some catalan musings - mit mathematicsrstan/transparencies/catalan2.pdfsome catalan musings – p....

126
Some Catalan Musings Richard P. Stanley Some Catalan Musings – p. 1

Upload: others

Post on 19-Apr-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Some Catalan MusingsRichard P. Stanley

Some Catalan Musings – p. 1

Page 2: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

An OEIS entry

A000108: 1, 1, 2, 5, 14, 42, 132, 429, . . .

Some Catalan Musings – p. 2

Page 3: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

An OEIS entry

A000108: 1, 1, 2, 5, 14, 42, 132, 429, . . .

COMMENTS. . . . This is probably the longestentry in OEIS, and rightly so.

Some Catalan Musings – p. 2

Page 4: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

An OEIS entry

A000108: 1, 1, 2, 5, 14, 42, 132, 429, . . .

COMMENTS. . . . This is probably the longestentry in OEIS, and rightly so.

Cn = 1n+1

(

2nn

)

, n ≥ 0 (Catalan number)

Some Catalan Musings – p. 2

Page 5: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Catalan monograph

R. Stanley, Catalan Numbers, CambridgeUniversity Press, 2015, to appear.

Some Catalan Musings – p. 3

Page 6: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Catalan monograph

R. Stanley, Catalan Numbers, CambridgeUniversity Press, 2015, to appear.

Includes 214 combinatorial interpretations of Cn

and 68 additional problems.

Some Catalan Musings – p. 3

Page 7: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

An early version (1970’s)

Some Catalan Musings – p. 4

Page 8: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

An early version (1970’s)

Some Catalan Musings – p. 4

Page 9: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Some Catalan Musings – p. 5

Page 10: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

How to sample?

Compare D. E. Knuth, 3:16 Bible TextsIlluminated.

Sample from Bible by choosing verse 3:16 fromeach chapter.

Some Catalan Musings – p. 6

Page 11: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

How to sample?

Compare D. E. Knuth, 3:16 Bible TextsIlluminated.

Sample from Bible by choosing verse 3:16 fromeach chapter.

I will be less random.

Some Catalan Musings – p. 6

Page 12: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

History

Sharabiin Myangat, also known as Minggatu,Ming’antu ( ), and Jing An(c. 1692–c. 1763): a Mongolian astronomer,mathematician, and topographic scientist whoworked at the Qing court in China.

Some Catalan Musings – p. 7

Page 13: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

History

Sharabiin Myangat, also known as Minggatu,Ming’antu ( ), and Jing An(c. 1692–c. 1763): a Mongolian astronomer,mathematician, and topographic scientist whoworked at the Qing court in China.

Typical result (1730’s):

sin(2α) = 2 sinα −∞∑

n=1

Cn−1

4n−1sin2n+1 α

Some Catalan Musings – p. 7

Page 14: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

History

Sharabiin Myangat, also known as Minggatu,Ming’antu ( ), and Jing An(c. 1692–c. 1763): a Mongolian astronomer,mathematician, and topographic scientist whoworked at the Qing court in China.

Typical result (1730’s):

sin(2α) = 2 sinα −∞∑

n=1

Cn−1

4n−1sin2n+1 α

No combinatorics, no further work in China.

Some Catalan Musings – p. 7

Page 15: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

More history, via Igor Pak

Euler (1751): conjectured formula for numberCn of triangulations of a convex (n+ 2)-gon

Some Catalan Musings – p. 8

Page 16: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Completion of proof

Goldbach and Segner (1758–1759): helpedEuler complete the proof, in pieces.

Lamé (1838): first self-contained, completeproof.

Some Catalan Musings – p. 9

Page 17: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Catalan

Eugène Charles Catalan (1838): wrote Cn in

the form(2n)!

n! (n+1)! and showed they counted

(nonassociative) bracketings (orparenthesizations) of a string of n+1 letters.

Some Catalan Musings – p. 10

Page 18: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Catalan

Eugène Charles Catalan (1838): wrote Cn in

the form(2n)!

n! (n+1)! and showed they counted

(nonassociative) bracketings (orparenthesizations) of a string of n+1 letters.

Born in 1814 in Bruges (now in Belgium, thenunder Dutch rule). Studied in France and workedin France and Liège, Belgium. Died in Liège in1894.

Some Catalan Musings – p. 10

Page 19: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Why “Catalan numbers”?

Riordan (1948): introduced the term “Catalannumber” in Math Reviews.

Some Catalan Musings – p. 11

Page 20: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Why “Catalan numbers”?

Riordan (1948): introduced the term “Catalannumber” in Math Reviews.

Riordan (1964): used the term again in Math.Reviews.

Some Catalan Musings – p. 11

Page 21: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Why “Catalan numbers”?

Riordan (1948): introduced the term “Catalannumber” in Math Reviews.

Riordan (1964): used the term again in Math.Reviews.

Riordan (1968): used the term in his bookCombinatorial Identities. Finally caught on.

Some Catalan Musings – p. 11

Page 22: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Why “Catalan numbers”?

Riordan (1948): introduced the term “Catalannumber” in Math Reviews.

Riordan (1964): used the term again in Math.Reviews.

Riordan (1968): used the term in his bookCombinatorial Identities. Finally caught on.

Gardner (1976): used the term in hisMathematical Games column in ScientificAmerican. Real popularity began.

Some Catalan Musings – p. 11

Page 23: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

The primary recurrence

Cn+1 =n

k=0

CkCn−k, C0 = 1

Some Catalan Musings – p. 12

Page 24: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

The primary recurrence

Cn+1 =n

k=0

CkCn−k, C0 = 1

e

Some Catalan Musings – p. 12

Page 25: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

“Transparent” interpretations

3. Binary parenthesizations or bracketings ofa string of n+ 1 letters

(xx · x)x x(xx · x) (x · xx)x x(x · xx) xx · xx

Some Catalan Musings – p. 13

Page 26: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

“Transparent” interpretations

3. Binary parenthesizations or bracketings ofa string of n+ 1 letters

(xx · x)x x(xx · x) (x · xx)x x(x · xx) xx · xx

((x(xx))x)(x(xx)(xx))

Some Catalan Musings – p. 13

Page 27: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

“Transparent” interpretations

3. Binary parenthesizations or bracketings ofa string of n+ 1 letters

(xx · x)x x(xx · x) (x · xx)x x(x · xx) xx · xx

((x(xx))x)(x(xx)(xx))

Some Catalan Musings – p. 13

Page 28: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Binary trees

4. Binary trees with n vertices

Some Catalan Musings – p. 14

Page 29: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Binary trees

4. Binary trees with n vertices

Some Catalan Musings – p. 14

Page 30: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Binary trees

4. Binary trees with n vertices

Some Catalan Musings – p. 14

Page 31: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Plane trees

Plane tree: subtrees of a vertex are linearlyordered

6. Plane trees with n+ 1 vertices

Some Catalan Musings – p. 15

Page 32: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Plane tree recurrence

Some Catalan Musings – p. 16

Page 33: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Plane tree recurrence

Some Catalan Musings – p. 16

Page 34: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

The “natural bijection”

a

d

h

i

j g

f

b

ec

h i j

d

ab c

f

e g

a b c

f

h i j

de g

Some Catalan Musings – p. 17

Page 35: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Dyck paths

25. Dyck paths of length 2n, i.e., lattice pathsfrom (0, 0) to (2n, 0) with steps (1, 1) and (1,−1),never falling below the x-axis

Some Catalan Musings – p. 18

Page 36: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Dyck paths

25. Dyck paths of length 2n, i.e., lattice pathsfrom (0, 0) to (2n, 0) with steps (1, 1) and (1,−1),never falling below the x-axis

Some Catalan Musings – p. 18

Page 37: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Dyck paths

25. Dyck paths of length 2n, i.e., lattice pathsfrom (0, 0) to (2n, 0) with steps (1, 1) and (1,−1),never falling below the x-axis

Some Catalan Musings – p. 18

Page 38: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

312-avoiding permutations

116. Permutations a1a2 · · · an of 1, 2, . . . , n forwhich there does not exist i < j < k andaj < ak < ai (called 312-avoiding) permutations)

123 132 213 231 321

Some Catalan Musings – p. 19

Page 39: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

312-avoiding permutations

116. Permutations a1a2 · · · an of 1, 2, . . . , n forwhich there does not exist i < j < k andaj < ak < ai (called 312-avoiding) permutations)

123 132 213 231 321

34251768

Some Catalan Musings – p. 19

Page 40: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

312-avoiding permutations

116. Permutations a1a2 · · · an of 1, 2, . . . , n forwhich there does not exist i < j < k andaj < ak < ai (called 312-avoiding) permutations)

123 132 213 231 321

3425 768

Some Catalan Musings – p. 19

Page 41: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Less transparent interpretations

159. Noncrossing partitions of 1, 2, . . . , n, i.e.,partitions π = {B1, . . . , Bk} ∈ Πn such that ifa < b < c < d and a, c ∈ Bi and b, d ∈ Bj, theni = j

123 12−3 13−2 23−1 1−2−3

Some Catalan Musings – p. 20

Page 42: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Bijection with plane trees

12

Some Catalan Musings – p. 21

Page 43: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Bijection with plane trees

1

2

3 4

65

8

9

10 11 12

7

Some Catalan Musings – p. 21

Page 44: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Bijection with plane trees

1

2

3 4

65

8

9

10 11 12

7

Children of nonleaf vertices:

{1, 5, 6}, {2}, {3, 4}, {7, 9}, {8}, {10, 11, 12}

Some Catalan Musings – p. 21

Page 45: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Noncrossing partition recurrence

1

7 6

5

4

3

2

12

11

10

9

8

Some Catalan Musings – p. 22

Page 46: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Noncrossing partition recurrence

7 6

5

4

3

2

12

11

10

9

8

Some Catalan Musings – p. 22

Page 47: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

321-avoiding permutations

115. Permutations a1a2 · · · an of 1, 2, . . . , n withlongest decreasing subsequence of length atmost two (i.e., there does not exist i < j < k,ai > aj > ak), called 321-avoiding permutations

123 213 132 312 231

Some Catalan Musings – p. 23

Page 48: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Bijection with Dyck paths

w = 412573968

Some Catalan Musings – p. 24

Page 49: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Bijection with Dyck paths

w = 412573968

1

4

2

5

7

9

3

6

8

Some Catalan Musings – p. 24

Page 50: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Bijection with Dyck paths

w = 412573968

1

4

2

5

7

9

3

6

8

Some Catalan Musings – p. 24

Page 51: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Semiorders

(finite) semiorder or unit interval order: a finitesubset P of R with the partial order:

x <P y ⇐⇒ x <R y − 1

Equivalently, no induced (3+ 1) or (2+ 2)

Some Catalan Musings – p. 25

Page 52: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Semiorders (cont.)

180. Nonisomorphic n-element posets with noinduced subposet isomorphic to 2+ 2 or 3+ 1

Some Catalan Musings – p. 26

Page 53: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Semiorders and Dyck paths

1

3 2

5

6

43 6

412

5

Some Catalan Musings – p. 27

Page 54: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Semiorders and Dyck paths

1

3 2

5

6

43 6

412

5

1

3

1 2 3 4 5 6

2

4

5

6

x x x

x x

x x

x

x

x

Some Catalan Musings – p. 27

Page 55: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Semiorders and Dyck paths

1

3 2

5

6

43 6

412

5

1

3

1 2 3 4 5 6

2

4

5

6

x x x

x x

x x

x

x

x

Some Catalan Musings – p. 27

Page 56: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Noncrossing matchings

61. Noncrossing (complete) matchings on 2nvertices, i.e., ways of connecting 2n points in theplane lying on a horizontal line by nnonintersecting arcs, each arc connecting two ofthe points and lying above the points

Some Catalan Musings – p. 28

Page 57: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Bijection to ballot sequences

Some Catalan Musings – p. 29

Page 58: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Bijection to ballot sequences

1 1 1 1 1

left endpoint: 1

right endpoint: −1

Some Catalan Musings – p. 29

Page 59: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Inverse bijection

1 1 1 1 1

Some Catalan Musings – p. 30

Page 60: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Inverse bijection

1 1 1 1 1

Scan ballot sequence from right-to-left. Connecteach 1 with leftmost available −1.

Some Catalan Musings – p. 30

Page 61: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Inverse bijection

1 1 1 1 1

Scan ballot sequence from right-to-left. Connecteach 1 with leftmost available −1.

Some Catalan Musings – p. 30

Page 62: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Inverse bijection

1 1 1 1 1

Scan ballot sequence from right-to-left. Connecteach 1 with leftmost available −1.

Some Catalan Musings – p. 30

Page 63: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Inverse bijection

1 1 1 1 1

Scan ballot sequence from right-to-left. Connecteach 1 with leftmost available −1.

Some Catalan Musings – p. 30

Page 64: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Inverse bijection

1 1 1 1 1

Scan ballot sequence from right-to-left. Connecteach 1 with leftmost available −1.

Some Catalan Musings – p. 30

Page 65: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Inverse bijection

1 1 1 1 1

Scan ballot sequence from right-to-left. Connecteach 1 with leftmost available −1.

Some Catalan Musings – p. 30

Page 66: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Nonnesting matchings

64. Nonnesting matchings on [2n], i.e., ways ofconnecting 2n points in the plane lying on ahorizontal line by n arcs, each arc connectingtwo of the points and lying above the points, suchthat no arc is contained entirely below another

Some Catalan Musings – p. 31

Page 67: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Bijection to ballot sequences

Some Catalan Musings – p. 32

Page 68: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Bijection to ballot sequences

1 1 1 1 1

left endpoint: 1

right endpoint: −1

Some Catalan Musings – p. 32

Page 69: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Bijection to ballot sequences

1 1 1 1 1

left endpoint: 1

right endpoint: −1

Same rule as for noncrossing matchings!

Some Catalan Musings – p. 32

Page 70: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Inverse bijection

1 1 1 1 1

Some Catalan Musings – p. 33

Page 71: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Inverse bijection

1 1 1 1 1

Scan ballot sequence from right-to-left. Connecteach 1 with rightmost available −1.

Some Catalan Musings – p. 33

Page 72: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Inverse bijection

1 1 1 1 1

Scan ballot sequence from right-to-left. Connecteach 1 with rightmost available −1.

Some Catalan Musings – p. 33

Page 73: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Inverse bijection

1 1 1 1 1

Scan ballot sequence from right-to-left. Connecteach 1 with rightmost available −1.

Some Catalan Musings – p. 33

Page 74: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Inverse bijection

1 1 1 1 1

Scan ballot sequence from right-to-left. Connecteach 1 with rightmost available −1.

Some Catalan Musings – p. 33

Page 75: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Inverse bijection

1 1 1 1 1

Scan ballot sequence from right-to-left. Connecteach 1 with rightmost available −1.

Some Catalan Musings – p. 33

Page 76: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Inverse bijection

1 1 1 1 1

Scan ballot sequence from right-to-left. Connecteach 1 with rightmost available −1.

Some Catalan Musings – p. 33

Page 77: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Many interpretations

By changing the connection rule from the 1’s to−1’s, we get infinitely many combinatorialinterpretations of Catalan numbers in terms ofcomplete matchings. All have the same bijectionrule from the matchings to the ballot sequences!

Some Catalan Musings – p. 34

Page 78: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Many interpretations

By changing the connection rule from the 1’s to−1’s, we get infinitely many combinatorialinterpretations of Catalan numbers in terms ofcomplete matchings. All have the same bijectionrule from the matchings to the ballot sequences!

Some Catalan Musings – p. 34

Page 79: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Unexpected interpretations

92. n-tuples (a1, a2, . . . , an) of integers ai ≥ 2such that in the sequence 1a1a2 · · · an1, each aidivides the sum of its two neighbors

14321 13521 13231 12531 12341

Some Catalan Musings – p. 35

Page 80: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Unexpected interpretations

92. n-tuples (a1, a2, . . . , an) of integers ai ≥ 2such that in the sequence 1a1a2 · · · an1, each aidivides the sum of its two neighbors

14321 13521 13231 12531 12341

1 2 5 3 4 1

Some Catalan Musings – p. 35

Page 81: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Unexpected interpretations

92. n-tuples (a1, a2, . . . , an) of integers ai ≥ 2such that in the sequence 1a1a2 · · · an1, each aidivides the sum of its two neighbors

14321 13521 13231 12531 12341

1 |2 5 3 4 1

Some Catalan Musings – p. 35

Page 82: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Unexpected interpretations

92. n-tuples (a1, a2, . . . , an) of integers ai ≥ 2such that in the sequence 1a1a2 · · · an1, each aidivides the sum of its two neighbors

14321 13521 13231 12531 12341

1 |2 5 |3 4 1

Some Catalan Musings – p. 35

Page 83: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Unexpected interpretations

92. n-tuples (a1, a2, . . . , an) of integers ai ≥ 2such that in the sequence 1a1a2 · · · an1, each aidivides the sum of its two neighbors

14321 13521 13231 12531 12341

1||2 5 |3 4 1

Some Catalan Musings – p. 35

Page 84: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Unexpected interpretations

92. n-tuples (a1, a2, . . . , an) of integers ai ≥ 2such that in the sequence 1a1a2 · · · an1, each aidivides the sum of its two neighbors

14321 13521 13231 12531 12341

|1||2 5 |3 4 1

Some Catalan Musings – p. 35

Page 85: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Unexpected interpretations

92. n-tuples (a1, a2, . . . , an) of integers ai ≥ 2such that in the sequence 1a1a2 · · · an1, each aidivides the sum of its two neighbors

14321 13521 13231 12531 12341

|1||2 5 |3 4 1

|1||2 5 |3 4 1

→ UDUUDDUD

Some Catalan Musings – p. 35

Page 86: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Cores

hook lengths of a partition λ

15

6 2

8 5 4 1

2

1

2

3

p-core: a partition with no hook lengths equal to(equivalently, divisible by) p

(p, q)-core: a partition that is simultaneously ap-core and q-core

Some Catalan Musings – p. 36

Page 87: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

(n, n + 1)-cores

112. Integer partitions that are both n-cores and(n+ 1)-cores

∅ 1 2 11 311

Some Catalan Musings – p. 37

Page 88: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Constructing (5, 6)-cores

−5

−6

Some Catalan Musings – p. 38

Page 89: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Constructing (5, 6)-cores

−5

−1

3

19 14 4

13 8 −2 −7

7 2 −3 −8 −13

1 −4 −9 −14 −19

−6 9

Some Catalan Musings – p. 38

Page 90: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Constructing (5, 6)-cores

−5

−1

3

19 14 4

13 8 −2 −7

7 2 −3 −8 −13

1 −4 −9 −14 −19

−6 9

Some Catalan Musings – p. 38

Page 91: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Constructing (5, 6)-cores

−5

−1

3

19 14 4

13 8 −2 −7

7 2 −3 −8 −13

1 −4 −9 −14 −19

−6 9

1 2 3 4 7 9

Some Catalan Musings – p. 38

Page 92: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Constructing (5, 6)-cores

−5

−1

3

19 14 4

13 8 −2 −7

7 2 −3 −8 −13

1 −4 −9 −14 −19

−6 9

1 2 3 4 7 9

− 0 1 2 3 4 5

1 1 1 1 3 4

Some Catalan Musings – p. 38

Page 93: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

(4, 3, 1, 1, 1, 1) is a (5, 6)-core

4

1

1

2

3

4

7

9

2

3 1

Some Catalan Musings – p. 39

Page 94: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Inversions of permutations

inversion of a1a2 · · · an ∈ Sn: (ai, aj) such thati < j, ai > aj

Some Catalan Musings – p. 40

Page 95: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Inversions of permutations

inversion of a1a2 · · · an ∈ Sn: (ai, aj) such thati < j, ai > aj

186. Sets S of n non-identity permutations inSn+1 such that every pair (i, j) with 1 ≤ i < j ≤ nis an inversion of exactly one permutation in S

{1243, 2134, 3412}, {1324, 2314, 4123}, {2134, 3124, 4123}

{1324, 1423, 2341}, {1243, 1342, 2341}

Some Catalan Musings – p. 40

Page 96: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Inversions of permutations

inversion of a1a2 · · · an ∈ Sn: (ai, aj) such thati < j, ai > aj

186. Sets S of n non-identity permutations inSn+1 such that every pair (i, j) with 1 ≤ i < j ≤ nis an inversion of exactly one permutation in S

{1243, 2134, 3412}, {1324, 2314, 4123}, {2134, 3124, 4123}

{1324, 1423, 2341}, {1243, 1342, 2341}

due to R. Dewji, I. Dimitrov, A. McCabe, M.Roth, D. Wehlau, J. Wilson

Some Catalan Musings – p. 40

Page 97: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

A8. Algebraic interpretations

(a) Number of two-sided ideals of the algebra ofall (n− 1)× (n− 1) upper triangular matricesover a field

Some Catalan Musings – p. 41

Page 98: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

A8. Algebraic interpretations

(a) Number of two-sided ideals of the algebra ofall (n− 1)× (n− 1) upper triangular matricesover a field

* * ** * * *

* * ** * * *

* ** *

*

* *

0

Some Catalan Musings – p. 41

Page 99: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Quasisymmetric functions

Quasisymmetric function: a polynomialf ∈ Q[x1, . . . , xn] such that if i1 < · · · < in then

[xa1i1 · · ·xanin]f = [xa11 · · · xann ]f.

Some Catalan Musings – p. 42

Page 100: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Quasisymmetric functions

Quasisymmetric function: a polynomialf ∈ Q[x1, . . . , xn] such that if i1 < · · · < in then

[xa1i1 · · ·xanin]f = [xa11 · · · xann ]f.

(k) Dimension (as a Q-vector space) of the ringQ[x1, . . . , xn]/Qn, where Qn denotes the ideal ofQ[x1, . . . , xn] generated by all quasisymmetricfunctions in the variables x1, . . . , xn with 0constant term

Some Catalan Musings – p. 42

Page 101: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Quasisymmetric functions

Quasisymmetric function: a polynomialf ∈ Q[x1, . . . , xn] such that if i1 < · · · < in then

[xa1i1 · · ·xanin]f = [xa11 · · · xann ]f.

(k) Dimension (as a Q-vector space) of the ringQ[x1, . . . , xn]/Qn, where Qn denotes the ideal ofQ[x1, . . . , xn] generated by all quasisymmetricfunctions in the variables x1, . . . , xn with 0constant term

Difficult proof by J.-C. Aval, F. Bergeron and N.Bergeron, 2004.

Some Catalan Musings – p. 42

Page 102: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Diagonal harmonics

(i) Let the symmetric group Sn act on thepolynomial ring A = C[x1, . . . , xn, y1, . . . , yn] byw · f(x1, . . . , xn, y1, . . . , yn) =f(xw(1), . . . , xw(n), yw(1), . . . , yw(n)) for all w ∈ Sn.

Let I be the ideal generated by all invariants ofpositive degree, i.e.,

I = 〈f ∈ A : w·f = f for all w ∈ Sn, and f(0) = 0〉.

Some Catalan Musings – p. 43

Page 103: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Diagonal harmonics (cont.)

Then Cn is the dimension of the subspace of A/Iaffording the sign representation, i.e.,

Cn = dim{f ∈ A/I : w·f = (sgnw)f for all w ∈ Sn}.

Some Catalan Musings – p. 44

Page 104: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Diagonal harmonics (cont.)

Then Cn is the dimension of the subspace of A/Iaffording the sign representation, i.e.,

Cn = dim{f ∈ A/I : w·f = (sgnw)f for all w ∈ Sn}.Very deep proof by M. Haiman, 1994.

Some Catalan Musings – p. 44

Page 105: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Generalizations & refinements

A12. k-triangulation of n-gon: maximalcollections of diagonals such that no k + 1 ofthem pairwise intersect in their interiors

k = 1: an ordinary triangulation

superfluous edge: an edge between vertices atmost k steps apart (along the boundary of then-gon). They appear in all k-triangulations andare irrelevant.

Some Catalan Musings – p. 45

Page 106: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

An example

Example. 2-triangulations of a hexagon(superfluous edges omitted):

Some Catalan Musings – p. 46

Page 107: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Some theorems

Theorem (Nakamigawa,Dress-Koolen-Moulton). All k-triangulations ofan n-gon have k(n− 2k − 1) nonsuperfluousedges.

Some Catalan Musings – p. 47

Page 108: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Some theorems

Theorem (Nakamigawa,Dress-Koolen-Moulton). All k-triangulations ofan n-gon have k(n− 2k − 1) nonsuperfluousedges.

Theorem (Jonsson, Serrano-Stump). Thenumber Tk(n) of k-triangulations of an n-gon isgiven by

Tk(n) = det [Cn−i−j]ki,j=1

=∏

1≤i<j≤n−2k

2k + i+ j − 1

i+ j − 1.

Some Catalan Musings – p. 47

Page 109: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Representation theory?

Note. The number Tk(n) is the dimension of anirreducible representation of the symplecticgroup Sp(2n− 4).

Some Catalan Musings – p. 48

Page 110: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Representation theory?

Note. The number Tk(n) is the dimension of anirreducible representation of the symplecticgroup Sp(2n− 4).

Is there a direct connection?

Some Catalan Musings – p. 48

Page 111: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Number theory

A61. Let b(n) denote the number of 1’s in thebinary expansion of n. Using Kummer’s theoremon binomial coefficients modulo a prime power,show that the exponent of the largest power of 2dividing Cn is equal to b(n+ 1)− 1.

Some Catalan Musings – p. 49

Page 112: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Sums of three squares

Let f(n) denote the number of integers1 ≤ k ≤ n such that k is the sum of three squares(of nonnegative integers). Well-known:

limn→∞

f(n)

n=

5

6.

Some Catalan Musings – p. 50

Page 113: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Sums of three squares

Let f(n) denote the number of integers1 ≤ k ≤ n such that k is the sum of three squares(of nonnegative integers). Well-known:

limn→∞

f(n)

n=

5

6.

Let g(n) denote the number of integers1 ≤ k ≤ n such that Ck is the sum of threesquares. Then

limn→∞

g(n)

n=??.

Some Catalan Musings – p. 50

Page 114: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Sums of three squares

Let f(n) denote the number of integers1 ≤ k ≤ n such that k is the sum of three squares(of nonnegative integers). Well-known:

limn→∞

f(n)

n=

5

6.

A63. Let g(n) denote the number of integers1 ≤ k ≤ n such that Ck is the sum of threesquares. Then

limn→∞

g(n)

n=

7

8.

Some Catalan Musings – p. 50

Page 115: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Analysis

A65.(b)∑

n≥0

1

Cn= ??

Some Catalan Musings – p. 51

Page 116: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Analysis

A65.(b)∑

n≥0

1

Cn= 2 +

4√3π

27.

Some Catalan Musings – p. 51

Page 117: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Why?

A65.(a)

n≥0

xn

Cn=

2(x+ 8)

(4− x)2+

24√x sin−1

(

12

√x)

(4− x)5/2.

Some Catalan Musings – p. 52

Page 118: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Why?

A65.(a)

n≥0

xn

Cn=

2(x+ 8)

(4− x)2+

24√x sin−1

(

12

√x)

(4− x)5/2.

Consequence of

2(

sin−1 x

2

)2

=∑

n≥1

x2n

n2(

2nn

) .

Some Catalan Musings – p. 52

Page 119: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

Why?

A65.(a)

n≥0

xn

Cn=

2(x+ 8)

(4− x)2+

24√x sin−1

(

12

√x)

(4− x)5/2.

Consequence of

2(

sin−1 x

2

)2

=∑

n≥1

x2n

n2(

2nn

) .

n≥0

4− 3n

Cn= 2.

Some Catalan Musings – p. 52

Page 120: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

An outlier

Euler (1737):

e = 1 +2

1 +1

6 +1

10 +1

14 +1

18 +1

22 + · · ·

.

Convergents: 1, 3, 197 ,19371 , . . . .

Some Catalan Musings – p. 53

Page 121: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

A curious generating function

an: numerator of the nth convergent

a1 = 1, a2 = 3, a3 = 19, a4 = 193

Some Catalan Musings – p. 54

Page 122: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

A curious generating function

an: numerator of the nth convergent

a1 = 1, a2 = 3, a3 = 19, a4 = 193

1 +∑

n≥1

anxn

n!= exp

m≥0

Cmxm+1

Some Catalan Musings – p. 54

Page 123: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

The last slide

Some Catalan Musings – p. 55

Page 124: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

The last slide

Some Catalan Musings – p. 55

Page 125: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

The last slide

Some Catalan Musings – p. 55

Page 126: Some Catalan Musings - MIT Mathematicsrstan/transparencies/catalan2.pdfSome Catalan Musings – p. 7. More history, via Igor Pak Euler (1751): conjectured formula for number C n of

The last slide

Some Catalan Musings – p. 55