solvent recovery from abe solutions applying ......martin miltner, florian kirchbacher, antonia rom,...

21
Martin Miltner, Florian Kirchbacher, Antonia ROM, Walter WUKOVITS, Michael HARASEK, Anton FRIEDL Technische Universität Wien, Vienna, Austria 5 th PVVPMD Conference, Torun, 20-23 June 2017 www.waste2fuels.eu Grant agreement no: 654623 H2020 LCE-11-2015 Solvent Recovery From ABE Solutions Applying Pervaporation Under Realistic Process Conditions

Upload: others

Post on 29-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Martin Miltner, Florian Kirchbacher, Antonia ROM, Walter WUKOVITS, Michael HARASEK, Anton FRIEDL

    Technische Universität Wien, Vienna, Austria

    5th PVVPMD Conference, Torun, 20-23 June 2017

    w w w . w a s t e 2 f u e l s . e u

    Grant agreement no: 654623

    H 2 0 2 0 – L C E - 1 1 - 2 0 1 5

    Solvent Recovery From ABE Solutions Applying Pervaporation Under Realistic Process Conditions

  • www.waste2fuels.eu2

    Copyright © Waste2Fuels Consortium

    Objectives

    WASTE2FUELS aims to:

    • Develop next generation biofuels technologies

    • Contribute to a decentralized energy production

    • Produce bio-butanol as sustainable alternative fuel

    • Enlarge the current biomass feedstock basis

    • Convert unavoidable agrofood waste streams (AFW)

  • www.waste2fuels.eu3

    Copyright © Waste2Fuels Consortium

    Agenda

    Butanol and ABE fermentation

    Energy demand for separation and dehydration

    Composition of typical ABE fermentation broth

    Experimental procedure

    Analysis of influencing factors on pervaporation

    • Temperature

    • Glucose content

    • Salt content

    Comparison of membrane materials

    Summary and Outlook

  • www.waste2fuels.eu4

    Copyright © Waste2Fuels Consortium

    ABE Fermentation

    Pro Butanol Contra Butanol

    High energy content Low productivity

    Low water absorption Product inhibition at 20g/l

    Low vapour pressure

    Good blending ability

    Low corrosivity

  • www.waste2fuels.eu5

    Copyright © Waste2Fuels Consortium

    Solvent recovery from fermentation

    1. StageAcetogenic

    2. StageSolventogenic Downstream to distillation

    In-situ product recovery

    Inhibition level

    Co

    nce

    ntr

    atio

    n

    Stages of fermentation and product recovery

    Mas

    s fr

    acti

    on

    of

    Bu

    tan

    oli

    n v

    apo

    ur

    Mass fraction of Butanol in liquid

    VLE Butanol/Water:

    non-ideal behaviour

    Miscibility gap Butanol/Water

    High fugacity at low concentrations

    Ideal for thermal separation process

  • www.waste2fuels.eu6

    Copyright © Waste2Fuels Consortium

    Energy demand

    Energy content Butanol: 35 MJ/kg

    Energy demand for separation and dehydration (BuOH 2 % 98 %): Conventional Rectification: 79,5 MJ/kg Gas Stripping/Rectification: 14-31 MJ/kg Extraction/Rectification: 4 – 6 MJ/kg Pervaporation/Rectification: 4 – 8 MJ/kg

    Source: Rom, Miltner, Wukovits, Friedl; Chemical Engineering and Processing 104 (2016) 201-211

  • www.waste2fuels.eu7

    Copyright © Waste2Fuels Consortium

    Composition of fermentation broth

    ComponentConcentration

    [g/l]

    Butanol 8 – 15

    Acetone 4 - 8

    Ethanol 1 - 2

    Residual sugar up to 50 (depending)

    Acetic acid 0.85

    Propionic acid 1.76

    Butyric acid 0.44

    Sources:Universita degli studi di Napoli Federico II, Italy; University of Natural Resources and Life Sciences, Austria

    ComponentConcentration

    [g/l]

    NH4Cl 2.0

    K2HPO4 0.25

    KH2PO4 0.25

    MgSO4 0.2

    FeSO4 0.01

    MnSO4 0.01

    Typical composition of real ABE fermentate from model substrates

    Organic compounds strongly depending on fermentation design and microbial strain

  • www.waste2fuels.eu8

    Copyright © Waste2Fuels Consortium

    Experimental setup

    Cross-flow pervaporation cell

    Flat sheet membrane (0.0144m²)

    POMS membrane from HZG

    Hollow fiber modules possible

    Feed: 100l/h flowrate, 25 - 70°C temperature

    10mbar(a) permeate pressure

    Liquid nitrogen condensation

    Composition analysis by GC-FID

  • www.waste2fuels.eu9

    Copyright © Waste2Fuels Consortium

    Temperature dependence

  • www.waste2fuels.eu10

    Copyright © Waste2Fuels Consortium

    Temperature dependence

    Transmembrane fluxes significantly higher at elevated temperatures

    Enrichment similar at all analysed temperatures (uncertainties)

    Permeance of BuOH is decreasing, selectivity stays constant

    Product recovery at fermentation temperature is favoured

  • www.waste2fuels.eu11

    Copyright © Waste2Fuels Consortium

    Glucose dependence

  • www.waste2fuels.eu12

    Copyright © Waste2Fuels Consortium

    Glucose dependence

    No influence of glucose content at reasonable levels (0 – 50g/l)

    Slight decrease of permeances at very high glucose content (200g/l):

    BuOH: -15% AcO: -23% EtOH: -17% Water: -16%

    No fouling detected

  • www.waste2fuels.eu13

    Copyright © Waste2Fuels Consortium

    Salt dependence

  • www.waste2fuels.eu14

    Copyright © Waste2Fuels Consortium

    Salt dependence

    No influence of NH4Cl content at levels expected in fermentation broth

    No fouling and scaling detected

  • www.waste2fuels.eu15

    Copyright © Waste2Fuels Consortium

    Permeances

  • www.waste2fuels.eu16

    Copyright © Waste2Fuels Consortium

    Selectivities

    BuOH

    AcO

    EtOH

  • www.waste2fuels.eu17

    Copyright © Waste2Fuels Consortium

    Performance indicators

    Membrane Type

    Separation factor i/j[-]

    PSIi[kg/m².h]

    BuOH/W AcO/W EtOH/W BuOH AcO EtOH

    POMS(HZG)

    33.0(±5.6)

    51.2(±9.3)

    9.0(±1.4)

    2.83(±1.6)

    2.76(±1.3)

    0.04(±0.02)

    PDMS(Sulzer)

    29.0(±4.3)

    53.3(±8.5)

    9.2(±1.1)

    3.31(±1.3)

    4.59(±1.9)

    0.06(±0.02)

    Membrane Type

    Permeancei[kmol/m².h.bar]

    Selectivity P i/j[-]

    BuOH AcO EtOH W BuOH/W AcO/W EtOH/W

    POMS(HZG)

    0.67(±0.19)

    0.26(±0.05)

    0.21(±0.03)

    0.27(±0.06)

    2.46(±0.50)

    0.99(±0.21)

    0.79(±0.15)

    PDMS(Sulzer)

    1.04(±0.29)

    0.51(±0.15)

    0.40(±0.07)

    0.46(±0.07)

    2.37(±1.17)

    1.16(±0.65)

    0.89(±0.31)

    PDMS analysis has been performed under the Austrian research project KASAV, grant No 838708

  • www.waste2fuels.eu18

    Copyright © Waste2Fuels Consortium

    Summary

    Solvent enrichment in the permeate:

    Taking advantage of phase separation behavior (organic phase with 80% BuOH, aqueous phase with 8%)

    Reduction of energy demand for extraction & dehydration

    Influence of secondary components in fermentation broth

    Feed:BuOH 1.5wt%AcO 0.75wt%EtOH 0.25wt%Water 97.5wt%

    Permeate:BuOH 31.5wt%AcO 24.0wt%EtOH 1.5wt%Water 43.0wt%

  • www.waste2fuels.eu19

    Copyright © Waste2Fuels Consortium

    Outlook

    Resistance to acidic fermentation broth conditions

    Influence of organic acids (acetic, propionic, butyric)

    Performance with real fermentation broth

    Further comparison to other membrane materials:

    • Flat sheet PDMS and POMS from different vendors

    • Hollow fiber module (interesting for upscaling)

    Process simulation:

    • Development and parameterization of rigorous model

    • Validation of model (chemometrics)

    • Simulation of different downstream process options

  • beyond the advanced precision agriculture/farming systems.

    Partners

    www.waste2fuels.euThis project has received funding from the European Union’s Horizon 2020 researchand innovation programme under grant agreement No 654623

    Contact: [email protected], [email protected]

    Thanks for your attention!

    https://twitter.com/Waste2Fuelshttps://twitter.com/Waste2Fuelshttps://www.linkedin.com/groups/4350866https://www.linkedin.com/groups/4350866mailto:[email protected]:[email protected]

  • www.waste2fuels.eu21

    Copyright © Waste2Fuels Consortium

    Formula & Definitions

    Driving force - Partial pressure difference

    Selectivity

    Transmembrane component flux

    Separation factor

    Pervaporation separation index

    𝑁𝑖 = Π𝑖 ∗ 𝑝𝑖𝑠𝑎𝑡𝛾𝑖𝑥𝑖 − 𝑝𝑝𝑒𝑟𝑚𝑦𝑖

    𝛼𝑖𝑗 =Π𝑖Π𝑗

    𝐽𝑖 =𝑚𝑖𝐴𝑡

    𝛽 =𝑤𝑓𝑖𝑤𝑝𝑗

    𝑤𝑓𝑗𝑤𝑝𝑖

    𝐴 𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 𝑎𝑟𝑒𝑎 [𝑚²]

    𝑡 𝑡𝑖𝑚𝑒 [ℎ]

    𝑤𝑓 , 𝑤𝑝 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑓𝑒𝑒𝑑 𝑎𝑛𝑑 𝑝𝑒𝑟𝑚𝑒𝑎𝑡 [−]

    𝐽𝑖 𝑡𝑟𝑎𝑛𝑠𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 𝑓𝑙𝑢𝑥 𝑘𝑔 𝑚2ℎ

    𝑚𝑖 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑖 [𝑘𝑔]

    𝑝𝑖𝑠𝑎𝑡 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 [𝑏𝑎𝑟]

    𝛾𝑖 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 [−]

    𝑥𝑖 , 𝑦𝑖 𝑚𝑜𝑙𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑙/𝑣 𝑝ℎ𝑎𝑠𝑒 [−]

    𝑁𝑖 𝑡𝑟𝑎𝑛𝑠𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 𝑓𝑙𝑢𝑥 𝑘𝑚𝑜𝑙 𝑚2ℎ

    Π𝑖 𝑃𝑒𝑟𝑚𝑒𝑎𝑛𝑐𝑒 [𝑘𝑚𝑜𝑙/𝑚2ℎ𝑏𝑎𝑟]

    𝑃𝑆𝐼𝑖 = 𝐽𝑖 ∗ 𝛼𝑖𝑗 − 1