 ksi, f  y = 60 ksi, and an estimated γ of 0.70,

use diagram L4-60.7.Read ρ g  for K n and Rn values forγ = 0.7, select dimension

corresponding to ρ g  nearestdesired value of ρ g  = 0.01.

0.018 0.014 0.011 L4-60.7

Therefore, try a 16 x 28-in. column

Page 45: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 45/104

D.3.3 Example 3 — Selection of reinforcement for a square spiral column (slenderness ratio is below critical value).

For the square spiral column section shown, select reinforcement. 

Given:

 Loading  ––   P u= 660 kip and M u= 2640 in.-kip

Assume φ = 0.70

 Nominal axial load P n = 660 kip/0.70= 943 kip Nominal moment M n = 2640 in.-kip/0.70= 3771 in.-kip 

 Materials ––  

Compressive strength of concrete f c’  = 4 ksiYield strength of reinforcement f  y = 60 ksi

 Nominal maximum size of aggregate is 1 in.

 Design conditions ––  Column section size h = b = 18 inSlenderness effects may be neglected because k ℓ u/h  is known to be

 below critical value 

ACI 318-14

section Discussion

 Calculation

 

Design

aid Determine reinforcement ration  g  using known values of variables onappropriate interaction diagram(s)

and compute required cross sectionarea A st  of longitudinal

reinforcement. 

 P n = 943 kip M n = 3771 in.-kip

 A g  = b x h = 18 x 18 = 324 in.2 

Compute’

c

n

 g 

n

 f  

 P  K 

 A  

9430.73

(4)(324)n K    

Compute’

c

n

 g 

n

 f  

 M  R

 A h  

37710.16

(4)(324)(18)n

 R    

Estimate 5h   18 5 0.72

18  

10.5 Determine the appropriate

interaction diagrams.

For a square spiral column, f c’ = 4 ksi, f  y = 60 ksi, and

an estimated γ of 0.72, use diagram S4-60.7 and S4-60.8.

Read ρ g  for K n and Rn. For K n = 0.73 and Rn = 0.16, and for:γ = 0.70 ρ g  = 0.035

γ = 0.80 ρ g  = 0.031γ = 0.72 ρ g  = 0.034

 A st  = 0.034 x 324 in.2 = 11 in.2 

S4-60.7S4-60.8

Page 46: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 46/104

D.3.4 Example 4 — Design of square column section subject to biaxial bending using resultant moment  

Select column section size and reinforcement for a square column with  g   0.04and bars equally distributed along four faces, subject to biaxial bending. 

Given:

 Loading  ––   P u= 193 kip, M ux= 1917 in.-kip, and M uy= 769 in.-kip

Assume φ = 0.65

 Nominal axial load P n = 193 kip/0.65= 297 kip

 Nominal moment about x-axis M nx = 1917 in.-kip/0.65= 2949 in.-kip Nominal moment about y-axis M ny = 769 in.-kip/0.65= 1183 in.-kip

 Materials ––  

Compressive strength of concrete f c’  = 5 ksiYield strength of reinforcement f  y = 60 ksi

 Nominal maximum size of aggregate is 1 in. 

ACI 318-14

section  Discussion  Calculation 

Design

aid 

Assume load contour curve atconstant P n is an ellipse, and

determine resultant moment M nx from 

2 2

nr nx ny M M   

For a square column: h = b 2 2

2949 1183 3177 in.-kipnr    

Assume a series of trial columnsizes h, in inches.

14 16 18

Compute , in. g  A h   196 256 324

Compute’

c

n

 g 

n

 f  

 P  K 

 A  

2970.30

(5)(196)  

2970.23

(5)(256)  

2970.18

(5)(324)  

Compute ’c

n

 g 

n

 f  

 M 

 R  A h  

0.23

(5)(196)(14)

 

3177

0.16(5)(256)(16)

 

3177

0.11(5)(324)(18)

 

Estimate5

h

  0.64 0.69 0.72

10.5 Determine the appropriateinteraction diagrams.

For a square tied column, f c’ = 5 ksi, f  y = 60 ksi, usediagram R5-60.6, R5-60.7 and R5-60.8.

Read ρ g  for K n and Rn values forγ = 0.60, 0.70, and 0.08.

Interpolate

0.064 0.030 0.0120.048 0.026 0.011

0.058 0.026 0.012

R5-60.6R5-60.7R5-60.8

Therefore, try h = 15 in.

Determine reinforcement ratio ρ g  using known values of variables

on appropriate interactiondiagrams and compute required

cross section area A st  oflongitudinal reinforcement.

 A g  = h2 = 152 = 225 in.2

 P n = 297 kip

 M n = 3177 in.-kip

Compute’

c

n

 g 

n

 f  

 P  K 

 A  

2970.264

(5)(225)n K     

Compute’

c

n

 g 

n

 f  

 M  R

 A h  

31770.188

(5)(225)(15)n

 R    

Page 47: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 47/104

ACI 318-14

section  Discussion  Calculation 

Design

aid 

Estimate5

h

 

15 50.67

15

 

10.5 Determine the appropriateinteraction diagrams.

For a square tied column, f c’ = 5 ksi, f  y = 60 ksi, usediagram R5-60.6 and R5-60.7.

Read ρ g  for K n and Rn values forγ = 0.60 and 0.70.

For K n = 0.264 and Rn = 0.188:γ = 0.60 ρ g  = 0.043γ = 0.70 ρ g  = 0.034

γ = 0.37 ρ g  = 0.037

R5-60.6R5-60.7

Compute required A st  from A st =    g  A g  and add about 15 percent for skew bending.

Required A st  = 0.037 x 225 in.2 = 8.32 in.2 

Use A st  = 9.50 in.2 

Page 48: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 48/104

D.3.5 Example 5 — Design of circular spiral column section subject to very small design moment  

For a circular spiral column, select column section diameter h  and choose

reinforcement. Use relatively high proportion of longitudinal steel.

Given:

 Loading  ––   P u = 940 kip and M u = 480 in.-kip

Assume 

φ = 0.70

 Nominal axial load P n = 940 kip/0.70 = 1343 kip

 Nominal moment M n = 480 in.-kip/0.70 =686 in.-kip

 Materials ––  

Compressive strength of concrete c’ = 5 ksi

Yield strength of reinforcement f  y = 60 ksi

 Nominal maximum size of aggregate is 1 in.

 Design condition ––  Slenderness effects may be neglected because kℓ u/h is known to be below critical value

 

ACI 318-14

section  Discussion  Calculation Design

aid 

Determine trial column dimensionb corresponding to known values

of variables on appropriateinteraction diagrams.

 P n = 1343 kip M n = 686 in.-kip

ρ g  = 0.04

Assume a series of trial columnsizes b, in inches.

12 16 20

Compute , in. g 

 A h   113 201 314

Compute’

c

n

 g 

n

 f  

 M  R

 A h  

6860.10

(5)(113)(12)

 

6860.04

(5)(201)(16)

 

6860.02

(5)(314)(20)

 

Estimate 5hh   0.58 0.69 0.75

10.5 Determine the appropriateinteraction diagrams.

For a circular column, f c’ = 5 ksi, f  y = 60 ksi, usediagram C5-60.6, C5-60.7 and C5-60.8.

Read K n and Rn and ρ g  values forγ = 0.60, 0.70, and 0.08.

Interpolate

 No chart 1.08 1.230.9 1.18 1.25

0.9 1.17 1.24

C5-60.6C5-60.7C5-60.8

Compute’

c

n

 g 

n f K 

 P  A     298 229 217

Compute 2  g  A

  19.5 17.1 16.6

Therefore, try 17 in. diameter column.

Determine reinforcement ratio ρ g  using known values of variables

on appropriate interactiondiagrams and compute required

cross section area A st  oflongitudinal reinforcement.

2

217227 in.

2 g  A    

 

Compute ’c

n

 g 

n

 f  

 P  K 

 A  

1343

(5)(227)(17)1.18

n K      

Page 49: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 49/104

ACI 318-14

section  Discussion  Calculation 

Design

aid 

Compute’

c

n

 g 

n

 f  

 M  R

 A h  

1343

(5)(227)(17)0.0356

n R      

Estimate5

h

 

17 50.71

17

 

10.5 Determine the appropriateinteraction diagrams.

For a circular column, f c’ = 5 ksi, f  y = 60 ksi, usediagram C5-60.7.

Read ρ g  for K n and Rn values. For K n = 1.18 and Rn = 0.0356:γ = 0.70 ρ g  = 0.040

C5-60.7

Compute required A st  from

 A st =    g  A g . Required A st  = 0.04 x 227 in.2 = 9.08 in.2 

Page 50: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 50/104

 

D.4 — Column design aids

Table D.4.1 — Effective Length Factor, Jackson and Moreland alignment chart for columns in braced (nonsway)

frames (Column Research Council 1966)

Page 51: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 51/104

Table D.4.2 — Effective Length Factor, Jackson and Moreland alignment chart for columns in unbraced (sway)frames (Column Research Council 1966) 

Page 52: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 52/104

Table D.4.3 — Recommended flexural rigidities (EI) for use in first-order and second order analyses of frames fordesign of slender columns (ACI 318-14, Section 6.6.3.1.1,) 

Second-order analysis of frames for design of slender columns

f c ′, ksi 3 4 5 6 7 8 9 10

I /I g  

E c , ksi 3120 3605 4031 4415 4769 5098 5407 5700

E c I  / I g  , ksi 

Beams 1092 1262 1411 1545 1669 1784 1892 1995 0.3

Columns 2184 2524 2822 3091 3338 3569 3785 3990 0.7

Walls (uncracked) 2184 2524 2822 3091 3338 3569 3785 3990 0.7

Walls (cracked) 1092 1262 1411 1545 1669 1784 1892 1995 0.3

Flat plates

Flat slabs780 901 1008 1104 1192 1275 1352 1425 0.2

 Notes: 

1.  Alternatively, the following more refined values of I  can be used:

For columns:

0.8 25 1 0.5 0.5 st u u

 g 

 g u o

 A M P  I I Ig 

 A P h P 

 

Where P u and M u are for the particular load combinations under consideration, or the combination of P u and M u that leads to the smallest value of I , I  need not be less than 0.35 I  g .

For beams:

= 0.10+25 (1.2−0.2

 )  ≤ 0.5 

For continuous beams, I  can be taken as the average of values for the critical positive and negative moment

sections. I  need not be less than 0.25 I  g .2.  When sustained lateral loads are applied,  I  for columns should be divided by (1+ β ds), where  β ds is the ratio of

maximum factored sustained shear within a story to the maximum factored story shear for the same loadcombination.  β ds shall not be taken greater than 1.0.

3. 

The above values are applicable to normal-density concrete with wc between 90 and 155 lb/ft3.

4.  The moment of inertia of a T-beam should be based on the effective flange width as shown in Flexure 6. It isgenerally accurate to take I  g  of a T-beam as two times the I  g  for the web.

5.  Member area will not be reduced for analysis.

Page 53: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 53/104

Table D.4.4 — Effective length factor k  for columns in braced frames (Concrete Design Handbook 2005)

     T      O     P

Hinged

     H     i    n    g    e     d

Elastic

     E     l    a    s     t     i    c

Elastic

     E     l    a    s     t     i    c

Stiff 

      S     t     i      f      f

BOTTOM

0.81 0.91 0.95 1.00

0.77 0.86 0.90 0.95

0.67 0.74 0.77 0.81

0.74 0.83 0.86 0.91

k

Page 54: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 54/104

Table D.4.5 —  Moment of inertia of reinforcement about sectional centroid (Based on Table 12-1, MacGregor1997)

I = 0.25 b h se3 2

Bars in two end facesEqual reinforcement on four

sides

t I = 0.18 b h se3 2

t

Bars in two side faces

I = 0.17 b h se3 2

t (3 bars per face)

I = 0.12 b h se3 2

t(6 bars per face)

I = 0.10 h se4 2

t

Uniformly distributed

reinforcement

I = 0.13 b h se3 2

t

Bars uniformly spaced on all sides

Bars uniformly spaced on all sides

I = 0.22 b h se3 2

t

b b

b

b b = 2h

h h

h

h

h h

h

h

h

hh

h = 2b

 

γ is the ratio of the distance between the centers of the outermost bars to the column dimension perpendicular to theaxis of bending.

Page 55: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 55/104

D.5 — Interaction diagrams

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.450.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

  COLUMNS 3.1.1 - Nominal load-moment strength interaction diagram, R3-60.6

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

 g = 0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM R3-60.6

Pne

  h

h

 

= 0.6

f   / 

c = 3 ksi

f y  = 60 ksi

 

t  =  0 .0 0 3 5  t  =  0 .0 0 5 

 

t  =  0 .0 0 4 

 

COLUMNS 3.1.2 - Nominal load-moment strength interaction diagram, R3-60.7

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

 g = 0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.500.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

 

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn

 = Pn e / f

c A

gh

INTERACTION DIAGRAM R3-60.7

Pne

  h

h

 

= 0.7

f   / 

c = 3 ksi

f y  = 60 ksi

 

t  =  0 .0 0 3 5  

t  =  0 .0 0 5 

 

t  =  0 .0 0 4 0 

 

Page 56: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 56/104

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.600.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

 

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

 

g = 0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

   K  n  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM R3-60.8

Pne

  h

h

  = 0.8

f   / 

c = 3 ksi

f y  = 60 ksi

  t  =  0 .0 0 3 5 

  t  =  0 .0 0 5 

  t  =  0 .0 0 4 0 

 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.650.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

  COLUMNS 3.1.4 - Nominal load-moment strength interaction diagram, R3-60.9

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

 g = 0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM R3-60.9

Pne

  h

h

 

= 0.9

f   / 

c = 3 ksi

f y  = 60 ksi

  t  =  0 .0 0 3 5 

  t  =  0 .0 0 5 

  t  =  0 .0 0 4 0 

 

Page 57: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 57/104

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.350.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

 

g = 0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM R4-60.6

Pne

  h

h

 

= 0.6

f   / 

c = 4 ksi

f y  = 60 ksi

 

t  =  0 .0 0 5 

 

t  =  0 

.0 0 3 5 

 

t  =  0 .0 0 4 0 

 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.400.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

  COLUMNS 3.2.2 - Nominal load-moment strength interaction diagram, R4-60.7

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

 g = 0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 

   K  n  =   P

  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM R4-60.7

Pne

  h

h

  = 0.7

f   / 

c = 4 ksi

f y  = 60 ksi

 

t  =  0 .0 0 3 5  t  =  0 .0 0 5 

 

t  =  0 .0 0 4 0 

 

Page 58: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 58/104

  COLUMNS 3.2.3 - Nominal load-moment strength interaction diagram, R4-60.8

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

 g = 0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.450.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM R4-60.8

Pne

  h

h

 

= 0.8

f   / 

c = 4 ksi

f y  = 60 ksi

  t  =  0 .0 0 3 5 

  t  =  0 .0 0 5 

  t  =  0 .0 0 4 0 

 COLUMNS 3.2.4 - Nominal load-moment strength interaction diagram, R4-60.9

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

 

g = 0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.500.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

 

   K

  n  =

   P  n

   /   f   /    c

   A  g

Rn = Pn e / f/

 

c Ag h

INTERACTION DIAGRAM R4-60.9

Pne

  h

h

  = 0.9

f   / 

c = 4 ksi

f y  = 60 ksi

  t  =  0 .0 0 5 

  t  =  0 .0 0 3 5   t  =  0 .0 0 4 0 

 

Page 59: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 59/104

0.00 0.05 0.10 0.15 0.20 0.25 0.300.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

 

g = 0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

   K  n  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM R5-60.6

Pne

  h

h

  = 0.6

f   / 

c = 5 ksi

f y  = 60 ksi

 

t  =  0 .0 0 3 5 

 

t  =  0 .0 0 5 

 

t  =  0 .0 0 4 0 

 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.350.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

  COLUMNS 3.3.2 - Nominal load-moment strength interaction diagram, R5-60.7

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

 g = 0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM R5-60.7

Pne

  h

h

 

= 0.7

f   / 

c = 5 ksi

f y  = 60 ksi

  t  =  0 .0 0 5 

  t  =  0 .0 0 3 5  t  =  0 .0 0 4 0 

 

Page 60: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 60/104

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.400.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

f s/f y = 0

K max

 0.25

 0.50

0.75

1.0

 g = 0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Rn = P

n e / f

c A

gh

   K  n  =

   P  n

   /   f   /    c

   A  g

INTERACTION DIAGRAM R5-60.8

Pne

  h

h

 

= 0.8

f   / 

c = 5 ksi

f y  = 60 ksi

  t  =  0 .0 0 5 

  t  =  0 .0 0 3 5   t  =  0 .0 0 4 0 

 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.450.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

  COLUMNS 3.3.4 - Nominal load-moment strength interaction diagram, R5-60.9

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

 g = 0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 

   K  n  =

   P  n

   /   f   /  

  c

   A  g

Rn

 = Pn e / f

c A

gh

INTERACTION DIAGRAM R5-60.9

Pne

  h

h

  = 0.9

f   / 

c = 5 ksi

f y  = 60 ksi

  t  =  0 .0 0 3 5 

  t  =  0 .0 0 5 

  t  =  0 .0 0 4 0 

 

Page 61: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 61/104

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.2750.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

 

g = 0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM R6-60.6

Pne

  h

h

 

= 0.6

f   / 

c = 6 ksi

f y  = 60 ksi

  t  =  0 .0 0 5 

 

t  =  0 .0 0 3 5 

 

t  =  0 .0 0 4 0 

 

COLUMNS 3.4.2 - Nominal load-moment strength interaction diagram, R6-60.7

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

 

g = 0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.00 0.05 0.10 0.15 0.20 0.25 0.300.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM R6-60.7

Pne

  h

h

  = 0.7

f   / 

c = 6 ksi

f y  = 60 ksi

  t  =  0 .0 0 3 5   t  =  0 .0 0 5 

  t  =  0 .0 0 4 0 

 

Page 62: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 62/104

 

COLUMNS 3.4.3 - Nominal load-moment strength interaction diagram, R6-60.8

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

 g = 0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.350.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM R6-60.8

Pne

  h

h

 

= 0.8

f   / 

c = 6 ksi

f y  = 60 ksi

  t  =  0 .0 0 3 5 

  t  =  0 .0 0 5 

  t  =  0 .0 0 4 0 

 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.400.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

  COLUMNS 3.4.4 - Nominal load-moment strength interaction diagram, R6-60.9

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

 g = 0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM R6-60.9

Pne

  h

h

 

= 0.9

f   / 

c = 6 ksi

f y  = 60 ksi

  t  =  0 .0 0 3 5 

  t  =  0 .0 0 5 

  t  =  0 .0 0 4 0 

 

Page 63: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 63/104

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.2000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM R9-75.6

Pne

  h

h

 

= 0.6

f   / 

c = 9 ksi

f y  = 75 ksi

 

t  =  0 .0 0 3 8  t  =  0 .0 0 5 

 

t  =  0 .0 0 4 0 

 

COLUMNS 3.5.2 - Nominal load-moment strength interaction diagram, R9-75.7

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.2500.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM R9-75.7

Pne

  h

h

  = 0.7

f   / 

c = 9 ksi

f y  = 75 ksi

 

t  =  0 .0 0 5 0 

 

t  =  0 .0 0 3 8 

 

t  =  0 .0 0 4 0 

 

Page 64: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 64/104

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

0.00 0.05 0.10 0.15 0.20 0.25 0.300.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM R9-75.8

Pne

  h

h

 

= 0.8

f   / 

c = 9 ksi

f y  = 75 ksi

 

t  =  0 .0 0 5 0 

 

t  =  0 .0 0 3 8 

 

t  =  0 .0 0 4 0 

 

0.00 0.05 0.10 0.15 0.20 0.25 0.300.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

  COLUMNS 3.5.4 - Nominal load-moment strength interaction diagram, R9-75.9

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 

g = 0.08

 

   K  n  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM R9-75.9

Pne

  h

h

  = 0.9

f   / 

c = 9 ksi

f y  = 75 ksi

  t  =  0 .0 0 3 8 

  t  =  0 .0 0 5 0 

  t  =  0 .0 0 4 0 

 

Page 65: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 65/104

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.1750.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM R12-75.6

Pne

  h

h

  = 0.6

f   / 

c = 12 ksi

f y  = 75 ksi

 

t  =  0 .0 0 3 8  t  =  0 .0 0 5 0 

 

t  =  0 .0 0 4 0 

 

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.2000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

  COLUMNS 3.6.2 - Nominal load-moment strength interaction diagram, R12-75.7

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

 

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM R12-75.7

Pne

  h

h

  = 0.7

f   / 

c = 12 ksi

f y  = 75 ksi

 

t  =  0 .0 0 5 0 

 

t  =  0 .0 0 3 8 

 

t  =  0 .0 0 4 0 

 

Page 66: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 66/104

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.2250.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM R12-75.8

Pne

  h

h

  = 0.8

f   / 

c = 12 ksi

f y  = 75 ksi

  t  =  0 .0 0 3 8  t  =  0 .0 

0 5 0 

  t  =  0 .0 0 4 0 

 

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.2500.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

  COLUMNS 3.6.4 - Nominal load-moment strength interaction diagram, R12-75.9

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

 

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM R12-75.9

Pne

  h

h

 

= 0.9

f   / 

c = 12 ksi

f y  = 75 ksi

  t  =  0 .0 0 3 8 

  t  =  0 .0 0 5 0 

  t  =  0 .0 0 4 0 

 

Page 67: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 67/104

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

 g = 0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.600.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM L3-60.6

Pne

  h

h

 

= 0.6

f   / 

c = 3 ksi

f y  = 60 ksi

 

t  =  0 .0 0 3 5  t  =  0 .0 0 5 

 

t  =  0 .0 0 4 

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.70.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

  COLUMNS 3.7.2 - Nominal load-moment strength interaction diagram, L3-60.7

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

 g = 0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM L3-60.7

Pne

  h

h

 

= 0.7

f   / 

c = 3 ksi

f y  = 60 ksi

  t  =  0 .0 0 3 5   t  =  0 .0 0 5 

  t  =  0 .0 0 4 

 

Page 68: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 68/104

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

f s/f y = 0

K max

 0.25

 0.50

0.75

1.0

 

g = 0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

   K  n  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM L3-60.8

Pne

  h

h

  = 0.8

f   / 

c = 3 ksi

f y  = 60 ksi

  t  =  0 .0 0 3 5 

  t  =  0 .0 0 5 

  t  =  0 .0 0 4 

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

  COLUMNS 3.7.4 - Nominal load-moment strength interaction diagram, L3-60.9

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

 

g = 0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM L3-60.9

Pne

  h

h

 

= 0.9

f   / 

c = 3 ksi

f y  = 60 ksi

  t = 0.0035 

  t = 0.005   t = 0.004 

 

Page 69: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 69/104

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.450.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

 g = 0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM L4-60.6

Pne

  h

h

 

= 0.6

f   / 

c = 4 ksi

f y  = 60 ksi

 

t  =  0 .0 0 3 5  

t  =  0 .0 0 5 

 

t  =  0 .0 0 4 

 

COLUMNS 3.8.2 - Nominal load-moment strength interaction diagram, L4-60.7

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

 

g = 0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.550.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

 

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM L4-60.7

Pne

  h

h

 

= 0.7

f   / 

c = 4 ksi

f y  = 60 ksi

  t  =  0 .0 0 3 5 

  t  =  0 .0 0 5 

  t  =  0 .0 0 4 

 

Page 70: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 70/104

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

 g = 0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.600.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM L4-60.8

Pne

  h

h

 

= 0.8

f   / 

c  = 4 ksi

f y  = 60 ksi

  t  =  0 .0 0 3 5 

  t  =  0 .0 0 5 

  t  =  0 .0 0 4 

 

COLUMNS 3.8.4 - Nominal load-moment strength interaction diagram, L4-60.9

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

 g = 0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.700.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

 

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM L4-60.9

Pne

  h

h

  = 0.9

f   / 

c = 4 ksi

f y  = 60 ksi

  t  =  0 .0 0 3 5 

  t  =  0 .0 0 5 

  t  =  0 .0 0 4 

 

Page 71: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 71/104

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.400.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

 g = 0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM L5-60.6

Pne

  h

h

 

= 0.6

f   / 

c = 5 ksi

f y  = 60 ksi

 

t  =  0 .0 0 3 5  

t  =  0 .0 0 5 

 

t  =  0 .0 0 4 

 

COLUMNS 3.9.2 - Nominal load-moment strength interaction diagram, L5-60.7

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

 

g = 0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.450.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

 

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM L5-60.7

Pne

  h

h

 

= 0.7

f   / 

c = 5 ksi

f y  = 60 ksi

  t  =  0 .0 0 3 5 

  t  =  0 .0 0 5 

  t  =  0 .0 0 4 

 

Page 72: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 72/104

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.500.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

f s/f y = 0

K max

 0.25

 0.50

0.75

1.0

 g = 0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM L5-60.8

Pne

  h

h

  = 0.8

f   / 

c = 5 ksi

f y  = 60 ksi

  t  =  0 .0 0 3 5 

  t  =  0 .0 0 5 

  t  =  0 .0 0 4 

 

COLUMNS 3.9.4 - Nominal load-moment strength interaction diagram, L5-60.9

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

 

g = 0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.550.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

 

   K  n  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM L5-60.9

Pne

  h

h

  = 0.9

f   / 

c = 5 ksi

f y  = 60 ksi

  t  =  0 .0 0 3 5 

  t  =  0 .0 0 5 

  t  =  0 .0 0 4 

 

Page 73: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 73/104

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

 g = 0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.350.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM L6-60.6

Pne

  h

h

 

= 0.6

f   / 

c = 6 ksi

f y  = 60 ksi

 

t  =  0 .0 0 3 5  t  =  0 .0 0 5 

 

t  =  0 .0 0 4 

 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.400.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

  COLUMNS 3.10.2 - Nominal load-moment strength interaction diagram, L6-60.7

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

 g = 0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f /

 

c A

gh

INTERACTION DIAGRAM L6-60.7

Pne

  h

h

 

= 0.7

f   / 

c = 6 ksi

f y  = 60 ksi

  t  =  0 .0 0 3 5   t  =  0 .0 0 5 

  t  =  0 .0 0 4 

 

Page 74: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 74/104

f s/f y = 0

K max

 0.25

 0.50

0.75

1.0

 g = 0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.450.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM L6-60.8

Pne

  h

h

 

= 0.8

f   / 

c = 6 ksi

f y  = 60 ksi

  t  =  0 .0 0 3 5 

  t  =  0 .0 0 5 

  t  =  0 .0 0 4 

 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.500.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

  COLUMNS 3.10.4 - Nominal load-moment strength interaction diagram, L6-60.9

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

 g = 0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM L6-60.9

Pne

  h

h

 

= 0.9

f   / 

c = 6 ksi

f y  = 60 ksi

  t  =  0 .0 0 5 

  t  =  0 .0 0 3 5   t  =  0 .0 0 4 

 

Page 75: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 75/104

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.2500.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM L9-75.6

Pne

  h

h

  = 0.6

f   / 

c = 9 ksi

f y  = 75 ksi

  t  =  0 .0 0 5 

  t  =  0 .0 0 3 8 

 t  =  0 .0 0 4 

 

0.00 0.05 0.10 0.15 0.20 0.25 0.300.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

  COLUMNS 3.11.2 - Nominal load-moment strength interaction diagram, L9-75.7

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

 

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM L9-75.7

Pne

  h

h

  = 0.7

f   / 

c = 9 ksi

f y  = 75 ksi

  t  =  0 .0 0 5 

  t  =  0 .0 0 3 8  t  =  0 .0 0 4 

 

Page 76: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 76/104

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.350.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 

g = 0.08

   K  n  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM L9-75.8

Pne

  h

h

  = 0.8

f   / 

c = 9 ksi

f y  = 75 ksi

  t  =  0 .0 0 5 

  t  =  0 .0 0 3 8  t  =  0 .0 0 4 

 

COLUMNS 3.11.4 - Nominal load-moment strength interaction diagram, L9-75.9

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.400.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM L9-75.9

Pne

  h

h

 

= 0.9

f   / 

c = 9 ksi

f y  = 75 ksi

  t  =  0 .0 0 5 

  t  =  0 .0 0 3 8  t  =  0 .0 0 4 

 

Page 77: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 77/104

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.2250.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 

g = 0.08

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM L12-75.6

Pne

  h

h

 

= 0.6

f   / 

c = 12 ksi

f y  = 75 ksi

 

t  =  0 .0 0 3 

8  

t  =  0 .0 0 5 

 

t  =  0 .0 0 4 

 

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.2500.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

  COLUMNS 3.12.2 - Nominal load-moment strength interaction diagram, L12-75.7

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

 

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM L12-75.7

Pne

  h

h

 

= 0.7

f   / 

c = 12 ksi

f y  = 75 ksi

  t  =  0 .0 0 3 8   t  =  0 .0 0 5 

  t  =  0 .0 0 4 

 

Page 78: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 78/104

0.01

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

 g = 0.08

0.00 0.05 0.10 0.15 0.20 0.25 0.300.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM L12-75.8

Pne

  h

h

 

= 0.8

f   / 

c = 12 ksi

f y  = 75 ksi

  t  =  0 .0 0 3 8 

  t  =  0 .0 0 5 

  t  =  0 .0 0 4 

 

COLUMNS 3.12.4 - Nominal load-moment strength interaction diagram, L12-75.9

0.01

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

 g = 0.08

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.350.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM L12-75.9

Pne

  h

h

 

= 0.9

f   / 

c = 12 ksi

f y  = 75 ksi

  t  =  0 .0 0 3 8 

  t  =  0 .0 0 5 

  t  =  0 .0 0 4 

 

Page 79: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 79/104

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.350.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

f s/f y = 0

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

  = 0.6

INTERACTION DIAGRAM C3-60.6

f   / 

c = 3 ksi

f y  = 60 ksi

Pne

  h

h

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

 

t  =  0 .0 0 3 5 t  =  0 .0 0 5 

 

t  =  0 .0 0 4 

 

COLUMNS 3.13.2 - Nominal load-moment strength interaction diagram, C3-60.7

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.400.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

 

g = 0.08

   K  n  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

 

= 0.7

INTERACTION DIAGRAM C3-60.7

f   / 

c = 3 ksi

f y  = 60 ksi

Pne

  h

h

 

t  =  0 .0 0 3 5  t  =  0 .0 0 5 

 

t  =  0 .0 0 4 

 

Page 80: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 80/104

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 

g= 0.08

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.450.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

 

= 0.8

INTERACTION DIAGRAM C3-60.8

f   / 

c = 3 ksi

f y  = 60 ksi

Pne

  h

h

  t  =  0 .0 0 3 5   t  =  0 .0 0 5 

  t  =  0 .0 0 4 

 

COLUMNS 3.13.4 - Nominal load-moment strength interaction diagram, C3-60.9

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.550.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

 

   K  n  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

 

g = 0.08

  = 0.9

INTERACTION DIAGRAM C3-60.9

f   / 

c = 3 ksi

f y  = 60 ksi

Pne

  h

h

  t  =  0 .0 0 3 5 

  t  =  0 .0 0 5 

  t  =  0 .0 0 4 

 

Page 81: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 81/104

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.2750.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

  = 0.6

INTERACTION DIAGRAM C4-60.6

f   / 

c = 4 ksi

f y  = 60 ksi

Pne

  h

h

 

t  =  0 .0 0 3 5 

 t  =  0 .0 0 5 

 

t  =  0 .0 0 4 

 COLUMNS 3.14.2 - Nominal load-moment strength interaction diagram, C4-60.7

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.350.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

 

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

 g = 0.08

  = 0.7

INTERACTION DIAGRAM C4-60.7

f   / 

c = 4 ksi

f y  = 60 ksi

Pne

  h

h

 

t  =  0 .0 0 3 5  

t  =  0 .0 0 5 

 

t  =  0 .0 0 4 

 

Page 82: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 82/104

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.400.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

 g = 0.08

 

= 0.8

INTERACTION DIAGRAM C4-60.8

f   / 

c = 4 ksi

f y  = 60 ksi

Pne

  h

h

  t  =  0 .0 0 3 5 

  t  =  0 .0 0 5 

 

t  =  0 .0 0 4 

 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.400.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

  COLUMNS 3.14.4 - Nominal load-moment strength interaction diagram, C4-60.9

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

 g = 0.08

 

= 0.9

INTERACTION DIAGRAM C4-60.9

f   / 

c = 4 ksi

f y  = 60 ksi

Pne

  h

h

  t  =  0 .0 0 3 5 

  t  =  0 .0 0 5 

  t  =  0 .0 0 4 

 

Page 83: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 83/104

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.2250.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

f s/f y = 0

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

 

= 0.6

INTERACTION DIAGRAM C5-60.6

f   / 

c = 5 ksi

f y  = 60 ksi

Pne

  h

h

 

t  =  0 .0 0 3 5 

 

t  =  0 .0 0 5 

 

t  =  0 .0 0 4 

 

0.00 0.05 0.10 0.15 0.20 0.25 0.300.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

  COLUMNS 3.15.2 - Nominal load-moment strength interaction diagram, C5-60.7

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 

g= 0.08

 

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

 

= 0.7

INTERACTION DIAGRAM C5-60.7

f   / 

c = 5 ksi

f y  = 60 ksi

Pne

  h

h

  t  =  0 .0 0 3 5   t  =  0 .0 0 5 

  t  =  0 .0 0 4 

 

Page 84: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 84/104

0.00 0.05 0.10 0.15 0.20 0.25 0.300.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

  . . , .

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

 

= 0.8

INTERACTION DIAGRAM C5-60.8

f   / 

c = 5 ksi

f y  = 60 ksi

Pne

  h

h

  t  =  0 .0 0 3 5 

  t  =  0 .0 0 5 

 

t  =  0 .0 0 4 

 

COLUMNS 3.15.4 - Nominal load-moment strength interaction diagram, C5-60.9

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.350.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

 

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

 

= 0.9

INTERACTION DIAGRAM C5-60.9

f   / 

c = 5 ksi

f y  = 60 ksi

Pne

  h

h

  t  =  0 .0 0 3 5 

  t  =  0 .0 0 5 

  t  =  0 .0 0 4 

 

Page 85: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 85/104

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 

g = 0.08

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.2250.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

 

= 0.6

INTERACTION DIAGRAM C6-60.6

f   / 

c = 6 ksi

f y  = 60 ksi

Pne

  h

h

 

t  =  0 .0 0 3 5  t  =  0 .0 0 5 

 

t  =  0 .0 0 4 

 

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.2500.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

  COLUMNS 3.16.2 - Nominal load-moment strength interaction diagram, C6-60.7

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

 

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

 

= 0.7

INTERACTION DIAGRAM C6-60.7

f   / 

c = 6 ksi

f y  = 60 ksi

Pne

  h

h

 

t  =  0 .0 0 3 5  

t  =  0 .0 0 5 

 

t  =  0 .0 0 4 

 

Page 86: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 86/104

0.00 0.05 0.10 0.15 0.20 0.25 0.300.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

  = 0.8

INTERACTION DIAGRAM C6-60.8

f   / 

c = 6 ksi

f y  = 60 ksi

Pne

  h

h

  t  =  0 .0 0 3 5 

  t  =  0 .0 0 5 

 

t  =  0 .0 0 4 

 

0.00 0.05 0.10 0.15 0.20 0.25 0.300.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

  COLUMNS 3.16.4 - Nominal load-moment strength interaction diagram, C6-60.9

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

 

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

  = 0.9

INTERACTION DIAGRAM C6-60.9

f   / 

c = 6 ksi

f y  = 60 ksi

Pne

  h

h

  t  =  0 .0 0 3 5 

  t  =  0 .0 0 5 

  t  =  0 .0 0 4 

 

Page 87: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 87/104

0.000 0.025 0.050 0.075 0.100 0.125 0.1500.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

 

= 0.6

INTERACTION DIAGRAM C9-75.6

f   / 

c = 9 ksi

f y  = 75 ksi

Pne

  h

h

  t  =  0 .0 0 3 8  t  =  0 .0 0 4 

 

t  =  0 .0 0 5 

 

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.1750.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

  COLUMNS 3.17.2 - Nominal load-moment strength interaction diagram, C9-75.7

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

 

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

 

= 0.7

INTERACTION DIAGRAM C9-75.7

f   / 

c = 9 ksi

f y  = 75 ksi

Pne

  h

h

 

t  =  0 .0 0 3 8  t  =  0 .0 0 5 

 

t  =  0 .0 0 4 

 

Page 88: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 88/104

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

 g = 0.08

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.2250.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

  = 0.8

INTERACTION DIAGRAM C9-75.8

f   / 

c = 9 ksi

f y  = 75 ksi

Pne

  h

h

  t  =  0 .0 0 3 8 

  t  =  0 .0 0 5 

  t  =  0 .0 0 4 

0.03

0.02

0.01

 

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.2500.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

  COLUMNS 3.17.4 - Nominal load-moment strength interaction diagram, C9-75.9

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

 

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

 

= 0.9

INTERACTION DIAGRAM C9-75.9

f   / 

c = 9 ksi

f y  = 75 ksi

Pne

  h

h

  t  =  0 .0 0 5 

  t  =  0 .0 0 3 8  t  =  0 .0 0 4 

 

Page 89: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 89/104

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.000 0.025 0.050 0.075 0.100 0.125 0.1500.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

 

g = 0.08  = 0.6

INTERACTION DIAGRAM C12-75.6

f   / 

c = 12 ksi

f y  = 75 ksi

Pne

  h

h

 

t  =  0 .0 0 3 8  t  =  0 .0 0 5 

  t  =  0 .0 0 4 

 

COLUMNS 3.18.2 - Nominal load-moment strength interaction diagram, C12-75.7

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

0.070.06

0.05

0.04

0.03

0.02

0.01

0.000 0.025 0.050 0.075 0.100 0.125 0.1500.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

 g = 0.08 

= 0.7

INTERACTION DIAGRAM C12-75.7

f   / 

c = 12 ksi

f y  = 75 ksi

Pne

  h

h

 

t  =  0 .0 0 3 8  t  =  0 .0 0 5 

 

t  =  0 .0 0 4 

 

Page 90: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 90/104

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.1750.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

 g = 0.08  

= 0.8

INTERACTION DIAGRAM C12-75.8

f   / 

c = 12 ksi

f y  = 75 ksi

Pne

  h

h

 

t  =  0 .0 0 3 8  

t  =  0 .0 0 5 

 

t  =  0 .0 0 4 

 

COLUMNS 3.18.4 - Nominal load-moment strength interaction diagram, C12-75.9

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.2000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

  = 0.9

INTERACTION DIAGRAM C12-75.9

f   / 

c = 12 ksi

f y  = 75 ksi

Pne

  h

h

 

t  =  0 .0 0 3 8  t  =  0 .0 0 5 

 

t  =  0 .0 0 4 

 

Page 91: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 91/104

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.350.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM S3-60.6

Pne

  h

h

  = 0.6

f   / 

c = 3 ksi

f y  = 60 ksi

 

t  =  0 .0 0 3 5 

 

t  =  0 .0 0 5 

  t  =  0 .0 0 4 0 

 

COLUMNS 3.19.2 - Nominal load-moment strength interaction diagram, S3-60.7

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.400.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

 

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM S3-60.7

Pne

  h

h

 

= 0.7

f   / 

c = 3 ksi

f y  = 60 ksi

 

t  =  0 .0 0 3 5  

t  =  0 .0 0 5 

 

t  =  0 .0 0 4 0 

 

Page 92: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 92/104

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.500.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

K max

f s/f 

y = 0

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM S3-60.8

Pne

  h

h

 

= 0.8

f   / 

c = 3 ksi

f y  = 60 ksi

  t  =  0 .0 0 3 5 

  t  =  0 .0 0 5 

  t  =  0 .0 0 4 0 

 

COLUMNS 3.19.4 - Nominal load-moment strength interaction diagram, S3-60.9

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.550.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

 

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM S3-60.9

Pne

  h

h

 

= 0.9

f   / 

c = 3 ksi

f y  = 60 ksi

  t  =  0 .0 0 3 5 

  t  =  0 .0 0 5 

  t  =  0 .0 0 4 0 

 

Page 93: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 93/104

f s/f y = 0

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 

g = 0.08

0.00 0.05 0.10 0.15 0.20 0.25 0.300.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM S4-60.6

Pne

  h

h

 

= 0.6

f   / 

c = 4 ksi

f y  = 60 ksi

 

t  = 

 0 .0 0 3 5  t  =  0 .0 0 5 

 

t  =  0 .0 0 4 0 

 

COLUMNS 3.20.2 - Nominal load-moment strength interaction diagram, S4-60.7

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.350.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

 

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM S4-60.7

Pne

  h

h

  = 0.7

f   / 

c = 4 ksi

f y  = 60 ksi

 

t  =  0 .0 0 3 5  t  =  0 .0 0 5 

 

t  =  0 .0 0 4 0 

 

Page 94: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 94/104

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.400.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

   K  n  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM S4-60.8

Pne

  h

h

  = 0.8

f   / 

c = 4 ksi

f y  = 60 ksi

  t  =  0 .0 0 3 5 

  t  =  0 .0 0 5 

 

t  =  0 .0 0 4 0 

 

COLUMNS 3.20.4 - Nominal load-moment strength interaction diagram, S4-60.9

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.450.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

 

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM S4-60.9

Pne

  h

h

 

= 0.9

f   / 

c = 4 ksi

f y  = 60 ksi

  t  =  0 .0 0 3 5 

  t  =  0 .0 0 5 

  t  =  0 .0 0 4 0 

 

Page 95: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 95/104

 

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.2500.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM S5-60.6

Pne

  h

h

 

= 0.6

f   / 

c = 5 ksi

f y  = 60 ksi

 

t  =  0 .0 0 3 5 

 t  =  0 .0 0 5 

 

t  =  0 .0 0 4 0 

 

COLUMNS 3.21.2 - Nominal load-moment strength interaction diagram, S5-60.7

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

0.00 0.05 0.10 0.15 0.20 0.25 0.300.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

 

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM S5-60.7

Pne

  h

h

 

= 0.7

f   / 

c = 5 ksi

f y  = 60 ksi

 

t  =  0 .0 0 3 5  

t  =  0 .0 0 5 

 

t  =  0 .0 0 4 0 

 

Page 96: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 96/104

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.350.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM S5-60.8

Pne

  h

h

  = 0.8

f   / 

c = 5 ksi

f y  = 60 ksi

  t  =  0 .0 0 3 5 

  t  =  0 .0 0 5 

  t  =  0 .0 0 4 0 

 

COLUMNS 3.21.4 - Nominal load-moment strength interaction diagram, S5-60.9

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.350.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

 

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM S5-60.9

Pne

  h

h

  = 0.9

f   / 

c = 5 ksi

f y  = 60 ksi

  t  =  0 .0 0 3 5 

  t  =  0 .0 0 5 

  t  =  0 .0 0 4 0 

 

Page 97: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 97/104

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.2500.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM S6-60.6

Pne

  h

h

 

= 0.6

f   / 

c = 6 ksi

f y  = 60 ksi

 

t  =  0 .0 0 3 5 

 

t  =  0 .0 0 5 

 

t  =  0 .0 0 4 0 

 

COLUMNS 3.22.2 - Nominal load-moment strength interaction diagram, S6-60.7

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 

g = 0.08

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.2750.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM S6-60.7

Pne

  h

h

  = 0.7

f   / 

c = 6 ksi

f y  = 60 ksi

 

t  =  0 .0 0 5 

 

t  =  0 .0 0 3 5 

 

t  =  0 .0 0 4 0 

 

Page 98: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 98/104

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

0.00 0.05 0.10 0.15 0.20 0.25 0.300.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM S6-60.8

Pne

  h

h

 

= 0.8

f   / 

c = 6 ksi

f y  = 60 ksi

  t  =  0 .0 0 3 5 

  t  =  0 .0 0 5 

  t  =  0 .0 0 4 0 

 

COLUMNS 3.22.4 - Nominal load-moment strength interaction diagram, S6-60.9

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 

g = 0.08

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.350.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM S6-60.9

Pne

  h

h

 

= 0.9

f   / 

c = 6 ksi

f y  = 60 ksi

  t  =  0 .0 0 3 5 

  t  =  0 .0 0 5 

  t  =  0 .0 0 4 0 

 

Page 99: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 99/104

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.1750.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM S9-75.6

Pne

  h

h

 

= 0.6

f   / 

c = 9 ksi

f y  = 75 ksi

 

t  =  0 .0 0 3 8  t  =  0 .0 0 5 

 

t  = 

 0 .0 0 4 0 

 

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.2000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

  COLUMNS 3.23.2 - Nominal load-moment strength interaction diagram, S9-75.7

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

 

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM S9-75.7

Pne

  h

h

  = 0.7

f   / 

c = 9 ksi

f y  = 75 ksi

 

t  =  0 .0 0 3 8  t  =  0 .0 0 5 

 

t  =  0 .0 0 4 0 

 

Page 100: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 100/104

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.2250.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM S9-75.8

Pne

  h

h

  = 0.8

f   / 

c = 9 ksi

f y  = 75 ksi

  t  =  0 .0 0 3 8 

  t  =  0 .0 0 5 

  t  =  0 .0 0 4 0 

 

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.2500.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

  COLUMNS 3.23.4 - Nominal load-moment strength interaction diagram, S9-75.9

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

 

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM S9-75.9

Pne

  h

h

 

= 0.9

f   / 

c = 9 ksi

f y  = 75 ksi

  t  =  0 .0 0 3 8 

  t  =  0 .0 0 5 

  t  =  0 .0 0 4 0 

 

Page 101: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 101/104

0.000 0.025 0.050 0.075 0.100 0.125 0.1500.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM S12-75.6

Pne

  h

h

  = 0.6

f   / 

c = 12 ksi

f y  = 75 ksi

 

t  =  0 .0 0 3 8  t  =  0 .0 0 5 0 

 

t  =  0 .0 0 4 0 

 

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.1750.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

  COLUMNS 3.24.2 - Nominal load-moment strength interaction diagram, S12-75.7

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

 

   K  n

  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM S12-75.7

Pne

  h

h

 

= 0.7

f   / 

c = 12 ksi

f y  = 75 ksi

 

t  =  0 .0 0 3 8  t  =  0 .0 0 5 

 

t  =  0 .0 0 4 0 

 

Page 102: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 102/104

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.2000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

f s/f 

y = 0

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

   K  n

  =

   P  n

   /   f   /  

  c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM S12-75.8

Pne

  h

h

 

= 0.8

f   / 

c = 12 ksi

f y  = 75 ksi

  t  =  0 .0 0 5 

  t  =  0 .0 0 3 8  t  =  0 .0 0 4 0 

 

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.2250.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

  COLUMNS 3.24.4 - Nominal load-moment strength interaction diagram, S12-75.9

f s/f 

y = 0

 

K max

 0.25

 0.50

0.75

1.0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 g = 0.08

 

   K  n  =

   P  n

   /   f   /    c

   A  g

Rn = P

n e / f

c A

gh

INTERACTION DIAGRAM S12-75.9

Pne

  h

h

  = 0.9

f   / 

c = 12 ksi

f y  = 75 ksi

  t  =  0 .0 0 5 

  t  =  0 .0 0 3 8  t  =  0 .0 0 4 0 

 

Page 103: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 103/104

Page 104: SP-17-14_DA

7/25/2019 SP-17-14_DA

http://slidepdf.com/reader/full/sp-17-14da 104/104

38800 Country Club Drive

Farmington Hills, MI 48331 USA

+1.248.848.3700

www.concrete.org