sound absorptive materials basics and future trends

61
Sound Absorptive Materials Basics and Future Trends Vibro-Acoustics Consortium Web Meeting University of Kentucky Vibro-Acoustics Consortium April 30, 2020

Upload: others

Post on 31-Oct-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Sound Absorptive Materials Basics and Future Trends

Sound Absorptive MaterialsBasics and Future Trends

Vibro-Acoustics Consortium Web MeetingUniversity of Kentucky

Vibro-Acoustics Consortium

April 30, 2020

Page 2: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

References

1. T. J. Cox and P. D’Antonio, Acoustic Absorbers and Diffusers: Theory, Design and Application, 3rd Edition, CRC Press, Boca Raton, FL (2017).

2. M. Long, Architectural Acoustics, 2nd Edition, Elsevier, Kidlington, Oxford (2014).

2

Page 3: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Overview

• Porous Absorbers Overview

• Porous Absorbers Property Determination

• Porous Absorbers Basics for Designers

• Porous Absorbers Compressed

• Porous Absorbers Layered

• Reactive Absorbers Overview

• Reactive Absorbers Example

3

Page 4: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium 4

Porous Absorbers Overview

Sound is “absorbed” by converting sound energy to heat within the material, resulting in a reduction of the sound pressure.

Two primary mechanisms:• vibration of the material skeleton - damping• friction of the fluid on the skeleton - viscosity

Page 5: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium 5

Foam Granular Material

Fiber Double Porosity Material

Porous Absorbers Overview

T. J. Cox and P. D’Antonio, 2017

(SEM images courtesy of Jesus Alba, Del Rey Romina, and Vicente Jorge Sanchis, Universitat Politècnica de Valencia and Henkel KGaA. Sand image courtesy of Siim Sepp, commons.wikimedia.org/wiki/File:Sand_from_Gobi_Desert.jpg Licensed under CC BY-SA 3.0.)

Page 6: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium 6

Closed Cell Foam

Open Cell Foam

• Foams are made of various materials including polyurethane, polyethylene, and polypropylene.

• Foams are created by a process that has been likened to bread rising.

Porous Absorbers Overview

T. J. Cox and P. D’Antonio, 2017 adapted from Cremer and Mueller, 1978

Page 7: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Ermann, 2015

Sound energy is converted to heat via damping or viscosity.

Porous Absorbers Overview

7

Page 8: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Overview

• Porous Absorbers Overview

• Porous Absorbers Property Determination

• Porous Absorbers Basics for Designers

• Porous Absorbers Compressed

• Porous Absorbers Layered

• Reactive Absorbers Overview

• Reactive Absorbers Example

8

Page 9: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Transfer function

sample driver (loudspeaker)

microphones

Porous Absorbers Property DeterminationASTM E1050 – Normal Incident Sound Absorption

9

Page 10: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Porous Absorbers Property Determination

Cox and D’Antonio, 2017 adapted from Horoshenkov et al., 2007

Reconstituted Porous Rubber

Glass Fiber

Reticulated Foam

Solid line indicates the mean sound absorption. Error bars indicate the 95% confidence limit in any one laboratory based on round robin tests.

ASTM E1050

10

Page 11: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Broadband source

Traverse to average 𝑆𝑃𝐿

Absorbing material of area 𝑆

Reverberation Room

Porous Absorbers Property Determination

ASTM C423 – Diffuse Field Sound Absorption

11

Page 12: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

100 mm mineral wool

25 mm foam

Solid line indicates the mean sound absorption. Error bars indicate the 95% confidence limit in any one laboratory measurement on round robin tests (13 laboratories).

Cox and D’Antonio, 2017 adapted from Horoshenkov et al., 2007

ASTM C423

Porous Absorbers Property Determination

12

Page 13: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Pressure gauge

Hot-wire anemometer

Absorbing wedge

Air suctionAbsorbing

sampleLoudspeaker

Wright-Patterson AFB Study

Mechel, Mertens and Schilz (1965)

Classic study where both the static and acoustic impedance were measured.

13

Porous Absorbers Property Determination

Page 14: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

1 cm Thick Rockwool

AcousticResistance

Mechel, Mertens and Schilz (1965)

14

Porous Absorbers Property Determination

Page 15: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Vacuum source

u(velocity)

PSample(thickness t )

Flow resistance:

uPrs

Flow resistivity:

trs

Standardized in ASTM C522

15

Porous Absorbers Property Determination

Page 16: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Material Type Reference

𝐶 𝐶 𝐶 𝐶 𝐶 𝐶 𝐶 𝐶

Rockwool/fiberglass Delaney and Bazley (1970)

0.0571 0.754 0.087 0.732 0.0978 0.700 0.189 0.595Rockwool/fiberglassMiki (1989)

0.070 0.632 0.107 0.632 0.109 0.618 0.160 0.618PolyesterGarai and Pompoli (2005)

0.078 0.623 0.074 0.660 0.159 0.571 0.121 0.530Polyurethane foam of low flow resistivityDunn and Davern (1986)

0.114 0.369 0.0985 0.758 0.168 0.715 0.136 0.491Porous plastic foams of medium flow resistivityWu (1988)

0.209 0.548 0.105 0.607 0.188 0.554 0.163 0.592FiberMechel (2002)

𝑋 0.025 0.081 0.699 0.191 0.556 0.136 0.641 0.322 0.502𝑋 0.025 0.0563 0.725 0.127 0.655 0.103 0.716 0.179 0.663

Bies, Hansen, and Howard, 2017

𝑍 𝜌𝑐 1 𝐶 𝑋 𝑗𝐶 𝑋

𝑘𝜔𝑐 1 𝐶 𝑋 𝑗𝐶 𝑋

𝑋𝜌𝑓𝜎

16

Porous Absorbers Property DeterminationCharacteristic Impedance

Complex Wavenumber

Page 17: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

L

Determination of Sound Absorption

𝛼 1 𝑅

𝑝𝑢

𝑝𝑢

𝑘 and 𝑍

17

𝑧𝑝𝑢 𝑗𝑍 cot 𝑘 𝐿

𝑅𝑧 𝜌𝑐𝑧 𝜌𝑐

𝑝𝑢

cos 𝑘 𝐿 𝑗𝑍 sin 𝑘 𝐿𝑗/𝑍 sin 𝑘 𝐿 cos 𝑘 𝐿

𝑝𝑢

Porous Absorbers Property Determination

𝑘𝜔𝑐

𝑍 𝜌 𝑐′𝑧

Page 18: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Empirical Model Comparison24 mm Melamine Foam (8400 Rayls/m)

18

Porous Absorbers Property Determination

Page 19: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium 19

Porous Absorbers Property Determination

Sound AbsorptionASTM E1050

Flow ResistivityLeast Squares Curve Fit

Based on Simón, Fernandez and Pfretzschner, 2006

Page 20: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

24 mm Melamine (8400 Rayls/m)

20

Curve Fit Comparison

Porous Absorbers Property Determination

Page 21: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium 21

Champoux-Allard Model• Flow Resistivity• Porosity• Tortuosity• Viscous Characteristic Length• Thermal Characteristic LengthJohnson-Champoux-Allard Model• Flow Resistivity• Porosity• Tortuosity• Viscous Characteristic Length• Thermal Characteristic Length• Static Thermal Permeability• Static Viscous Permeability

Porous Absorbers Property Determination

Page 22: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium 22

Porous Absorbers Property Determination

Regardless of whether the simple flow resistivity or the more advanced phenomenological models are used, impedance tube measurements are performed, and some material properties are determined via curve fit. Once materials become compressed, which is frequently the case, all bets are off. Hence, we have tended to use the simple flow resistivity models and have had satisfactory results.

Page 23: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Overview

• Porous Absorbers Overview

• Porous Absorbers Property Determination

• Porous Absorbers Basics for Designers

• Porous Absorbers Compressed

• Porous Absorbers Layered

• Reactive Absorbers Overview

• Reactive Absorbers Example

23

Page 24: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Takeaways• Porous sound absorption is less effective at

low frequencies because of the long wavelength, small particle velocity, and non-diffuse field.

• Relatively thin sound absorption will have some impact even at lower frequencies if the sound field is diffuse.

Long, 2014

Porous Absorbers Basics for Designers

24

Page 25: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Ginn, 1978 (Reproduced by Long, 2014)

Measured Diffuse Field Sound Absorption

Porous Absorbers Basics for Designers

25

Page 26: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Long, 2014 based on Ginn, 1978

Thin layer with flow resistance 𝜎 𝑡 where 𝜎 is the flow resistivity and 𝑡 is the thickness.

Porous Absorbers Basics for Designers

26

Page 27: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Resistive Screen

𝑊

𝑊 𝑊

𝑊

In theory, the dissipated power (𝑊 ) is a maximum when 𝜎 𝑡 2𝜌𝑐. A general rule of thumb is that a sound absorber will be effective when 𝜎 𝑡 𝑛𝜌𝑐 where 𝑛is on the order of 2. This assumes that the acoustic resistance is equal to the static flow resistance.

Flow Resistivity

Abso

rptio

n C

oeffi

cien

t

𝜎 𝑡𝜌𝑐 2

Porous Absorbers Basics for Designers

27

Page 28: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Thin layer with flow resistance 𝜎 𝑡 where 𝜎 is the flow resistivity and 𝑡 is the thickness.

𝜎 𝑡 2𝜌𝑐 for each case

Long, 2014 based on Ingard, 1994

Porous Absorbers Basics for Designers

28

Page 29: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Overview

• Porous Absorbers Overview

• Porous Absorbers Property Determination

• Porous Absorbers Basics for Designers

• Porous Absorbers Compressed

• Porous Absorbers Layered

• Reactive Absorbers Overview

• Reactive Absorbers Example

29

Page 30: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

24 mm Melamine Foam

28.5 mm Polyurethane Foam

40 mm Polyester Fiber

50.8 mm Glass Wool Fiber

30

Porous Absorbers Compressed

Page 31: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Sound Source

Wire Screen Barrier

Wire Cloth Barrier

PistonCompressed Material

31

Porous Absorbers Compressed

Page 32: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Effect of Wire Screen on Absorption

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000

Abso

rptio

n C

oeffi

cien

t

Frequency (Hz)

With Wire Screen

Without Wire Screen

24 mm Melamine Foam Sample

32

Porous Absorbers Compressed

Page 33: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Sound AbsorptionASTM E1050

Relationship Between Flow Resistivity and Density

Flow ResistivityLeast Squares Curve Fit

33

Porous Absorbers Compressed

Compressed Sound Absorber

Page 34: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

0

10000

20000

30000

40000

20 30 40 50 60

Flow

Res

istiv

ity (r

ayls

/m)

Density (kg/m³)

50.8 mm Glass Wool

6471587 abs

40 mm Polyester Fiber

0

4000

8000

12000

16000

25 35 45 55 65 75Fl

ow R

esis

tivity

(ray

ls/m

)Density (kg/m³)

5076263 abs

34

Flow Resistivity vs. Density

Porous Absorbers Compressed

Page 35: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium 35

40 mm Polyester Fiber

Porous Absorbers Compressed

Page 36: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Complex Wavenumber Polyester Fiber

36

Porous Absorbers Compressed

Page 37: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium 37

Characteristic Impedance Polyester Fiber

Porous Absorbers Compressed

Page 38: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Overview

• Porous Absorbers Overview

• Porous Absorbers Property Determination

• Porous Absorbers Basics for Designers

• Porous Absorbers Compressed

• Porous Absorbers Layered

• Reactive Absorbers Overview

• Reactive Absorbers Example

38

Page 39: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

…Incident sound

𝑇 𝑇 𝑇𝑇 𝑇 𝑇 𝑇 𝑇 . . . 𝑇

Porous Absorbers Layered

39

𝛼 1 𝑅

𝑧𝑇𝑇

𝑅𝑧 𝜌𝑐𝑧 𝜌𝑐

𝑧

Page 40: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Porous Absorbers Layered Materials

Curve Fit using Foam Model

1 inch Foam 𝜎 4930 rayls/m

Curve Fit using Fiber Model

1.125 inch Fiber 𝜎 10312 rayls/m

1.125” 1”

40

Page 41: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

0.0

0.2

0.4

0.6

0.8

1.0

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Soun

d Ab

sorp

tion

Frequency (Hz)

Measurement

Transfer Matrix Method

1.125 in 1 in

Porous Absorbers Layered

41

Page 42: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

-5.0

-2.5

0.0

2.5

5.0

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Nor

mal

ized

Sur

face

Impe

danc

e

Frequency (Hz)

Measurement

Transfer Matrix Method

1.125 in 1 in

Real

Imaginary

Porous Absorbers Layered

42

Page 43: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Overview

• Porous Absorbers Overview

• Porous Absorbers Property Determination

• Porous Absorbers Basics for Designers

• Porous Absorbers Compressed

• Porous Absorbers Layered

• Reactive Absorbers Overview

• Reactive Absorbers Example

43

Page 44: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Reactive Absorbers Overview

44

Fiber with Perforated Cover

Fiber

Page 45: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium 45

A – with 1 in glass fiberB – no glass fiber

Long, 2014 based on Doelle, 1972

𝑓1

2𝜋𝜌𝑐𝑚 𝑑

𝑚 surface mass density𝑑 spacing from wall

Reactive Absorbers Overview

Page 46: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Overview

• Porous Absorbers Overview

• Porous Absorbers Property Determination

• Porous Absorbers Basics for Designers

• Porous Absorbers Compressed

• Porous Absorbers Layered

• Reactive Absorbers Overview

• Reactive Absorbers Example

46

Page 47: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Honeycomb with interconnected cells.

Jonza, J., Herdtle, T., Kalish, J., Gerdes, R., and Eichhorn, G., Acoustically Absorbing Lightweight Thermoplastic Honeycomb Panels, SAE International Journal of Vehicle Dynamics, Stability, and NVH 1(2):2017, doi:10.4271/2017-01-1813.

Reactive Absorbers Example

47

Holes

Page 48: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Hole 1Hole 2

Hole 3 Hole 4

Hole 5

Hole 6

Reactive Absorbers Example

48

Page 49: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Cover all holes

Reactive Absorbers Example

49

Page 50: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200 1400 1600 1800

Abso

rptio

n C

oeffi

cien

t

Frequency (Hz)

Hole 1Hole 2Hole 3Hole 4Hole 5Hole 6Block all the holes

Reactive Absorbers Example

50

Page 51: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Baseline Case

96 cm

58 c

m

ϕ10 cm

Reactive Absorbers Example

51

Page 52: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

1.5 in Fiber Treatment

Reactive Absorbers Example

52

Page 53: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Enclosure Study

Reactive Absorbers Example

53

Page 54: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

𝐼𝐿 𝑆𝑊𝐿 𝑆𝑊𝐿

𝑆𝑊𝐿 is the sound power level in dB for the speaker𝑆𝑊𝐿 is the dB level with the enclosure covered.

𝑆𝑊𝐿

opening

𝑆𝑊𝐿

Reactive Absorbers Example

54

Page 55: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

-40

-30

-20

-10

0

10

20

30

40

0 200 400 600 800 1000 1200 1400 1600

Inse

rtion

Los

s (d

B)

Frequency (Hz)

BaselineFiberThermoplastic Panel

Reactive Absorbers Example

55

Page 56: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Reactive Absorbers Example

56

Page 57: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Effect of Panel Area

-20

-10

0

10

20

30

40

0 200 400 600 800 1000 1200 1400 1600

Inse

rtion

Los

s (d

B)

Frequency (Hz)

0.40 sqm

0.95 sqm

1.20 sqm

1.74 sqm

1.90 sqm

Reactive Absorbers Example

57

Page 58: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Reference Measurement

𝐼𝐿 𝐿 , 𝐿 ,

Reactive Absorbers Example

58

Page 59: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Reactive Absorbers Example

Thermoplastic Panel Absorber

59

Page 60: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

-10

-5

0

5

10

15

100 1000

inse

rtion

Los

s (d

B)

Frequency (Hz)

Untreated (Baseline)

Thermoplastic (0.40 sqm)

Reactive Absorbers Example

60

Page 61: Sound Absorptive Materials Basics and Future Trends

Vibro-Acoustics Consortium

Future Trends

• Hybrid dissipative – reactive sound absorbers

• 3D printed sound absorbers

• Microperforated panels

• Acoustic Fabrics

61