solutions to axler linear algebra done right pdf

99
7/21/2019 Solutions to Axler Linear Algebra Done Right PDF http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 1/99 Solutions to Axler, Linear Algebra Done Right 2nd Ed. Edvard Fagerholm edvard.fagerholm@¦helsinki. [gmail.com¦ Beware of errors. I read the book and solved the exercises during s pring break (one week), so the problems were solved in a hurry. However, if you do nd better or interesting solutions to the problems, I'd still like to hear about them. Also please don't pu t this on the Internet to encourage copying homework solutions... 1 Vector Spaces 1. Assuming that C is a eld, write z = a + bi. Then we have 1/z = z/zz = z/[z[ 2 . Plugging in the numbers we get 1/(a + bi) = a/(a 2 + b 2 ) - bi/(a 2 + b 2 ) = c + di. A straightforward calculation of (c+di)(a+bi) = 1 shows that this is indeed an inv erse. 2. Just calculate ((1 + Ö 3)/2) 3 . 3. We have v + (-v) = 0, so by the uniqueness of the additive inv erse (prop. 1.3) -(-v) = v. 4. Choose a ,= 0 and v ,= 0. Then assuming av = 0 we get v = a -1 av = a -1 0 = 0. Contradiction. 5. Denote the set in question by A in each part. (a) Let v, w Î A, v = (x 1 , x 2 , x 3 ), w = (y 1 , y 2 , y 3 ). Then x 1  + 2x 2  + 3x 3

Upload: aa22144

Post on 05-Mar-2016

119 views

Category:

Documents


6 download

DESCRIPTION

g

TRANSCRIPT

Page 1: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 1/99

Solutions to Axler, Linear Algebra Done Right 2nd Ed.Edvard Fagerholmedvard.fagerholm@¦helsinki.[gmail.com¦Beware of errors. I read the book and solved the exercises during spring break (oneweek), so the problems were solved in a hurry. However, if you do nd better orinterestingsolutions to the problems, I'd still like to hear about them. Also please don't put this onthe Internet to encourage copying homework solutions...1 Vector Spaces1. Assuming that C is a eld, write z = a + bi. Then we have 1/z= z/zz = z/[z[2.Plugging in the numbers we get 1/(a + bi) = a/(a2+ b2) - bi/(a2+ b2

) = c + di. Astraightforward calculation of (c+di)(a+bi) = 1 shows that this is indeed an inverse.2. Just calculate ((1 +Ö 3)/2)3.3. We have v + (-v) = 0, so by the uniqueness of the additive inverse (prop. 1.3)-(-v) = v.4. Choose a ,= 0 and v ,= 0. Then assuming av = 0 we get v = a-1

av = a-10 = 0.Contradiction.5. Denote the set in question by A in each part.(a) Let v, w Î A, v = (x1, x2, x3), w = (y1

, y2, y3). Then x1 + 2x2 + 3x3

Page 2: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 2/99

  = 0 andy1 + 2y2 + 3y3 = 0, so that 0 = x1 + 2x2 + 3x3 + y1 + 2y2 + 3y3 = (x1 + y1) +

2(x2 +y2) +3(x3 +y3), so v +w Î A. Similarly 0 = a0 = ax1 +2ax2 +3ay

3, soav Î A. Thus A is a subspace.(b) This is not a subspace as 0 ,Î A.(c) We have that (1, 1, 0) Î A and (0, 0, 1) Î A, but (1, 1, 0)+(0, 0, 1) = (1, 1, 1) ,Î A,so A is not a subspace.(d) Let (x1, x2, x3

), (y1, y2, y3) Î A. If x1  = 5x3

Page 3: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 3/99

  and y1  = 5y3, then ax1  = 5ax3,so a(x1, x2, x3) Î A. Similarly x1 + y1  = 5(x3 + y3), so that (x

1, x2, x3) +(y1, y2, y3) Î A. Thus A is a subspace.

16. Set U = Z2.7. The set ¦(x, x) Î R2[ x Î R¦ Ȧ(x, -x) Î R2[ x Î R¦ is closed under multiplicationbut is trivially not a subspace ((x, x) + (x, -x) = (2x, 0) doesn't belong to it unlessx = 0).8. Let ¦V

i¦ be a collection of subspaces of V . Set U = ÇiVi. Then if u, v Î U. Wehave that u, v Î Vi  for all i because Vi

Page 4: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 4/99

  is a subspace. Thus au Î Vi  for all i, so thatav Î U. Similarly u + v Î Vi for all i, so u + v Î U.9. Let U, W ⊂ V be subspaces. Clearly if U ⊂ W or W ⊂ U, then U È W is clarly asubspace. Assume then that U ,⊂ W and W ,⊂ U. Then we can choose u Î U ¸ Wand w Î W ¸ U. Assuming that U È W is a subspace we have u + w Î U È W.Assuming that u + w ⊂ U we get w = u + w -u ⊂ U. Contradiction. Similarly foru + w Î W. Thus U È W is not a subspace.10. Clearly U = U + U as U is closed under addition.11. Yes and yes. Follows directly from commutativity and associativity of vector addition.12. The zero subspace, ¦0¦, is clearly an additive identity. Assumingthat we haveinverses, then the whole space V should have an inverse U such that U + V= ¦0¦.Since V + U = V this is clearly impossible unless V is the trivial vectorspace.13. Let W = R2. Then for any two subspaces U

1, U2  of W we have U1 + W = U2 + W,so the statement is clearly false in general.14. Let W = ¦p Î T(F) [ p =

ni=0

 aixi, a2 = a5 = 0¦.15. Let V = R2. Let W = ¦(x, 0) Î R2

[ x Î R¦. Set U1  = ¦(x, x) Î R2[ x Î R¦,U2  = ¦(x, -x) Î R2[ x Î R¦. Then it's easy to see that U

Page 5: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 5/99

1 + W = U2 + W = R2,but U1 ,= U2, so the statement is false.2 Finite

 

Dimensional Vector Spaces1. Let un = vn and ui = vi+vi+1, i = 1, . . . , n-1. Now we see that vi

 =nj=i ui. Thusvi Î span(u1, . . . , un

), so V = span(v1, . . . , vn) ⊂ span(u1, . . . , un).2. From the previous exercise we know that the span is V . As (v1, . . . , vn

) is a linearlyindependent spanning list of vectors we know that dimV = n. The claim now followsfrom proposition 2.16.23. If (v1 + w, . . . , vn + w) is linearly dependent, then we can write

Page 6: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 6/99

0 = a1(v1 + w) + . . . + an(vn + w) =n

i=1aivi + wn

i=1ai,where a

i ,= 0 for some i. Now ni=1 ai ,= 0 because otherwise we would get0 =n

i=1a

ivi + wn

i=1ai =n

i=1

aiviand by the linear independence of (vi) we would get ai  = 0, ∀i contradicting ourassumption. Thus

Page 7: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 7/99

w = - _   n

i=1ai

 _ -1n

i=1aivi,so w Î span(v1, . . . , vn).4. Yes, multiplying with a nonzero constant doesn't change the degree of a polynomial

and adding two polynomials either keeps the degree constant or makesit the zeropolynomial.5. (1, 0, . . .), (0, 1, 0, . . .), (0, 0, 1, 0, . . .), . . . is trivially linearly independent. Thus F¥isn't nite

 

dimensional.6. Clearly T(F) is a subspace which is innite  dimensional.7. Choose v1 Î V . Assuming that V is innite

 

dimensional span(v1) ,= V . Thus we can

choose v2 Î V ¸ span(v1). Now continue inductively.8. (3, 1, 0, 0, 0), (0, 0, 7, 1, 0), (0, 0, 0, 0, 1) is clearly linearly independent. Let (x1, x2, x3, x

4, x5) ÎU. Then (x1, x2, x3

Page 8: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 8/99

, x4, x5) = (3x2, x2, 7x4, x4, x5) = x2(3, 1, 0, 0, 0)+x4(0, 0, 7, 1, 0)+x5(0, 0, 0, 0, 1), so the vectors span U. Hence, they form a basis.9. Choose the polynomials (1, x, x2

-x3, x3). They clearly span T3(F) and form a basisby proposition 2.16.10. Choose a basis (v1, . . . , vn). Let U

i  = span(vi). Now clearly V = U1 Å . . . Å Un  byproposition 2.19.11. Let dimU = n = dimV . Choose a basis (u1, . . . , un

) for U and extend it to abasis (u1, . . . , un, v1, . . . , vk) for V . By assumption a basis for V has length n, so

Page 9: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 9/99

(u1, . . . , un) spans V .312. Let U = span(u0, . . . , um). As U ,= Tm(F) we have by the previous exercise thatdimU < dimTm(F) = m + 1. As (p0, . . . , pm) is a spanning list of vectors havinglength m + 1 it is not linearly independent.13. By theorem 2.18 we have 8 = dimR8= dimU + dimW - dim(U Ç W) = 4 + 4 -

dim(U ÇW). Since U +W = R8, we have that dim(U ÇW) = 0 and the claim follows14. Assuming that U Ç W = ¦0¦ we have by theorem 2.18 that9 = dimR9= dimU + dimW -dim(U Ç W) = 5 + 5 -0 = 10.Contradiction.15. Let U1 = ¦(x, 0) Î R2[ x Î R¦, U

2 = ¦(0, x) Î R2[ x Î R¦, U3 = ¦(x, x) Î R2[ x ÎR¦. Then U1Ç U2 = ¦0¦, U

1Ç U3 = ¦0¦ and U2Ç U3 = ¦0¦. Thus the left

 

hand sideof the equation in the problem is 2 while the right

 

hand side is 3. Thus we have a

Page 10: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 10/99

counterexample.16. Choose a basis (ui1, . . . , uini) for each Ui. Then the list of vectors (u11, . . . , umnm) haslength dimU1 + . . . + dimUm and clearly spans U1 + . . . + U

m proving the claim.17. By assumption the list of vectors (u11, . . . , umnm) from the proof of the previous exerciseis linearly independent. Since V = U1+. . .+Un

 = span(u11, . . . , umnm) the claim follows.3 Linear Maps1. Any v ,= 0 spans V . Thus, if w Î V , we have w = av for some a Î F. Now T(v) = avfor some a Î F, so for w = bv Î V we have T(w) = T(bv) = bT(v) = bav = aw. ThusT is multiplication by a scalar.2. Dene f by e.g.

f(x, y) = _   x, x = y0, x ,= y  ,then clearly f satises the condition, but is non

 

linear.3. To dene a linear map it's enough to dene the image of the elements  of a basis.Choose a basis (u1

Page 11: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 11/99

, . . . , um) for U and extend it to a basis (u1, . . . , um, v1, . . . , vn) ofV . If S Î L(U, W). Choose some vectors w1, . . . , wn Î W. Now dene T Î L(V, W)by T(ui) = S(ui), i = 1, . . . , m and T(vi) = wi

, i = 1, . . . , n. These relations denethe linear map and clearly T|U  = S.4. By theorem 3.4 dimV = dimnull T +dimrange T. If u ,Î null T, then dimrange T >0, but as dimrange T £ dimF = 1 we have dimrange T = 1 and it follows that4dimnull T = dimV -1. Now choose a basis (u1, . . . , un

) for null T. By our assumption(u1, . . . , un, u) is linearly independent and has length dimV . Hence, it's a basis forV . This implies thatV = span(u1, . . . , un, u) = span(u1

, . . . , un) Åspan(u) = null T Ŧau [ a Î F¦.5. By linearity 0 = ni=1 aiT(v

Page 12: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 12/99

i) = ni=1 T(aivi) = T(

ni=1 aivi). By injectivity wehave ni=1 ai

vi  = 0, so that ai  = 0 for all i. Hence (T(v1), . . . , T(vn)) is linearlyindependent.6. If n = 1 the claim is trivially true. Assume that the claim  is true for n = k.If S

1, . . . , Sk+1  satisfy the assumptions, then S1  Sk  is injective by the inductionhypothesis. Let T = S1  Sk. If u ,= 0, then by injectivity of S

k+1  we Sk+1u ,= 0and by injectivity of T we have TSk+1u ,= 0. Hence TSk+1 is injective and the claimfollows.

Page 13: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 13/99

7. Let w Î W. By surjectivity of T we can nd a vector v Î V suchthat T(v) = w.Writing v = a1v1 + . . . + anvn we get w = T(v) = T(a1v1 + . . . + anvn) = a1T(v1) +. . . + a

nT(vn) proving the claim.8. Let (u1, . . . , un) be a basis for null T and extend it to a basis (u1, . . . , un, v

1, . . . , vk)of V . Let U := span(v1, . . . , vk). Then by construction null T Ç U = ¦0¦ and for anarbitrary v Î V we have that v = a1u1

 + . . . + anun + b1vn + . . . + bk

Page 14: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 14/99

vk, so thatT(v) = b1T(v1) + . . . + bkT(vk).Hence range T = T(U).9. It's easy to see that (5, 1, 0, 0), (0, 0, 7, 1) is a basis for null T (seeexercise 2.8). Hencedimrange T = dimF4- dimnull T = 4 - 2 = 2. Thus range T = F2, so that T issurjective.10. It's again easy to see that (3, 1, 0, 0, 0), (0, 0, 1, 1, 1) is a basis of null T. Hence, we getdimrange T = dimF

5-dimnull T = 5 -2 = 3 which is impossible.11. This follows trivially from dimV = dimnull T + dimrange T.12. From dimV = dimnull T +dimrange T it follows trivially that if we have a surjectivelinear map T Î L(V, W), then dimV ³ dimW. Assume then that dimV ³ dimW.Choose a basis (v1, . . . , vn) for V and a basis (w1, . . . , w

m) for W. We can denea linear map T Î L(V, W) by letting T(vi) = wi, i = 1, . . . , m, T(vi) = 0, i =m + 1, . . . , n. Clearly T is surjective.513. We have that dimrange T £ dimW. Thus we get dimnull T = dimV -dimrange T ³dimV -dimW. Choose an arbitrary subspace U of V of such that dimU ³ dimV -

dimW. Let (u1, . . . , un) be a basis of U and extend it to a basis (u1, . . . , un, v1

Page 15: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 15/99

, . . . , vk)of V . Now we know that k £ dimW, so let (w1, . . . , wm) be a basis for W. Denea linear map T Î L(V, W) by T(ui) = 0, i = 1, . . . , n and T(vi) = wi, i = 1, . . . , k.Clearly null T = U.14. Clearly if we can nd such a S, then T is injective. Assume then thatT is injective.Let (v1, . . . , vn) be a basis of V . By exercise 5 (T(v1

), . . . , T(vn)) is linearly inde

 

pendent so we can extend it to a basis (T(v1), . . . , T(vn), w1, . . . , wm) of W. DeneS Î L(W, V ) by S(T(v

i)) = vi, i = 1, . . . , n and S(wi) = 0, i = 1, . . . , m. ClearlyST = IV .15. Clearly if we can nd such a S, then T is surjective. Otherwise let (v1, . . . , vn

) be abasis of V . By assumption (T(w1), . . . , T(wn)) spans W. By the linear dependencelemma we can make the list of vectors (T(w1), . . . , T(wn

Page 16: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 16/99

)) a basis by removing somevectors. Without loss of generality we can assume that the rst m vectors formthebasis (just permute the indices). Thus T(w1), . . . , T(wm)) is a basis of W. Denethe map S Î L(W, V ) by S(T(wi)) = wi, i = 1, . . . , m. Now clearly TS = IW.16. We have that dimU = dimnull T + dimrange T £ dimnull T + dimV . SubstitutingdimV = dimnull S + dimrange S and dimU = dimnull ST + dimrange ST we getdimnull ST + dimrange ST £ dimnull T + dimnull S + dimrange S.Clearly dimrange ST £ dimrange S, so our claim follows.17. This is nothing but pencil pushing. Just take arbitrary matrices  satisfying the re

 

quired dimensions and calculate each expression and the equalities easily fall out.

18. Ditto.19. Let V = (x1, . . . ,n ). From proposition 3.14 we have that/(Tv) = /(T)/(v) =

 _ ¸

 _ a1,1  a

1,n...  ...  ...am,1  a

m,n _ ¸

 _  _ ¸

 _ x1.

Page 17: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 17/99

.

.xn

 _ ¸

 _ = _ ¸

 _ a1,1x1 + . . . + a1,nxn...am,1x

1 + . . . + am,nxn

 _ ¸

 _ which shows that Tv = (a1,1x1 + . . . + a

1,nxn, . . . , am,1x1 + . . . + am,nxn).20. Clearly dimMat(n, 1, F) = n = dimV . We have that Tv = 0 if

and only if v =0v1 + . . . , 0vn = 0, so null T = ¦0¦. Thus T is injective and hence invertible.621. Let ei denote the n 1 matrix with a 1 in the ith row and 0 everywhere else. Let T

Page 18: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 18/99

be the linear map. Dene a matrix A := [T(e1), . . . , T(en)]. Now it's trivial to verifythatAei = T(ei).By distributivity of matrix multiplication (exercise 17) we get for an arbitrary  v =a1e1 + . . . + anen thatAv = A(a1

e1 + . . . + anen) = a1Ae1 + . . . + anAe

n= a1T(e1) + . . . + anT(en) = T(a1e1

 + . . . + anen),so the claim follows.22. From theorem 3.21 we have ST invertible Û ST bijective Û S and T bijective Û Sand T invertible.23. By symmetry it's sucient to prove this in one direction only. Thus if TS =

Page 19: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 19/99

I. ThenST(Su) = S(TSu) = Su for all u. As S is bijective Su goes through the whole spaceV as u varies, so ST = I.24. Clearly TS = ST if T is a scalar multiple of the identity.For the other directionassume that TS = ST for every linear map S Î L(V ).25. Let T Î L(F2) be the operator T(a, b) = (a, 0) and S Î L(F2) the operator S(a, b) =(0, b). Then neither one is injective and hence invertible by 3.21. However,  T + S isthe identity operator which is trivially invertible. This can be trivially generalizedto spaces arbitrary spaces of dimension ³ 2.26. WriteA :=

 _ ¸

 _ a1,1

  a1,n...  ...  ...an,1

  an,n _ ¸

 _, x = _ ¸

 _ x1...

xn _ ¸

 _.Then the system of equations in a) reduces to Ax = 0. Now A denes a linear mapfrom Mat(n, 1, F) to Mat(n, 1, F). What a) states is now that the map is injectivewhile b) states that it is surjective. By theorem 3.21 these are equivalent.

Page 20: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 20/99

4 Polynomials1. Let l1, . . . , lm  be m distinct numbers and k1, . . . , km  > 0 such that their sum is n.Then mi=1(x -li)kiis c

 

ear 

y such a po 

ynomia 

.72. Let pi(x) =

 j=i(x - zj), so that deg pi  = m. Now we have that pi(zj) ,= 0 if andon

 

y if i = j. Let ci

 = pi(zi). Denep(x) =m+1

i=1wic-1

i  pi(x).Now deg p = m and p c

 

ear 

y p(zi) = wi.3. We on

 

y need to prove uniqueness as existence is theorem 4.5. Let s

Page 21: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 21/99

, r

 be other suchpo

 

ynomia 

s. Then we get that0 = (s -s

)p + (r -r

) Û r

 -r = (s -s

)pWe know that for any po

 

ynomia 

s p ,= 0 ,= q we have deg pq =deg p + deg q.Assuming that s ,= s

  we have deg(r

 - r) < deg(s - s

)p which is impossib 

e. Thuss = s

 imp 

ying r = r

.4. Let l be a root of p. Thus we can write p(x) = (x -l)q(x). Now we getp

(x) = q(x) + (x -l)q

(x).Thus l is a root of p

  if and on 

y if l is a root of q i.e. l is a mu 

tip 

e root. The

statement fo  

ows.5. Let p(x) = ni=0 aixi, where ai Î R. By the fundamenta

 

  theorem of ca 

cu 

us wehave a comp

 

ex root z. By proposition 4.10 z is a 

so a root of p. Then

z and z areroots of equa 

 mu 

tip 

icity (divide by (x - z)(x - z) which is rea 

). Thus if we haveno rea

 

 roots we have an even number of roots counting mu 

tip 

icity, but the numberof roots counting mu

 

tip 

icity is deg p hence odd. Thus p has a rea 

 root.5 Eigenva

 

ues and Eigenvectors1. An arbitrary e

 

ement of U1+. . . +U

Page 22: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 22/99

n is of the form u1+. . . +un where ui Î Ui. Thuswe get T(u1 + . . . + un) = T(u1) + . . . + T(un) Î U1 + . . . + Un  by the assumptionthat T(u

i) Î Ui for a

 

  i.2. Let V = ÇiUi where Ui is invariant under T for a

 

 i. Let v Î V , so that v Î Ui for a

 

i. Now T(v) Î Ui  for a

 

  i by assumption, so T(v) Î ÇUi = V . Thus V is invariantunder T.3. The c

 

ame is c 

ear 

y true for U = ¦0¦ or U = V . Assume that ¦0¦ ,= U ,=V . Let(u1, . . . , un) be a basis for U and extend it to a basis (u

1, . . . , un, v1, . . . , vm). Byour assumption m ³ 1. Dene a

 

inear operator by T(ui

Page 23: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 23/99

) = v1, i = 1, . . . , n andT(vi) = v1, i = 1, . . . , m. Then c

 

ear 

y U is not invariant under T.84. Let u Î nu

 

(T -lI), so that T(u) -lu = 0. ST = TS gives us0 = S(Tu -lu) = STu -lSu = TSu -lSu = (T -lI)Su,so that Su Î nu

 

(T -lI).5. C

 

ear 

y T(1, 1) = (1, 1), so that 1 is an eigenva 

ue. A 

soT(-1, 1) = (1, -1) =-(-1, 1) so -1 is another eigenva

 

ue. By coro  

ary 5.9 these are a  

 eigenva 

ues.6. We easi

 

y see that T(0,0,1)=(0,0,5), so that 5 is an eigenva 

ue.  A

 

so T(1, 0, 0) =(0, 0, 0) so 0 is an eigenva

 

ue. Assume that l ,= 0 and T(z1, z2, z3) = (2z

2, 0, 5z3) =l(z1, z2, z3). From the assumption l ,= 0 we get z2  = 0, so the equation is of the

form (0, 0, 5z3) = l(z1, 0, z3). Again we see that z1  = 0 so we get the equation(0, 0, 5z3) = l(0, 0, z3

). Thus 5 is the on 

y non 

zero eigenva 

ue.7. Notice that the range of T is the subspace ¦(x, . . . , x) Î Fn[ x Î F¦ and has dimension1. Thus dimrange T = 1, so dimnu

 

 T = n - 1. Assume that T has two distincteigenva

 

ues l1, l2

Page 24: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 24/99

  and assume that l1 ,= 0 ,= l2. Let v1, v2  be the correspondingeigenvectors, so by theorem 5.6 they are

 

inear 

y independent. Then v1, v2 ,Î nu

 

 T,but dimnu

 

 T = n - 1, so this is impossib 

e. Hence T has at most one non

 

zeroeigenva

 

ue hence at most two eigenva 

ues.Because T is not injective we know that 0 is an eigenva

 

ue.We a

 

so see thatT(1, . . . , 1) = n(1, . . . , 1), so n is another eigenva

 

ue. By the  previous paragraph,these are a

 

 eigenva 

ues of T.8. Let a Î F. Now we have T(a, a2

, a3, . . .) = (a2, a3, . . .) = a(a, a2, . . .), so every a Î Fis an eigenva

 

ue.9. Assume that T has k +2 distinct eigenva

 

ues l1, . . . , l

k+2 with corresponding eiven 

vectors v1, . . . , vk+2. By theorem 5.6 these eigenvectors are

 

inear 

y independent. NowTvi  = livi

  and dimspan(Tv1, . . . , Tvk+2) = dimspan(l1v1, . . . , lk+2

Page 25: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 25/99

vk+2) ³ k + 1(it's k + 2 if a

 

  li  are non

 

zero, otherwise k + 1). This is a contradiction asdimrange T = k and span(l1v1, . . . , lk+2vk+2) ⊂ range T.10. As T = (T-1)-1we only need to show this in one direction. If T is invertible, then0 is not an eigenvalue. Now let l be an eigenva

 

ue of T and v the  correspondingeigenvector. From Tv = lv we get that T-1

lv = lT-1v = v, so that T-1v = l-1v.11. Let l be an eigenva  ue of TS and v the corresponding eigenvector. Then we getSTSv = Slv = lSv, so if Sv ,= 0, then it is is an eigenvector for the eigenva

 

ue l.IfSv = 0, then TSv = 0, so l = 0. As Sv = 0 we know that S is not injective,so ST

is not injective and it has eigenva 

ue 0. Thus if l is an eigenva 

ue of TS, then it's aneigenva

 

ue of ST. The other imp 

ication fo  

ows by symmetry.912. Let (v1, . . . , vn) be a basis of V . By assumption (Tv1, . . . , Tvn) = (l

1v, . . . , lnvn).We need to show that li  = lj

Page 26: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 26/99

  for a  

  i, j. Choose i ,= j, then by our assumptionvi + vj  is an eigenvector, so T(vi + vj) = livi + ljvj  = l(vi + vj) = lvi + lv

j. Thismeans that (li - l)vi + (lj - l)vj  = 0. Because (vi, v

j) is 

inear 

y independent weget that li -l = 0 = lj -l i.e. li = lj.13. Let v1

 Î V and extend it to a basis (v1, . . . , vn) of V . Now Tv1 = a1v1

Page 27: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 27/99

 + . . . + anvn.Let Ui  be the subspace generated by the vectors vj, j ,= i. By our assumption eachUi is an invariant subspace. Let Tv1 = a1v1 + . . . + anvn. Now v1

 Î Ui for i > 1. So

 

et j > 1, then Tv Î Uj  imp

 

es aj  = 0. Thus Tv1  = a1v1

. We see that v1  was aneigenvector. The resu

 

t now fo  

ows from the previous exercise.14. C

 

ear 

y (STS-1)n= STnS-1, so

n

i=0ai(STS-1)i=

Page 28: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 28/99

n

i=0aiSTiS-1= S

 _   n

i=0aiTi

 _ S-1.15. Let l be an eigenva

 

ue of T and v Î V a corresponding eigenvector. Let p(x) =

ni=0 aixi. Then we havep(T)v =n

i=0a

iTiv =n

i=0ailiv = p(l)v.Thus p(l) is an eigenva

 

ue of p(T). Then 

et a be an eigenva 

ue of p(T) and

v Î Vthe corresponding eigenvector. Let q(x) = p(x) -a. By the fundamenta 

 theorem ofa

 

gebra we can write q(x) = c

ni=1(x -li). Now q(T)v = 0 and q(T) = c

Page 29: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 29/99

ni=1(T -liI). As q(T) is non

 

injective we have that T -liI is non

 

injective for some i. Henceli is an eigenva

 

ue of T. Thus we get 0 = q(li) = p(li) -a, so that a = p(li).16. Let T Î L(R2) be the map T(x, y) = (-y, x). On page 78 it was shown that it hasno eigenva

 

ue. However, T2(x, y) = T(-y, x) = (-x, -y), so -1 it has an eigenva

 

ue.

17. By theorem 5.13 T has an upper 

triangu 

ar matrix with respect to some basis (v1, . . . , vn).The c

 

aim now fo  

ows from proposition 5.12.18. Let T Î L(F2) be the operator T(a, b) = (b, a) with respect to the standard basis.Now T2

= I, so T is c 

ear 

y invertib 

e. However, T has the matrix _   0 11 0

 _ .1019. Take the operator T in exercise 7. It is c

 

ear 

y not invertib 

e, but has the matrix

 _ ¸

 _ 1 1

..

.  ...  ...1 1

Page 30: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 30/99

 _ ¸

 _.20. By theorem 5.6 we can choose basis (v1, . . . , vn) for V where vi  is an eigenvector ofT corresponding to the eigenva

 

ue li. Let l be the eigenva

 

ue of S corresponding tovi. Then we getSTvi = Slivi = li

Svi = lilvi = llivi = lTvi = Tlv

i = TSvi,so ST and TS agree on a basis of V . Hence they are equa

 

.21. C

 

ear 

y 0 is an eigenva 

ue and the corresponding eigenvectors are nu  

 T= W ¸ ¦0¦.Now assume l ,= 0 is an eigenva

 

ue and v = u + w is a corresponding eigenvector.Then PU,W(u + w) = u = lu + lw Û (1 -l)u = lw. Thus lw Î U, so lw = 0, butl ,= 0, so we have w = 0 which imp

 

ies (1 -l)u = 0. Because v is an eigenvector we

have v = u + w = u ,= 0, so that 1 - l = 0. Hence l = 1. As we can choose free 

your u Î U, so that it's non

 

zero we see that the eigenvectors corresponding to 1 areu = U ¸ ¦0¦.22. As dimV = dimnu

 

 P + dimrange P, it's c 

ear 

y sucient to prove that nu

 

 P Çrange P = ¦0¦. Let v Î nu

 

 P Ç range P. As v Î range P, we can nd a u Î V suthat Pu = v. Thus we have that v = Pu = P2

Page 31: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 31/99

u = Pv, but v Î nu  

 P, so Pv = 0.Thus v = 0.23. Let T(a, b, c, d) = (-b, a, -d, c), then T is c

 

ear 

y injective, so 0 is not an eigenva

 

ue.If l ,= 0 is an eigenva

 

ue and l(a, b, c, d) = (-b, a, -d, c). We c 

ear 

ysee that a ,=0 Û b ,= 0 and simi

 

ar 

y with c, d. By symmetry we can assume thata ,= 0 (aneigenvector is non

 

zero). Then we have la = -b and lb = a. Substituting we getl2b = -b Û (l2+ 1)b = 0. As b ,= 0 we have l2+ 1 = 0, but this equation has noso

 

utions in R. Hence T has no eigenva 

ue.24. If U is an invariant subspace of odd degree, then by theorem 5.26 T|U has an eigenva

 

uel with eigenvector v. Then l is an eigenva

 

ue of T with eigenvector v  against ourassumption. Thus T has no subspace of odd degree.

6 Inner 

Product Spaces1. From the 

aw of cosines we get |x - y|2= |x|2+ |y|2- 2|x||y| cos q. Solving weget|x||y| cos q = |x|2+|y|

2-|x -y|22  .11Now let x = (x1, x2), y = (y1, y2). A straight calculation shows that

|x|2+|y|2-|x-y|2= x21+x

Page 32: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 32/99

22+y21 +y22-(x1-y1)2-(x2-y2)2= 2(x1y1

+x2y2),so that|x||y| cos q = |x|2+|y|2-|x -y|2

2  =  2(x1y1 + x2y2)2  = ¸x, y) .

2. If ¸u, v) = 0, then ¸u, av) = 0, so by the Pythagorean theorem |u| £ |u| + |av| =|u+av|. Then assume that |u| £ |u+av| for all a Î F. We have |u|2£ |u+av|2Û¸u, u) £ ¸u + av, u + av). Thus we get¸u, u) £ ¸u, u) +¸u, av) +¸av, u) +¸av, av) ,so that-2Re a ¸u, v) £ [a[

Page 33: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 33/99

2|v|2.Choose a = -t ¸u, v) with t > 0, so that2t ¸u, v)2£ t2¸u, v)2|v|2Û 2 ¸u, v)2£ t ¸u, v)2|v|2.If v = 0, then clearly ¸u, v) = 0. If not choose t = 1/|v|2, so that we get2 ¸u, v)

2£ ¸u, v)2.Thus ¸u, v) = 0.3. Let a = (a1,Ö 2a2, . . . ,Ö 

nan) Î Rnand b = (b1, b2/Ö 2, . . . , bn/

Ö n) Î Rn. Thise  uality is then simply ¸a, b)2£ |a|2|b|2

Page 34: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 34/99

which follows directly from the Cauchy 

Schwarz ine 

uality.4. From the parallelogram e

 

uality we have |u + v|2+ |u - v|2= 2(|u|2+ |v|2).Solving for |v| we get |v| = Ö 17.5. Set e.g. u = (1, 0), v = (0, 1). Then |u| = 1, |v| = 1, |u + v| = 2, |u - v| = 2.Assuming that the norm is induced by an inner

 

product, we would have by theparallelogram ine

 

uality8 = 22+ 22= 2(1

2+ 12) = 4,which is clearly false.6. Just use |u| = ¸u, u) and simplify.7. See previous exercise.128. This exercise is a lot trickier than it might seem. I'll prove it for R, the proof for Cis almost identical except for the calculations that are longer and more tedious. Allnorms on a nite

 

dimensional real vector space are e 

uivalent. This gives us

limn®¥|rnx + y| = |lx + y|when rn ® l. This probab

 

y doesn't make any sense, so check a book on topo 

ogyor functiona

 

 ana 

ysis or just assume the resu 

t.Dene ¸u, v) by¸u, v) = |u + v|2

-|u -v|24  .Trivia

 

y we have |u|2= ¸u, u), so positivity deniteness fo  

ows. Now4(¸u + v, w) -¸u, w) -¸v, w)) = |u + v + w|2-|u + v -w|

Page 35: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 35/99

2-(|u + w|2-|u -w|2)-(|v + w|2-|v -w|2)= |u + v + w|2-|u + v -w|2+(|u -w|2+|v -w|2)-(|u + w|2+|v + w|2

)We can app 

y the para  

ogram equa 

ity to the two parenthesis getting4(¸u + v, w) -¸u, w) -¸v, w)) = |u + v + w|2-|u + v -w|2+  12(|u + w -2w|2+[u -v[2

)-  12(|u + v + 2w|2+|u -v|2)= |u + v + w|2-|u + v -w|2

+  12|u + w -2w|2- 12|u + v + 2w|2

Page 36: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 36/99

= (|u + v + w|2+|w|2) + 12|u + v -2w|2- (|u + v -w|2+|w|2) - 12|u + v + 2w|2App

 

ying the para  

ogram equa 

ity to the two parenthesis we and simp 

ifying weare

 

eft with 0. Hence we get additivity in the rst s 

ot. It's easy to see that¸-u, v) = -¸u, v), so we get ¸nu, v) = n¸u, v) for a

 

  n Î Z. Now we get¸u, v) = ¸nu/n, v) = n¸u/n, v) ,

13so that ¸u/n, v) = 1/n¸u, v). Thus we have ¸nu/m, v) = n/m¸u, v). It fo  

ows thatwe have homogeneity in the rst s

 

ot when the sca 

ar is rationa 

. Now 

et l Î R andchoose a sequence (rn) of rationa

 

 numbers such that rn ® l. This gives usl¸u, v) =

 

imn®¥rn¸u, v) =

 

im

n®¥¸rnu, v)=

 

imn®¥14(|rnu + v|2-|r

nu -v|2)=  14(|lu + v|2-|lu -v|

Page 37: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 37/99

2)= ¸lu, v)Thus we have homogeneity in the rst s

 

ot. We trivia  

y a 

so have symmetry, so wehave an inner

 

product. The proof for F = C can be done by dening the inner 

productfrom the comp

 

ex po 

arizing identity. And by using the identities¸u, v)0 =  14(|u + v|2-|u -v|2) ⇒ ¸u, v) = ¸u, v)0 +¸u, iv)0 i.and using the properties just proved for ¸, )0

.9. This is rea  

y an exercise in ca 

cu 

us. We have integra 

s of the types¸sinnx, sinmx) =

 _   p-psinnxsinmxdx¸cos nx, cos mx) =

 _   p-pcos nxcos mxdx¸sinnx, cos mx) =

 _   p-psinnxcos mxdxand they can be evaluated using the trigonometric identitiessinnxsinmx =  cos((n -m)x) -cos((n + m)x)2cos nxcos mx =  cos((n -m)x) + cos((n + m)x)2cos nxsinmx =  sin((n -m)x) -sin((n + m)x)

2  .10. e1 = 1, then e2 =  x-x,11x-x,11. Where

Page 38: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 38/99

¸x, 1) = _   10x = 1/2,14so that|x -1/2| = ¸x -1/2, x -1/2) =¸

 _   10(x -1/2)2dx =

 _ 1/12,which gives e2  = Ö 12(x - 1/2) = Ö 3(2x - 1). Then to continue

 

encil 

ushing we

have¸x2, 1

 _ = 1/3,

 _ x2,Ö 3(2x -1)

 _ = Ö 3/6,so that x2-¸x2, 1

 _ 1 -

x̧2,Ö 3(2x -1)

 _ Ö 3(2x -1) = x2-1/3 -1/2(2x -1). Now

Page 39: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 39/99

|x2-1/3 -1/2(2x -1)| = 1/(6Ö 5)giving e3 = Ö 5(6x2-6x+1). The orthonormal basis is thus (1,Ö 3(2x-1),Ö 5(6x2-6x + 1).11. Let (v1, . . . , vn) be a linearly de

 

endent list. We can assume that (v

1, . . . , vn-1) islinearly inde

 

endent and vn Î s

 

an(v1, . . . , vn). Let P denote the

 

rojection on thesubs

 

ace s 

anned by (v1

, . . . , vn-1). Then calculating en  with the Gram

 

Schmidtalgorithm gives usen =  vn -P(vn

)|vn -Pvn|,but vn  = Pv

Page 40: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 40/99

n  by our assum

 

tion, so en  = 0. Thus the resulting list will sim

 

lycontain zero vectors. It's easy to see that we can extend the algorithm to workforlinearly de

 

endent lists by tossing away resulting zero vectors.12. Let (e1, . . . , en-1) be an orthogonal list of vectors. Assume that (e1, . . . , en) and(e1, . . . , en-1, e

n) are orthogonal and s

 

an the same subs 

ace. Then we can write

en  = a1e1 + . . . + anen. Now we have ¸e

n, ei) = 0 for all i < n, so that ai  = 0 fori < n. Thus we have e

n = anen

 and from |e

n| = 1 we have an = ±1.Let (e1, . . . , en

Page 41: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 41/99

) be the orthonormal base 

roduced from (v1, . . . , vn) by Gram

 

Schmidt.Then if (e

1, . . . , e

n) satises the hy 

othesis from the 

roblem we have by the 

revious 

aragra 

h that e

i = ±ei. Thus we have 2n 

ossible such orthonormal lists.13. Extend (e1, . . . , em

) to a basis (e1, . . . , en) of V . By theorem 6.17v = ¸v, e1) e1 + . . . +¸v, en) en

,so that|v| = | ¸v, e1) e1 + . . . +¸v, em) en|= | ¸v, e1

) e1| + . . . +| ¸v, em) en|= [ ¸v, e1) [ + . . . +[ ¸v, e

Page 42: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 42/99

n) [.Thus we have |v| = [ ¸v, e1) [ + . . . +[ ¸v, em) [ if and only if ¸v, ei) = 0 for i > m i.e.v Î s

 

an(e1, . . . , em).1514. It's easy to see that the dierentiation o  

erator has a u  

er 

triangular matrix in theorthonormal basis calculated in exercise 10.15. This follows directly from V = U ÅU^.16. This follows directly from the

 

revious exercise.17. From exercise 5.21 we have that V = range P Å null P. Let U := range P, then by

assum 

tion null P ⊂ U^. From exercise 15, we have dimU = dimV - dimU =dimnull P, so that null P = U^. An arbitrary v Î V can be written as v = Pv +(v -Pv). From P2= P we have that P(v - Pv) = 0, so v - Pv Î null P = U^. Hencethe decomposition v = Pv + (v -Pv) is the unique decomposition in U ÅU^

. NowPv = P(Pv +(v -Pv)) = Pv, so that P is the identity on U. By denition P = PU.18. Let u Î range P, then u = Pv for some v Î V hence Pu = P2v = Pv = u, so P isthe identity on range P. Let w Î null P. Then for a Î F|u|2= |P(u + aw)|2£ |u + aw|

2.By exercise 2 we have ¸u, w) = 0. Thus null P ⊂ (range P)^ and from the dimensionequality null P = (range P)^. Hence the claim follows.19. If TPU

Page 43: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 43/99

  = PUTPU  clearly U is invariant. Now assume that U is invariant. Then foru Î U we have PUTPUu = PUTu = Tu = TPUu.20. Let u Î U, then we have Tu = TPUu = PUTu Î U. Thus U is invariant. Then letw Î U^. Now we can write Tw = u+u

 where u Î U and u

 Î U^. Now PUTw = u,but u = PUTw = TPUw = T0 = 0, so Tw Î U^. Thus U

 ̂is also invariant.21. First we need to nd an orthonormal basis for U. With Gram

 

Schmidt we get  e1 =(1/Ö 2, 1/Ö 2, 0, 0), e2 = (0, 0, 1/

Ö 5, 2/Ö 5). Let U = span(e1, e2). Then we haveu = PU

Page 44: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 44/99

(1, 2, 3, 4) = ¸(1, 2, 3, 4), e1) e1 +¸(1, 2, 3, 4), e2) e2 = (3/2, 3/2, 11/5, 22/5).22. If p(0) = 0 and p

(0) = 0, then p(x) = ax2+ bx3. Thus we want to nd theprojection of 2 + 3x to the subspace U := span(x2, x3). With Gram

 

Schmidt we getthe orthonormal basis (Ö 3x

2, _ 420/11(x3-  12x2)). We getPU

(2+3x) = _ 2 + 3x,Ö 3x2

 _ Ö 3x2+

 _ 2 + 3x,

 _ 420/11(x3- 12x2)

 _ 

Page 45: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 45/99

 _ 420/11(x3-12x2).Here

 _ 2 + 3x,Ö 3x2

 _ =  1712Ö 3,

 _ 2 + 3x,

 _ 

420/11(x3- 12x2)

 _ =  47660Ö 

1155,so thatPU(2 + 3x) = -7122x2+ 32922  x

3.1623. There's is nothing special with this exercise, compared to the previous two, exceptthat it takes ages to calculate.24. We see that the map T : T2(R) ® R dened by p ® p(1/2) is linear. From exercise10 we get that (1,

Page 46: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 46/99

Ö 3(2x - 1),Ö 5(6x2- 6x + 1) is an orthonormal basis for T2(R).From theorem 6.45 we see thatq(x) = 1 +Ö 3(2 1/2 -1)Ö 3(2x -1) +Ö 5(6 (1/2)2-6 1/2 + 1)Ö 5(6x2-6x + 1)= -3/2 + 15x -15x2

.25. The map T : T2(R) ® R dened by p ®

 _ 10  p(x) cos(px)dx is clearly linear. Againwe have the orthonormal basis (1,Ö 3(2x -1),Ö 5(6x

2-6x + 1), so thatq(x) =

 _   10cos(px)dx +

 _   10Ö 3(2x -1) cos(px)dxÖ 

3(2x -1)+ _   10Ö 5(6x2-6x + 1) cos(px)dxÖ 

Page 47: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 47/99

5(6x2-6x + 1)= 0 - 4Ö 3p2Ö 3(2x -1) + 0 = -12p2(2x -1).26. Choose an orthonormal basis (e1, . . . , en) for V and let F have the usual basis. Thenby

 

ro 

osition 6.47 we have/(T, (e1, . . . , e

n)) = [¸e1, v) ¸en, v)] ,so that/(T, (e1, . . . , en

)) = _ ¸

 _ ¸e1, v)...¸en, v)

 _ ¸ _ and nally Ta = (a¸e1, v), . . . , a¸en, v)).

Page 48: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 48/99

27. with the usual basis for Fnwe get/(T) =

 _ ¸¸¸¸

 _ 0 1 0...  ...... 10 0

 _ ¸¸

¸̧ _ so by

 

ro 

osition 6.47/(T) =

 _ ¸¸¸¸

 _ 

0 01  ......  ...0 1 0

 _ 

¸̧

¸¸

 _ .17Clearly T(z

Page 49: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 49/99

1, . . . , zn) = (z2, . . . , zn, 0).28. By additivity and conjugate homogeneity we have (T -lI) = T-lI. From exercise31 we see that T-lI is non

 

injective if and on 

y if T -lI is non 

injective. That isl is an eigenva

 

ue of T if and on

 

y if l is an eigenva 

ue of T.29. As (U^)^ = U and (T

) = T it's enough to show on

 

y one of the imp 

ications. LetU be invariant under T and choose w Î U^. Now we can write Tw = u + v, whereu Î U and v Î U^, so that0 = ¸Tu, w) = ¸u, T

w) = ¸u, u + v) = ¸u, u) = |u|2.Thus u = 0 which comp

 

etes the proof.30. As (T) = T it's sucient to prove the rst part. Assume that T is injective, thenby exercise 31 we havedimV = dimrange T = dimrange T

,but range T is a subspace of V , so that range T = V .31. From proposition 6.46 and exercise 15 we getdimnu

 

 T = dim(range T)^ = dimW -dimrange T= dimnu

 

 T + dimW -dimV.For the second part we havedimrangeT

Page 50: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 50/99

  = dimW -dimnu  

T= dimV -dimnu

 

 T= dimrange T,where the second equa

 

ity fo  

ows from the rst part.32. Let T be the operator induced by A. The co

 

umns are the images of the basis vectorsunder T, so the generate range T. Hence the dimension of the spanof the co

 

umnvectors equa

 

  dimrange T. By proposition 6.47 the span of the row vectors equa

 

srange T. By the previous exercise dimrange T = dimrange T, so the c

 

aim fo  

ows.7 Operators on Inner

 

Product Spaces1. For the rst part,

 

et p(x) = x and q(x) = 1. Then c 

ear 

y 1/2 = ¸Tp, q) ,= ¸p, Tq) =¸p, 0) = 0. For the second part it's not a contradiction since the basis is not orthog

 

ona 

.182. Choose the standard basis for R

2. Let T and S the the operators dened by thematrices  _   0 11 0

 _ ,

 _   0 00 1

 _ .

Then T and S as c 

ear 

y se 

adjoint, but TS has the matrix _   0 10 0

 _ .so TS is not se

 

adjoint.3. If T and S are se

 

adjoint, then (aT +bS) = (aT)+(bS)

 = aT +bS for any a, b Î R,so se 

adjoint operators form a subspace. The identity operator I is se 

adjoint, butc

 

ear 

y (iI) = -iI, so iI is not se

 

adjoint.4. Assume that P is se

 

adjoint. Then from proposition 6.46 we have nu  

 P  = nu

 

 P =

Page 51: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 51/99

(range P)^. Now P is c

 

ear 

y a projection to range P. Then assume that P is aprojection. Let (u1, . . . , un) an orthogona

 

 basis for range P and extend it to a basisof V . Then c

 

ear 

y P has a diagona 

  matrix with respect to this basis, so P isse

 

adjoint.5. Choose the operators corresponding to the matricesA =

 _   0 -11 0

 _ , B =

 _   1 11 0

 _ .

Then we easi 

y see that AA = AA  and BB = BB. However, A + B doesn'tdene a norma

 

 operator which is easy to check.6. From proposition 7.6 we get nu

 

 T = nu  

 T. It fo

 

ows from proposition 6.46 that

range T = (nu  

 T)^ = (nu

 

 T)^ = range T.7. C

 

ear 

y nu  

 T ⊂ null Tk. Let v Î null Tk

. Then we have _ TTk-1v, TTk-1

Page 52: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 52/99

v _ =

 _ TTkv, Tk-1v

 _ = 0,so that TTk-1v = 0. Now

 _ Tk-1v, Tk-1v

 _ = _ TTk-1v, Tk-2v

 _ = 0,so that v Î null T

k-1. Thus null Tk⊂ null Tk-1and continuing we get null Tk⊂null T.Now let u Î range Tk, then we can nd a v Î V such that u = Tk

v = T(Tk-1v), sothat range Tk⊂ range T. From the rst part we get dimrange Tk= dimrange T, sorange Tk

Page 53: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 53/99

= range T.198. The vectors u = (1, 2, 3) and v = (2, 5, 7) are both eigenvectors corresponding todierent eigenvalues. A self

 

adjoint operator is normal, so by corollary 7.8 if T isnormal that would imply orthogonality of u and v. Clearly ¸u, v) ,= 0, so Tcan't beeven normal much less self

 

adjoint.9. If T is normal, we can choose a basis of V consisting of eigenvectors of T. Let A bethe matrix of T corresponding to the basis. Now T is self

 

adjoint if and only if theconjugate transpose of A equals A that is the eigenvalues of T are real.10. For any v Î V we get 0 = T9v -T8v = T8(Tv -v). Thus Tv -v Î null T8= null Tby the normality of T. Hence T(Tv -v) = T

2v -Tv = 0, so T2= T. By the spectraltheorem we can choose a basis of eigenvectors for T such that T has a diagonal matrixwith l1, . . . , ln on the diagona

 

. Now T2has the diagona

 

 matrix with l

21, . . . , l2n onthe diagona

 

 and from T2= T we must have l2i  = li

 for a  

 i. Hence li = 0 or li = 1,so the matrix of T equa

 

s its conjugate transpose. Hence T is se 

adjoint.11. By the spectra

 

  theorem we can choose a basis of T such that the matrix of Tcorresponding to the basis is a diagona

 

  matrix. Let l

Page 54: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 54/99

1, . . . , ln  be the diagona

 

ements. Let S be the operator corresponding to the diagona 

  matrix  having thee

 

ements Ö l1, . . . ,Ö ln on the diagona

 

. C 

ear 

y S2= T.12. Let T the operator corresponding to the matrix

 _   0 -11 0

 _ . ThenT

2+ I = 0.13. By the spectra

 

 theorem we can choose a basis consisting of eigenvectors of T. ThenT has a diagona

 

  matrix with respect to the basis. Let l1, . . . , ln  be the diago

 

na 

  e 

ements. Let S be the operator corresponding to the diagona 

 matrix having3Ö 

l1, . . . ,  3Ö ln on the diagona

 

. Then c 

ear 

y S3= T.14. By the spectra

 

 theorem we can choose a basis (v1, . . . , v

n) consisting of eigenvectorsof T. Let v Î V be such that |v| = 1. If v = a1v1 + . . . + anvn

Page 55: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 55/99

  this imp 

ies that

ni=1[ai[ = 1. Assume that |Tv -lv| < e. If [li -l[ ³ e for a

 

  i, th  n|Tv -lv| = |n

i=1(aiTvi -lvi)| = |n

i=1(a

ilivi -lvi)|= |n

i=1a

i(li -l)vi| =n

i=1[ai[[li

 -l[|v1|=n

i=1[ai[[l

Page 56: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 56/99

i -l[ ³ en

i=1[ai[ = e,which is a contradiction. Thus w   can nd an   ig  nva

 

u    li such that [l -li[ < e.2015. If such an inn  r

 

product   xists w     hav    a basis consisting of

 

ig 

nv 

ctors by th 

sp  ctra 

 th  or  m. Assum   th  n that (v1, . . . , vn) is basis such that th    matrix of Tis a matrix consisting of

 

ig 

nv 

ctors of T. D    n 

 an inn 

product by¸vi

, vj) =

 _   0, i ,= j1, i = j  .Ext

 

nd this to an inn 

product by bi 

in 

arity and homog 

ity. Th 

nw    hav    aninn

 

product and c 

 

ar 

y T is s 

 

adjoint as (v1, . . . , vn

) is an orthonorma 

 basis ofU.16. L

 

t T Î L(R2) b    th    op  rator T(a, b) = (a, a + b). Th  n span((1, 0)) is invariantund  r T, but it's orthogona

 

 comp 

  m  nt span((0, 1)) is c 

  ar 

y not.17. L

 

t T, S b 

  two positiv 

  op 

rators. Th 

n th 

y ar 

  s  

adjointand (S + T)

  =S

 +T = S +T, so S +T is s

 

adjoint. A 

so ¸(S + T)v, v) = ¸Sv, v) +¸Tv, v) ³ 0.Thus, S + T is positiv  .18. C

 

  ar 

y Tkis s

   

adjoint for 

ry positiv 

  int 

r. For k = 2 w 

  hav 

 ¸T2

Page 57: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 57/99

v, v _  =¸Tv, Tv) ³ 0. Assum   that th   r  su

 

t is tru   for a  

 positiv    k < n and n ³ 2. Th  n¸Tnv, v) =¸Tn-2Tv, Tv

 _ ³ 0,by hypoth  sis and s 

 

adjointn  ss. H   nc   th   r  su 

t fo  

ows by induction.19. C

 

ar 

y ¸Tv, v) > 0 for a  

  v Î V ¸ ¦0¦ imp 

s that T is inj 

ctiv 

  h    inv  rtib

 

  .So assum

 

 that T is inv 

rtib 

 

. Sinc 

  T is s 

 

adjoint w 

 can choos 

 an orthonorma

 

basis (v1, . . . , vn) of

 

ig 

nv 

ctors such that T has a diagona 

 matrix with r 

sp 

ct to

th 

 basis. L 

t th 

  

 

 

nts on th 

 diagona 

 b 

  l1, . . . , ln  and by assumption li  > 0for a

 

  i. L 

t v = a1v1 + . . . + an

vn Î V ¸ ¦0¦, so that¸Tv, v) = [a1[2l1 + . . . +[an[2

ln  > 0.20.

 _   sinq cos qcos q -sinq

 _  is a s

 

uar   root for   v  ry q Î R, which shows that it has innit 

 

ymany s

 

uar   roots.

Page 58: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 58/99

21. L  t S Î L(R2) b   d    n  d by S(a, b) = (a + b, 0). Th  n |S(1, 0)| = |(1, 0)| = 1 and|S(0, 1)| = 1, but S is c

 

  ar 

y not an isom  try.22. R3is an odd

 

dim  nsiona 

  r  a 

  v  ctor spac  . H  nc    S has an   ig  nva 

  l and acorr  sponding   ig  nv  ctor v. Sinc   |Sv| = [l[|v| = |v| w     hav    l2= 1. H  nc 

S2v = l2v = v.2123. Th

 

 matric 

s corr 

sponding to T and T ar

 

/(T) = _  _ 0 0 1

2 0 00 3 0 _  _ , /(T) =

 _  _ 0 2 00 0 31 0 0

 _ 

 _ .Thus w

 

 g 

t/(TT) =

 _  _ 4 0 00 9 00 0 1

 _  _ 

,so that TT is th    op  rator (z1, z2, z3) ® (4z

Page 59: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 59/99

1, 9z2, z3). H

 

nc 

 Ö TT(z1, z2, z3) =(2z1, 3z2, z3). Now w    just n   d to p   rmut    th    indic  s which corr   sponds to th  

isom 

try S(z

1, z2, z3) = (z3, z1, z2).24. C

 

  ar 

y T

T is positiv  , so by proposition 7.26 it has a uni 

u   positiv   s 

uar   root.Thus it's suci  

nt to show that R2= TT. Now w    hav   T = (SR) = RS

 = RSby s 

 

adjointn  ss of R. Thus R2= RIR = RSSR = TT.

Page 60: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 60/99

25. Assum   that T is inv  rtib 

  . Th  n Ö TT must b   inv  rtib

 

   (po 

ar d  composition).H

 

nc 

  S = TÖ TT-1, so S is uni

 

u  

y d 

rmin 

d. Now assum 

  that T is notinv  rtib

 

  . Th  n rang  

Ö TT is not inv  rtib

 

   (h  nc   not surj  ctiv  ).Now assum

 

 that T is not inv 

rtib 

 

, so that Ö TT is not inv

 

rtib 

 

. By th 

 sp 

ctra 

th  or  m w     can choos     a basis (v1

, . . . , vn) of   ig  nv   ctors of Ö TT and w     canassum

 

  that v1  corr

 

sponds to th 

  

ig 

nva 

  0. Now 

 

t T = SÖ T

T. D 

  n 

  Uby Uv1  = -Sv1, Uvi  = Svi, i > 1. C

 

  ar 

y U ,= S and T = UÖ T

T. Now choos 

u, v Î V . Th  n it's   asy to v  rify that ¸Uu, Uv) = ¸Su, Sv) = ¸u, v), so is anisom  try.26. Choos   a basis of   ig  nv  ctors for T such that T has a diagona

 

 matrix with   ig  nva

 

s l1, . . . , ln

Page 61: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 61/99

  on th   diagona 

. Now TT = T2corr  sponds to th   diagona

 

 matrixwith l21, . . . , l2n  on th

 

 diagona 

 and th 

 s 

uar 

 root Ö TT corr

 

sponds to th 

 diag 

ona 

 matrix having [l1[, . . . , [ln[ on th   diagona

 

. Th  s   ar   th   singu 

ar va 

u  s, soth

 

 c 

aim fo  

ows.27. L  t T Î L(R2

) b 

  th 

  map T(a, b) = (0, a). Th 

n from th 

  matrix r 

pr 

ntationw 

 s  

 that TT(a, 0) = (a, 0), h

 

nc 

 Ö TT = TT and 1 is c

 

 

ar 

y a singu 

ar va 

.How  v  r, T2= 0, so

 _ (T2)T2= 0, so 12= 1 is not a singu

 

ar va 

u   of T2.28. Th    composition of two bij   ctions is a bij   ction. If T=S

Ö TT, th  n sinc     S is anisom  try w    hav   that T is bij  ctiv   h  nc   inv  rtib

 

   if and on 

y if Ö TT is bij  ctiv  .But

Page 62: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 62/99

 Ö TT is inj  ctiv   h  nc   bij  ctiv   if and on

 

y if 0 is not an   ig  nva 

u  . Thus Tisbij

 

ctiv 

 if and on 

y if 0 is not a singu 

ar va 

.2229. From th

 

 po 

ar d 

composition th 

or 

m w 

 s  

 that dimrang 

 T = dimrang 

Ö TT.Sinc 

 Ö TT is s 

 

adjoint w   can choos    a basis of   ig  nv  ctors of Ö TT such thatth

 

 matrix ofÖ T

T is a diagona 

 matrix. C 

 

ar 

y dimrang 

Ö TT

 

 

ua 

s th 

 numb 

rof non

 

z  ro  

 

  m  nts on th    diagona 

 i.  . th   numb  r of non 

z   ro singu 

ar va 

s.30. If S is an isom  try, th   n c

 

  ar 

y Ö SS = I, so a

 

 singu 

ar va 

u  s ar   1. Now assum 

that a  

 singu 

ar va 

s ar 

 1. Th 

n Ö SS is a s 

 

adjoint (positiv  ) op  rator witha

 

   ig  nva 

u  s  

 

ua 

 to 1. By th   sp  ctra 

 th  or  m w   can choos   a basis ofV suchthat Ö SS has a diagona

 

  matrix. As a  

  

ig 

nva 

s ar 

  on 

, this m 

ans that th 

matrix of Ö SS is th   id  ntity matrix. Thus Ö SS = I, so S is an isom  try.31. L  t T

Page 63: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 63/99

1  = S1

 _ T1T1  and T2  = S2

 _ T2T2. Assum

 

  that T1  and T2  hav

 

  th 

  sam 

singu 

ar va 

s s1, . . . , sn. Th  n w   can choos   bas  s of   ig  nv  ctors of _ T1T1  and

 _ 

T2T2  such that th   y hav     th    sam    matrix. L  t th  s    bas  s b    (v1, . . . , vn) and(w1, . . . , w

n). L  t S th    op  rator d    n  d by S(wi) = vi, th  n c

 

  ar 

y S is an isom   tryand

 _ T

Page 64: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 64/99

2T2 = S-1

 _ T1T1S. Thus w

 

 g 

t T2 = S2

 _ T2T2 = S2S

-1 _ T1T1S. WritingS3 = S2S

-1S-11  , which is c

 

  ar 

y an isom  try, w   g  tT2 = S3S1

 _ T

1T1S = S3T1S.Now

 

  t T

Page 65: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 65/99

2  = S1T1S2. Th

 

n w 

  hav 

  T2T2  = (S1T1S2)(S1T1

S2) = S1T1T1S1  =

S-11  T1T1S1. L  t l b    an   ig  nva

 

u    of T1

T1  and v a corr

 

sponding 

ig 

nv 

ctor.B  caus    S1 is bij  ctiv   w    hav   a u Î V such that v = S1u. This giv  s usT

Page 66: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 66/99

2T2u = S-11  T1T1S1u = S-11  T1T1v = S-11

  lv = lu,so that l is an 

ig 

nva 

 of T2T2. L  t (v1, . . . , vn) b   an orthonorma

 

 basis of   ig  n 

ctors of T

1T1, th

 

n (S-11  v1, . . . , S-1vn) is an orthonorma

 

 basis for V of   ig  nv  ctors

of T2T2. H  nc    T2T2

Page 67: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 67/99

  and T1T1  hav

 

 th 

 sam 

  

ig 

nva 

s. Th 

 singu 

ar va 

s ar 

simp 

y th   positiv    s 

uar   roots of th  s     ig  nva 

u  s, so th   c 

aim fo  

ows.32. For th

 

 rst part, d 

not 

 by S th 

 map d    n 

d by th 

 formu 

a. S 

tA := /(S, (f1, . . . , fn), ( 

1, . . . ,  

n)), B := /(T, ( 

1, . . . ,  

n), (f1, . . . , fn

)).C 

 

ar 

y A = B and is a diagona 

 matrix with s1, . . . , sn  on th

 

 diagona 

. A  

 th 

  siar

 

  positiv 

  r 

  numb 

rs 

, so that B  = B = A. It fo

 

ows from proposition 6.47that S = T.

For th 

  s 

cond part obs 

rv 

  that a 

in 

ar map S d 

  n 

d by th 

  formu 

a  maps fito s-1i   

i  which is mapp   d by T to fi. Thus TS = I. Th    c

 

aim now fo  

ows from 

rcis 

 3.23.23

33. By d 

  nition Ö TT is positiv  . Thus a

 

 singu 

ar va 

u  s of T ar   positiv  . From th 

singu 

ar va 

u   d  composition th   or  m w   can choos   bas  s of V such that|Tv| = |n

i=1

Page 68: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 68/99

si¸v,  

i) fi| =n

i=1si[ ¸v,  

i) [sinc

 

 a  

  si ar

 

 positiv 

. Now c 

 

ar 

yà s|v| = à sn

i=1[ ¸v,  

i

) [ £n

i=1si[ ¸v,  

i) [ = |Tv|and simi

 

ar 

y for s|v|.34. From th   triang

 

    

 

ua 

ity and th    pr  vious   x  rcis   w   g  t|(T

 + T

)v| £ |T

v| +|T

v| £ (s

 + s

)|v|.Now

 

t v b 

 th 

  

ig 

nv 

ctor of _ 

(T

 + T

)(T

 + T

Page 69: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 69/99

) corr  sponding to th    singu 

arva

 

  s. L 

t T + T

 = S _ (T

 + T

)(T

 + T

), so that|(T

 + T

)v| = |S _ (T

 + T

)(T

 + T

)v| = |Ssv| = s|v| £ (s

 + s

)|v|,

so that s £ s

 + s

.8 Op  rators on Comp

 

  x V  ctor Spac  s1. T is not inj  ctiv  , so 0 is an   ig  nva

 

u   of T. W   s    that T2= 0, so that any v Î Vis a g  n  ra

 

iz  d   ig  nv   ctor corr  sponding to th      ig  nva 

u   0.2. On pag   78 it's shown that ±i ar   th     ig  nva

 

u  s of T. W   hav   dimnu  

(T -iI)2+

dimnu  

(T + iI)2= dimC2= 2, so that dimnu

 

(T - iI)2= dimnu

 

(T + iI)2= 1.B  caus    (1, -i) is an   ig  nv  ctor corr  sponding to th      ig  nva

 

u    i and

Page 70: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 70/99

 (1, i) is an 

ig 

nv 

ctor corr 

sponding to th 

  

ig 

nva 

 -i. Th 

 s 

t of a  

 g 

ra 

iz 

ig 

nv  ctorsar   simp

 

y th   spans of th   s   corr  sponding   ig  nv  ctors.3. L  t m-1i=0  aiTiv = 0, th  n 0 = Tm-1(

m-1i=0  aiTiv = a0

Tm-1v, so that a0 = 0. Ap

 

ying r 

at 

y Tm-ifor i = 2, . . . w

 

 s  

 that ai = 0 for a

 

 i. H 

nc 

 (v, . . . , Tm-1v)is

 

in  ar 

y ind   p  nd  nt.

4. W 

  s  

  that T3= 0, but T2,= 0. Assum    that S is a s

 

uar    root of T, th  n Sis ni

 

pot  nt, so by coro  

ary 8.8 w    hav    SdimV= S3= 0, so that 0 = S4= T2

.Contradiction.5. If ST is ni

 

pot 

nt, th 

n ∃n Î N such that (ST)n= 0, so (TS)n+1= T(ST)nS = 0.24

Page 71: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 71/99

6. Assum     that l ,= 0 is an   ig  nva 

u    of N with corr  sponding   ig  nv

 

ctor v. Th 

nNdimVv = ldimVv ,= 0. This contradicts coro

 

ary 8.8.7. By

 

mma 8.26 w 

 can nd a basis of V such that th 

 matrix of N is upp 

triangu

 

arwith z

 

ro 

s on th 

 diagona 

. Now th 

 matrix of N is th

 

 conjugat 

 transpos 

. Sinc 

N = N, th    matrix of N must b   z  ro, so th   c

 

aim fo  

ows.8. If NdimV -1,= NdimV, th

 

n dimnu  

 Ni-1< dimnu

 

 Nifor a

 

  i £ dimV by propo 

sition 8.5. By coro  

ary dimnu  

 NdimV= dimV , so th   c

 

aim c 

  ar 

y fo  

ows.9. rang

 

 Tm= rang

 

 Tm+1imp

 

s dimnu  

 Tm= dimnu

 

 Tm+1i.

 

. nu  

 Tm

= nu  

 Tm+1.From proposition 8.5 w

 

 g 

t dimnu  

 Tm= dimnu

 

 Tm+kfor a

 

  k ³ 1. Again thisimp

 

i  s that dimrang    Tm= dimrang   Tm+kfor a

 

  k ³ 1, so th   c 

aim fo  

ows.

10. L 

t T b 

 th 

 op 

rator d 

  n 

d in 

rcis 

 1. C 

 

ar 

y nu  

 T Ç rang 

 T ,= ¦0¦,so th 

aim is fa 

.11. W   hav   dimV = dimnu

 

 Tn+dimrang   Tn, so it's suci   nt to prov   that nu

 

 TnÇ

Page 72: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 72/99

rang   Tn= ¦0¦. L   t v Î nu

 

 TnÇ rang   Tn. Th  n w    can nd a u Î V such thatTnu = v. From 0 = Tv = Tn+1u w

 

 s  

 that u Î nu  

 Tn+1= nu

 

 Tnwhich imp

 

sthat v = Tnu = 0.12. From th

 

or 

m 8.23 w 

 hav 

 V = nu  

 TdimV, so that TdimV= 0. Th

 

n  

t T Î L(R

3)b   th   op  rator T(a, b, c) = (-b, a, 0). Th  n c

 

  ar 

y 0 is th    on 

y   ig  nva 

u  ,but T isnot ni

 

pot  nt.13. From nu

 

 Tn-2,= nu

 

 Tn-1and from proposition 8.5 w

 

 s  

 that dimnu  

 Tn³ n-1.Assum   that T has thr    di  r  nt   ig  nva

 

u  s 0, l

1, l2. Th

 

n dimnu  

 (T -liI)n³ 1,so from th   or  m 8.23n ³ dimnu

 

 Tn+dimnu

 

 (T -l1

I)n+dimnu

 

 (T -l2I)n³ n -1 +1 +1 = n +1,which is impossib

 

  , so T has at most two di  r  nt   ig  nva 

u  s.14. L  t T Î L(C4

Page 73: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 73/99

) b   d    n  d by T(a, b, c, d) = (7a, 7b, 8c, 8d) from th   matrix of T it's 

asy to s  

 that th 

 charact 

ristic po 

ynomia 

 is (z -7)2(z -8)2.15. L  t d1 b   th   mu

 

tip 

icity of th     ig  nva 

u   5 and d2 th   mu

 

tip 

icity of th      ig  nva 

6. Th 

n d1, d2  ³ 1 and d1 + d2  = n. It fo

 

ows that d1, d2  £ n - 1, so that

(z - 5)d1(z - 6)d2divid  s (z - 5)n-1(z - 6)n-1. By th     Cay

 

  y 

Hami 

ton th  or  m(T -5I)d

1(T -6I)d2= 0, so that (T -5I)n-1(T -6I)n-1= 0.16. If   v  ry g  n   ra

 

iz  d   ig  nv  ctor is an   ig  nv  ctor, th  n by th  or  m 8.23 T  has a basisof

 

ig 

nv 

ctors. If th 

's a g 

ra 

iz 

ig 

nv 

ctor that is not an 

ig 

nv 

ctor, th  n

 hav 

 an 

ig 

nva 

 l such that dimnu  

(T -lI)dimV,= dimnu

 

(T -lI). Thus if25l1, . . . , lm  ar   th      ig  nva

 

u  s of T, th  n 

Page 74: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 74/99

mi=1 dimnu

 

(T - liI) < dimV , so th  r 

do 

sn't 

xists a basis of 

ig 

nv 

ctors.17. By

 

  mma 8.26, choos    a basis (v1, . . . , vn) such that N has an upp  r

 

triangu 

armatrix. App

 

y Gram 

Schmidt orthogona 

ization to th 

  basis. Th 

n N 

1  = 0 andassum   that N 

i Î span( 

1, . . . ,  

i), so thatN

 

i+1 = N

 _   vi+1 -¸vi+1,

 

1)

 

1 -. . . -¸vi+1,

 

i

i|vi+1 -¸vi+1,  

1)  

1 -. . . -¸vi+1,  

i)  

i|

 _ Î span( 

1, . . . ,  

i+1).

Page 75: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 75/99

Thus N has an upp  r 

triangu 

ar matrix in th   basis (  

1, . . . ,  

n).18. Continuing in th

 

 proof of 

 

mma 8.30 up to j = 4 w 

 s  

 that a4 = -5/128. So thatÖ I + N = I + 12N - 18N2+  116N3-  5

128N419. Just r

 

ac 

  th 

  Tay 

or 

po 

ynomia 

  in   

mma 8.30 with th 

  Tay 

or po

 

ynomia 

  of3Ö 1 + x and copy th

 

 proof of th 

    

mma and th 

or 

m 8.32.20. L  t p(x) = mi=0 a

ixib

 

  th 

  minima 

  po 

ynomia 

  of T. If a0  ,= 0, th  n p(x) =x

mi=1 aix

i-1. Sinc   T is inv  rtib

 

   w   must hav 

mi=1 aiTi-1= 0 which contradicts

Page 76: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 76/99

th   minima 

ity of p. H  nc    a0 ,= 0, so so

 

ving for I in p(T) w   g  t-a-10  (a1 + . . . + amTm-1)T = I.H

 

nc 

 s 

tting 

(x) = -a-10  (a1 + . . . + amxm-1) w   hav   

 

(T) = T-1

.21. Th 

 op 

rator d    n  

d by th 

 matrix _  _ 0 0 10 0 00 0 0

 _  _ is c

 

 

ar 

y an 

xamp 

 

.22. Choos   th   matrixA =

 _ 

¸̧

 _ 1 0 0 00 1 1 00 0 1 00 0 0 0

 _ ¸¸

 _ .It's   asy to s    that A(A-I)

2= 0. Thus, th    minima

 

 po 

ynomia 

 divid  s z(z -1)2.How  v  r, th   who

 

   po 

ynomia 

 is th   on 

y factor that annihi 

at  s A, so z(z -1)2isth   minima

 

 po 

ynomia 

.2623. L  t l

Page 77: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 77/99

1, . . . , lm  b   th     ig  nva

 

u   s of T with mu 

tip 

icity d1, . . . , dm. Assum

 

 that Vhas a basis of   ig  nv  ctors (v1, . . . , vn). L  t p(z) =

mi=1(z -li). Th  n w   g  tp(T)vi =

 _  _ 

j=i(T -ljI)

 _  _ (T -liI)vi = 0,so that th    minima

 

 po 

ynomia 

 divid  s p and h   nc   has no doub 

   root.

Now assum 

  that th 

  minima 

  po 

ynomia 

  has no doub 

 

  roots. L 

t th    minima

 

po 

ynomia 

  b 

  p and 

 

t (v1, . . . , vn) b    a Jordan

 

basis of T. L  t A b    th    

arg  stJordan

 

ock of T. Now c  

ar 

y p(A) = 0. How 

r, by 

rcis 

  29,  th    minima

 

po 

ynomia 

  of (A - lI) is zm+1wh

 

  m is th 

   

ngth of th 

  

ong 

st cons 

cutiv 

string of 1's that app   ar just abov     th    diagona 

, so th    minima 

  po 

ynomia 

  of Ais (z - l)m+1. H  nc    m = 0, so that A is a 1 1 matrix and th    basis v  ctorcorr  sponding to A is an   ig  nva

 

u  . Sinc    A was th    

arg  st Jordan 

ock it fo

 

owsthat a

 

 basis v  ctors ar     ig  nva 

u  s (corr  sponding to a 1 1 matrix).24. If V is a comp

 

  x v  ctor spac  , th  n V has a basis of   ig  nv  ctors. Now

 

  t l

Page 78: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 78/99

1, . . . , lmb   th   distinct   ig  nva

 

u  s. Now c 

  ar 

y p =

mi=1(z -li) annihi

 

at 

s T, so that th 

minima 

 po 

ynomia 

 b  ing a factor of p do  sn't hav   a doub 

   root.Now assum

 

 that V is a r 

 v 

ctor spac 

. By th 

or 

m 7.25 w 

 can nd a basis of Tsuch that T has a b

 

ock diagona 

 matrix wh 

  

ach b 

ock is a 1 1 or 2 2 matrix.L

 

t l1, . . . , lm  b

 

 th 

 distinct 

ig 

nva 

s corr 

sponding to th 

 1 1 b 

ocks. Th 

np(z) = mi=1

(z - li) annihi

 

at  s a  

  but th    2 2 b 

ocks of th    matrix. Now it'ssuci 

nt to show that 

ach 2 2 b 

ock is annihi 

at 

d by a po 

ynomia 

 which do 

sn'thav   r  a

 

 roots.By th

 

or 

m 7.25 w 

 can choos 

 th 

 2 2 b 

ocks to b 

 of th 

 form _   a -bb a

 _ wh  r    b > 0 and it's   asy to s    that

 _   a -b

b a _ -2a

 _   a -bb a

 _ + (a2+ b2)

 _ 

  1 00 1

 _ = 0.C

 

  ar 

y this po 

ynomia 

 has a n   gativ   discriminant, so th    c 

aim fo  

ows.25. L  t

 

  b     th    minima 

  po 

ynomia 

. Writ    

  = sp + r, wh  r    d  gr < d

 

g p, so that0 =

 

(T)v = s(T)p(T)v +r(T)v = r(T)v. Assuming r ,= 0, w   can mu 

tip 

y th   bothsid  s with th   inv  rs   of th    high  st co    ci  nt of r yi 

 

ding a monic po 

ynomia 

Page 79: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 79/99

  r2of d  gr    

 

  ss than p such that r2(T)v = 0 contradicting th    minima

 

ity of p. H  nc 

r = 0 and p divid 

.2726. It's

 

asy to s  

 that no prop 

r factor of z(z -1)2(z -3) annihi

 

at 

s th 

 matrixA =

 _ ¸¸

 _ 3 1 1 10 1 1 00 0 1 00 0 0 0

 _ ¸¸

 _ ,

so th 

  it's minima 

  po 

ynomia 

  is z(z - 1)2(z - 3) which by d    nition is a

 

so th 

charact 

ristic po 

ynomia 

.27. It's   asy to s    that no prop  r factor of z(z -1)(z -3) annihi

 

at  s th   matrixA =

 _ ¸¸

 _ 3 1 1 10 1 1 00 0 1 0

0 0 0 0 _ ¸¸

 _ ,but A(A-I)(A-3I) = 0, so th   c

 

aim fo  

ows.28. W

 

  s  

  that T( 

i) =  

i+1  for i < n. H

 

nc 

  ( 

1

, T 

1, . . . , Tn-1

 

1) = (

 

1, . . . ,  

n

Page 80: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 80/99

) is 

in 

ar 

y ind 

nd 

nt. Thus for any non 

ro po 

ynomia 

  p of d 

gr  

  

 

ss than  n w 

hav    p( 

i) ,= 0. H

 

nc 

  th 

  minima 

  po 

ynomia 

  has d 

gr  

  n, so that th 

  minima

 

po 

ynomia 

   

ua 

s th 

 charact 

ristic po 

ynomia 

.Now from th    matrix of T w   s    that Tn( 

i) = -a0-a1T( 

1) -. . . -an-1Tn-1. S  tp(z) = a

0 +a1z +. . . +an-1zn-1+zn. Now p(T)(

 

1) = 0, so by

 

rcis 

 25 p divid 

sth   minima

 

 po 

ynomia 

. How  v   r, th   minima 

 po 

ynomia 

 is monic and has d  gr 

 

n, so p is th   minima 

 po 

ynomia 

.29. Th

 

 bigg 

st Jordan 

ock of N is of th 

 form _ ¸¸¸¸¸

 _ 0 10 1.

.

.  ...0 10

 _ ¸¸

Page 81: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 81/99

¸¸¸

 _ .Now c

 

 

ar 

y Nm+1= 0, so th

 

 minima 

 po 

ynomia 

 divid 

s zm+1. L

 

t vi, . . . , vi+m b

 

th   basis  

 

  m  nts corr   sponding to th   bigg  st Jordan 

ock. Th  n Nm

 

i+m =  

i ,=0, so th

 

 minima 

 po 

ynomia 

 is zm+1.

30. Assum 

  that V can't b 

  d 

compos 

d into two prop 

r subspac 

s. Th 

n T has on 

yon      ig  nva

 

u  . If th  r    is mor    than on    Jordan 

ock, th  n L  t (v1, . . . , vm) b

 

th    v  ctors corr   sponding to a  

  but th    

ast Jordan 

ock and (vm+1, . . . , vn) th 

28v  ctors corr  sponding to th     

ast Jordan 

ock. Th  n c 

  ar 

y V = span(v1, . . . , vm) Åspan(vm+1, . . . , vn). Thus, w    hav    on

 

y on    Jordan 

ock and T - lI is ni 

pot  ntand has minima

 

 po 

ynomia 

  zdimV

by th 

 pr 

vious 

rcis 

. H 

nc 

  T has minima 

po 

ynomia 

 (z -l)dimV.Now assum   that T has minima

 

 po 

ynomia 

 (z -l)dimV. If V = U ÅW,

   

t p1 b   th 

minima 

 po 

ynomia 

 of T

Page 82: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 82/99

|U  and p2 th   minima

 

 po 

ynomia 

 of T|W. Now (p1p2)(T) =0, so that (z - l)dimVdivid  s p1p2. H  nc   d  g p1p2 = d  g p1 + d  g p2

 ³ dimV , butd 

g p1+d

 

g p2 £ dimU +dimW = dimV . Thus d

 

g p1p2 = dimV . This m

 

ans thatp1(z) = (z - l)

dimUand p2(z) = (z - l)dimW. Now if n = max¦dimU, dimW¦ w 

hav   (T|U - lI)n= (T|W - lI)

n= 0. This m  ans that (T - lI)n= 0 contradictingth   fact that (z -l)dimVis th

 

 minima 

 po 

ynomia 

.31. R  v  rsing th    Jordan

 

basis simp 

y r  v  rs  s th   ord  r of th   Jordan 

ocksand   achb

 

ock n   ds to b    r  p 

ac  d by its transpos   .

Page 83: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 83/99

9 Op  rators on R   a 

  V  ctor Spac  s1. L

 

t a b 

 th 

 va 

 in th 

 upp 

r  

 

ft corn 

r. Th 

n th 

 matrix must hav 

 th   form

 _   a 1 -a1 -a a

 _ and it's

 

asy to s  

 that _   11

 _  is an   ig  nv  ctor corr   sponding to th     ig  nva

 

u   1.2. Th

 

 charact 

ristic po 

ynomia 

 of th 

 matrix is p(x) = (x - a)(x - d) - bc. Now th 

discriminant  

ua 

s (a + d)2-4(ad -bc) = (a -d)2+ 4bc. H

 

nc 

 th 

 charact 

risticpo

 

ynomia 

 has a root if and on 

y if (a - d)2+ 4bc ³ 0. If p(x) = (x - l1

)(x - l2),th

 

n p(T) = 0 imp 

s that 

ith 

r A - l1I or A - l2I is not inv

 

rtib   

 h 

nc 

  A hasan   ig  nva

 

u  . If p do  sn't hav   a root th   n assuming that Av = lv w   g  t0 = p(A)v = p(l)v,so that v = 0. H  nc    A has no   ig  nva

 

u  s. Th   c 

aim fo  

ows.3. S

 

 th 

 proof of th 

 n 

xt prob 

 

m, though in this sp 

cia 

 cas 

 th 

 proof is trivia

 

.

4. First 

 

t l b 

 an 

ig 

nva 

 of A. Assum 

 that l is not an 

ig 

nva 

 ofA1, . . . , Am,so that Ai -lI is inv  rtib

 

   for   ach i. Now 

  t B b   th   matrix _ ¸

 _ (A

1 -lI)-1...0 (Am -lI)

Page 84: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 84/99

-1 _ ¸

 _.29It's now

 

asy to v 

rify that B(A-lI) is a diagona 

 matrix with a  

 1s on th 

 diagona 

,h  nc   it's inv  rtib

 

  . How  v  r, this is impossib 

  , sinc    A -lI is not. Thus, l s an

  ig  nva 

u   of som    Ai.Now

 

t l b 

  an 

ig 

nva 

  of Ai. L

 

t T b 

  th 

  op 

rator corr 

sponding to A - lIin L(Fn). L  t Ai  corr  spond to th    co

 

umns j, . . . , j + k and 

  t ( 

1, . . . ,  

n) b   th 

standard basis. L 

t (a

1, . . . , ak) b

 

 th 

  

ig 

nv 

ctor of Ai corr

 

sponding to l. S 

t v =a1

 

j +. . . +ak

 

j+k. Th  n it's   asy to s    that T maps th   spac    span( 

1, . . . ,

 

j-1, v)to th   spac   span(  

1, . . . ,  

j-1). H  nc    T is not inj  ctiv  , so that l is an   ig  nva

 

of A.5. Th   proof is id  ntica

 

 to th    argum  nt us  d in th    so 

ution of   x  rcis   2.

6. L 

t (v1, . . . , vn) b    th    basis with th    r  sp  ct to which T has th    giv  n matrix.App

 

ying Gram 

Schmidt to th 

 basis th 

 matrix trivia  

y has th 

 sam 

 form.7. Choos     a basis (v1, . . . , v

Page 85: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 85/99

n) such that T has a matrix of th

 

  form in th 

or 

m 9.10.Now if vj  corr  sponds to th    s  cond v  ctor in a pair corr  sponding to a 2 2 matrixor corr

 

sponds to a 1 1 matrix, th 

n span(v1, . . . , vj) is an invariant subscap

 

. Th 

s  cond posibi 

ity m  ans that vj corr  sponds to th    rst v  ctor in a pair corr  spondingto a 2 2 matrix, so that span(v1, . . . , vj+1) is an invariant subspac

 

.8. Assuming that such an op  rator   xist  d w   wou

 

d hav   basis (v1, . . . , v7) such thatth

 

 matrix of T wou 

d hav 

 a matrix with 

ig 

npair (1, 1)

dimnu  

(T2+ T + I)dimV2  = 7/2tim  s on th    diagona

 

. This wou 

d contradict th   or  m 9.9 as 7/2 isnot a who

   

numb  r. It fo  

ows that such an op  rator do  sn't   xist.9. Th

 

  

 

uation x2+ x + 1 = 0 has a so

 

ution in C. L 

t l b 

  a so 

ution. Th 

n th 

op  rator corr  sponding to th    matrix lI c 

  ar 

y is an   xamp 

  .

10. L 

t T b 

 th 

 op 

rator in L(R2k) corr

 

sponding to th 

 b 

ock diagona 

 matrix wh 

 

ach b 

ock has charact 

ristic po 

ynomia 

  x2+ax +b. Then

 

y theorem 9.9 we h 

vek =  dimnull(T2+ aT + bI)2k2  ,

so th 

t dimnull(T2+ aT + bI)2kis even. However, the minim

 

l polynomi 

l of Tdivides (T2+aT +bI)2k

 

nd h 

s degree less th 

n 2k, so th 

t (T

Page 86: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 86/99

2+aT +bI)k= 0.It follows th

 

t dimnull(T2+ aT + bI)2k= dimnull(T2+ aT + bI)k

 

nd the cl 

imfollows.3011. We see th

 

t (a, b) is 

n eigenp 

ir 

nd from the nilpotency of T2+ aT + bI

 

ndtheorem 9.9 we h

 

vedimnull(T2+ aT + bI)dimV2

  = (dimV )/2it follows th 

t dimV is even. For the second p 

rt we know from the C 

yley-H 

miltontheorem th   t the minim  l polynomi  l p(x) of T h  s degree less th   n dimV . Thus weh

 

ve p(x) = (x2+ ax + b)k

 

nd from deg p £ dimV we get k £ (dimV )/2. Hence(T + aT + bI)(dimV )/2= 0.

12. By theorem 9.9 we c 

n choose 

   

sis such th 

t the m 

trix of T h 

s the form of 9.10.Now we h

 

ve the m 

trices [5] 

nd [7] 

t le 

st once on the di 

gon 

l. Assuming th

 

tT h

 

n eigenp 

ir we would h 

ve 

t le 

st one 2 2 m 

trix on the di 

gon 

l. This isimpossi

 

le 

s the di 

gon 

l h 

s only length 3.13. By proposition 8.5 dimnull Tn-1³ n-1. Lik   in th    pr  vious   x  rcis   w   know thatth   matrix [0] is at

 

  ast n-1 tim  s on th    diagona 

 and it's impossib 

   to t a 2 2matrix in th

 

 on 

y p 

ac 

   

ft.14. W   s    that A satis  s th   po

 

ynomia 

  p(z) = (z - a)(z - d) - bc no matt  r if

 isR or C. If F = C, th  n b  caus    p is monic, has d  gr    2 and annihi

 

at  s A it fo

 

owsthat p is th   charact  ristic po

 

ynomia 

.Assum   th  n that F = R. Now if A has no   ig  nva

 

u  s, th  n p is th   charact  risticpo

 

ynomia 

  by d    nition. Assum

 

  th 

n that p(z) = (z - l1)(z - l2

Page 87: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 87/99

) which imp 

i   sthat p(T) = (T -l1I)(T -l2I) = 0. If n

 

ith 

r T -l1I or T -l2I is inj

 

ctiv 

, th 

nby d    nition p is th   minima

 

 po 

ynomia 

. Assum   th  n that T - l2I is inv  rtib

 

  .Th

 

n dimnu  

(T - l1I) = 2, so that T - l1I = 0. H

 

nc 

  w 

  g 

t c = b = 0 anda = d = l1. H  nc    p(z) = (z - l1)2

, so that p is th 

  charact 

ristic po 

ynomia 

  byd    nition.15. S is norma

 

, so th   r  's an orthonorma 

 basis of V such that S has a b 

ock diagona

 

matrix with r   sp  ct to th    basis and   ach b 

ock is a 1 1 or 2 2 matrix and th 

22 b 

ocks hav 

 no 

ig 

nva 

 (th 

or 

m 7.25). From SS = I w

 

 s  

 that 

ach b 

ockAi satisfy Ai

Ai = I, so that th

 

y ar 

 isom 

tri 

s. H 

nc 

 a 2 2 b 

ock is of th 

 form _   cos q -sinqsinq cos q

 _ .W   s    that T2+aT +bI is not injective if

 

nd only if A2i

 +aAi+bI is not injectivefor some 22 m

 

trix Ai. Hence x2+ax+b must equ

 

l the ch 

cteristic polynomi 

lof some Ai

Page 88: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 88/99

, so 

y the previous exercise it's of the form(x -cos q)(z -cos q) + sin2q = x2-2xcos q + cos2q + sin2qso that b = cos2q + sin2q = 1.3110 Trac    and D   t  rminant1. Th

 

 map T ® /(T, (v1, . . . , vn)) is bij

 

ctiv 

 and satis 

s ST ® /(ST, (v1, . . . , v

n)) =/(S, (v1, . . . , vn))/(T, (v1, . . . , vn)). H  nc 

ST = I Û /(ST, (v1

, . . . , vn)) = /(S, (v1, . . . , vn))/(T, (v1, . . . , vn)) = I.Th

 

 c 

aim now fo  

ows trivia  

y.2. Both matric  s r  pr  s  nt an op   rator in L(F

n). Th   c

 

aim now fo  

ows from   x  rcis 

3.23.3. Choos     a basis (v1, . . . , vn) and

 

  t A = (aij) b    th    matrix corr   sponding to th 

Page 89: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 89/99

basis. Th  n Tv1 = a11v1 + . . . + an1vn. Now (v1, 2v2, . . . , 2vn) is a

 

so a basis and w  

hav 

 by our assumption Tv = a11v1 + 2(a21v

2 + . . . + an1vn). W

 

 thus g 

ta21v2 + . . . + an1v

n = 2(a21v2 + . . . + an1vn),which imp

 

i  s (a21v

2 + . . . + an1vn = 0. By

 

in  ar ind  p   nd  nc   w   g  t a21 = . . . =an1

Page 90: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 90/99

 = 0, so that Tv1 = a11v. Th   c

 

aim c 

  ar 

y fo  

ows.4. Fo

 

ows dir 

ct 

y from th 

 d 

  nition of /(T, (u1, . . . , un), (v1, . . . , vn)).5. L  t ( 

1, . . . ,  

n) b    th    standard basis for Cn. Th  n w    can nd an op  rator T ÎL(Cn) such that /(T, (

 

1, . . . , 

n)) = B. Now T has an upp

 

triangu 

ar matrixcorr  sponding to som    basis (v1, . . . , vn) of V . L  t A = /((v1, . . . , vn), ( 

1, . . . ,  

n)).Th  nA-1BA = /(T, (v1, . . . , vn))which is upp   r

 

triangu 

ar. C 

  ar 

y A is an inv  rtib 

   s 

uar   matrix.

6. L 

t T b 

 th 

 op 

rator corr 

sponding to th 

 matrix _   0 -11 0

 _ ,

 _   0 -11 0

 _ 

Page 91: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 91/99

2=

 _  -1 00 -1

 _ .By th

 

or 

m 10.11 w 

 hav 

 trac 

(T2) = -2 < 0.7. L  t (v1, . . . , vn) b   a basis of   ig  nv  ctors of T and l1, . . . , ln  b   th   corr  sponding

 

ig 

nva 

s. Th 

n T has th 

 matrix _ ¸

 _ l

1  0...0 ln

 _ ¸

 _.C

 

  ar 

y trac  (T2) = l

21 + . . . + l2n ³ 0 by th   or  m 10.11.328. Ext

 

nd v/|v| to an orthonorma 

 basis (v/|v|, 

1, . . . ,  

n) of V and

 

t A = /(T, (v/|v|, 

1

, . . . , 

n)).L  t a, a1, . . . , an d  not   th   diagona

 

  

 

  m  nts of A. Th  n w   hav 

ai

Page 92: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 92/99

 = ¸T 

i,  

i) = ¸¸  

i, v) w,  

i) = ¸0,  

i) = 0,so thattrac  (T) = a = ¸Tv/|v|, v/|v|) = ¸¸v/|v|, v) w, v/|v|) = ¸w, v) .9. From

 

rcis 

 5.21 w 

 hav 

 V = nu  

 P Årang 

 P. Now 

 

t v Î rang 

 P. Th 

nv = Pufor som

 

  u Î V . H 

nc 

  Pv = P2w = Pw = v, so that P is th

 

 id 

ntity on rang 

 P.Now choos   a basis (v1, . . . , vm) for rang    P and   xt  nd it with a basis (u1

, . . . , un)of nu

 

 P to g 

t a basis for V . Th 

n c   

ar 

y th 

  matrix for P in  this basis consistsof a diagona

 

  matrix with 1s on part of th 

  diagona 

  corr 

spondingto th    v  ctors(v1, . . . , vm) and 0s on th

 

 r 

st of th 

 diagona 

. H 

nc 

 trac 

 P = dimrang 

 P ³ 0.10. L  t (v

1, . . . , vn) b

 

 som 

 basis of V and  

t A = /(T, (v1, . . . , vn)). L

 

t a1, . . . , an b

 

th   diagona 

  

 

  m  nts of A. By proposition 6.47 T

  has th   matrix A, so that th 

diagona 

  

 

  m  nts of A ar

 

  a1, . . . , an

Page 93: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 93/99

. By th  or  m 10.11 w   hav 

trac 

(T) = a1 + . . . + an = a1 + . . . + an = trac

 

(T).11. A positiv    op  rator is s  

 

adjoint. By th    sp  ctra 

  th  or  mw

 

  can nd a basis(v1, . . . , vn) of   ig  nv  ctors of T. Th  n A = /(T, (v1, . . . , vn)) is a diagona

 

 matrixand by positivity of T a

 

 th 

 diagona 

   

nts a

1, . . . , an  ar

 

 positiv 

. H 

nc 

  a1 +. . . + an = 0 imp

 

i   s a1 = . . . = an = 0, so that A = 0 and h  nc    T = 0.

12. Th 

 trac 

 of T is th 

 sum of th 

  

ig 

nva 

s. H 

nc 

  l - 48 + 24 = 51 - 40 + 1, sothat l = 36.13. Choos

 

 a basis of (v1, . . . , vn) of V and

 

t A = /(T, (v1, . . . , vn)). Th

 

n th 

 matrixof cT is cA. L  t a

1, . . . , an b   th   diagona

 

  

 

  m  nts of A. Th  n w   hav 

trac  (cT) = ca1 + . . . + can = c(a1

Page 94: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 94/99

 + . . . + an) = ctrac  (T).14. Th      xamp

 

    in   x  rcis    6 shows that this is fa 

s  . For anoth 

r   xamp 

    tak    S =T = I.15. Choos    a basis (v1, . . . , vn) for V and

 

  t A = /(T, (v1, . . . , vn)). It's suci  nt toprov

 

  that A = 0. Now  

t ai,j  b

 

  th 

  

 

 

nt in row i, co 

umn j of A. L 

t B b 

th   matrix with 1 in row j co 

umn i and 0  

 

s  wh  r  . Th  n it's   asy to s    that inBA th   on

 

y non 

z  ro diagona 

  

 

  m  nt is ai,j. Thus trac  (BA) = ai,j

. L 

t S b 

 th 

op 

rator corr 

sponding to B. It fo  

ows that ai,j = trac

 

(ST) = 0, so that A = 0.3316. L

 

t TT

 

i  = a1

 

1

 + . . . + an 

n. Th  n w    hav    that ai  = ¸TT 

i,  

i) = |T 

i|2byth   ortogona

 

ity of (  

1, . . . ,

 

n). C

 

  ar 

y ai

Page 95: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 95/99

  is th    ith diagona 

   

 

  m  nt in th   matrix/(TT, ( 

1, . . . ,

 

n)), so thattrac  (TT) = |T 

1|2+ . . . +|T  

n|2.Th

 

 s 

cond ass 

rtion fo  

ows imm 

diat  

y.17. Choos    a basis (v1, . . . , vn

) such that T has an upp 

r triangu 

ar matrix B = (bij)with

 

ig 

nva 

s l1, . . . , ln on th

 

 diagona 

. Now th 

  ith     

nt on th 

 diagona 

 ofBB is n

j=1 bjibji =

nj=1[bji[2

, wh 

 [bii[2= [li[2. H  nc 

n

Page 96: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 96/99

i=1[li[2£n

i=1n

j=1[bji[2= trac

 

(BB) = trac

 

(AA) =n

k=1n

j=1[ajk[2.18. Positivity and d

    nit 

ss fo  

ows from 

rcis 

  16 and additivityin th    rst s

 

otfrom coro

 

ary 10.12. Homog 

ity in th 

 rst s 

ot is 

rcis 

 13 and by 

rcis   10

¸S, T) = trac 

(ST) = trac

 

((ST)) = trac  (TS) = ¸T, S).It fo

 

ows that th    formu 

a d    n  s an inn  r 

product.19. W    hav    0 £ ¸Tv, Tv) - ¸Tv, T

v) = ¸(TT -TT)v, v). H  nc    TT - TT  is a

Page 97: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 97/99

positiv    op  rator (it's c 

  ar 

y s 

 

adjoint), but trac  (TT - TT) = 0, so a

 

  th 

 

ig 

nva 

s ar 

 0. H 

nc 

  TT -TT = 0 by th

 

 sp 

ctra 

 th 

or 

m, so T is norma 

.20. L  t dimV = n and writ    A = /(T). Th  n w   hav 

t cT = d 

t cA =

scas(1),1  cas(n),n = cndet A = cndet T21. Let S = I and T = -I. Then we have 0 = det(S + T) ,= det S + det T =

1 + 1 = 2.22. We can u 

e the re 

ult of the next exerci 

e which mean 

 that we only need to provethi

 

  for the complex ca 

e. Let T Î L(Cn) be the operator corre

 

ponding to thematrix A. Now each block Aj  on the diagonal corre  pond    to   ome ba   i    vector  

(ei, . . . , ei+k

). The 

e can be replaced with another 

et of vector 

, (vi, . . . , vi+k),   pan

 

ning the   ame   ub  pace   uch that Aj  in thi

 

 new ba 

 i 

 upper 

triangular. We haveT(  pan(vi, . . . , vi+k)) ⊂ span(v

i, . . . , vi+k), so after doing this for all blocks we canassume that A is upper

 

triangular. The claim follows immediately.23. This follows trivially from the formula of trace and determinant for a matrix, becausethe formulas only depends on the elements of the matrix.3424. Let dimV = n and let A = /(T), so that B = /(T) equals the conjugate tran

Page 98: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 98/99

sposeof A i.e. bij = aji. Then we havedet T = det A =

sas(1),1  as(n),n=

sa1,s(1)  an,s(n) =

sa

1,s(1)  an,s(n)=

sbs(1),1  bs(n),n = det B = det T.

The r 

t equality on the 

econd line follow 

 ea 

ily that every term in the upper 

umi

 

 repre 

ented by a term in the lower 

um and vice ver 

a. The 

econd claim follow

 

immediately from theorem 10.31.25. Let W = ¦(x, y, z) Î R3[ x2+ y2+ z2

< 1¦ and let T be the operator T(x, y, z) =(ax, by, cz). It's easy to see that T(W) is the ellipsoid. Now W is a circle with radius1. Hence[ det T[volume(W) = abc43p =  43

Page 99: Solutions to Axler Linear Algebra Done Right PDF

7/21/2019 Solutions to Axler Linear Algebra Done Right PDF

http://slidepdf.com/reader/full/solutions-to-axler-linear-algebra-done-right-pdf 99/99

pabc,which is the volume of an elli

 

soid.35