solution tutorial ump

Upload: muhammad-zulqarnain-iskandar

Post on 10-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/8/2019 Solution Tutorial ump

    1/5

    Solution Tutorial 2:

    1(a):2)1()1( +=++ xy

    dx

    dyx

    )1(

    )1(

    )1(

    2

    +

    +=

    ++

    x

    x

    x

    y

    dx

    dy

    )1()1(

    +=+

    + xx

    y

    dx

    dy

    Linear differential equation 1)(,)1(

    1)( +=

    += xxq

    xxp

    To find integrating factor:

    )1ln(1

    )( +=+

    = xxdx

    dxxp

    Then, integrating factor is )1()( )1ln( +== + xex x

    ( ) 2)1()1)(1()()( +=++== xxxxxyxdx

    d (1)

    To find the general solution, integrate (1)

    ( ) += dxxdxyxdxd 2)1()(

    Ax

    ++

    =3

    )1( 3

    Ax

    yx ++

    =+3

    )1()1(

    3

    )1(3

    )1( 2

    ++

    +=

    x

    Axy

    (b):xxy

    dx

    dycoscot =+

    xdxxdxxp sinlncot)( ==xx sin)( =

    = xdxxxy cossinsin

    A

    xxdx +== 4

    2cos2sin

    2

    1

    The general solution is

    Ax

    xy +=4

    2cossin

    Bxxy =+ 2cossin4

    (c):

    2 2 5

    2 2 5

    6 2

    ( ) 6 and ( ) 2

    dxt x t t

    dt

    p t t q t t t

    + = +

    = = +

  • 8/8/2019 Solution Tutorial ump

    2/5

    ( ) ( )

    ( )

    ( )

    23

    3 3

    3 3 3

    3

    3

    3 3

    6 2

    2 2 2 5

    2 2 2 2 5

    2

    2 2

    2 5 2 2 3

    2

    2 ----------(i)

    * (**)

    (*): (integrate by substitution)6

    (**):2 2

    t dt t

    t t

    t t t

    t

    t

    t t

    e e

    de x e t t

    dt

    e x e t dt e t dt

    ee t dt

    e t dt e t t dt

    = =

    = +

    = +

    =

    =

    3

    3

    3

    3

    3 3

    3 3 3

    3

    3 2 2

    2

    2

    2

    3 2 2

    2 2

    3

    2 2 2

    2 3

    let '

    ' 36

    12

    6 2

    3 6

    From (i):

    6 3 6

    ( )

    t

    t

    t

    t

    t t

    t t t

    t

    u t v e t

    eu t v

    et e t dt

    e et

    e e ee x t C

    x t

    = =

    = =

    =

    =

    = + +

    33

    2

    3

    ttCe

    = +

    (f)

    2 3 4

    4

    3 4 2 3

    3 4

    4

    32

    3

    cos ...............(1)

    Divide eqn(1) with

    cos ........(2)

    Let ; 3

    1or3

    Substitute v and into eqn(2)

    cos3

    3 3cos

    dy x y x y x

    dx

    y

    dy x y x y x

    dx

    dv dyv y y

    dx dx

    dy dvydx dx

    dy

    dx

    x dv x v x

    dx

    dvv x

    dx x x

    =

    + =

    = =

    =

    + =

    + =

    3ln3)( x

    x

    dxdxxp ==

    3)( xx =

  • 8/8/2019 Solution Tutorial ump

    3/5

    The general solution in v:3 cos 3sinvx xdx x A= = +

    3

    33sin

    xx A

    y= +

    2.

    (a)

    ( )

    20

    20 20

    110 12

    2

    20 24

    ( ) 20, ( ) 24

    20 20.

    24

    t

    t t

    dii

    dt

    dii

    dt

    p t q t

    dt ti f e

    de i e

    dt

    + =

    + =

    = =

    =

    =

    =

    20 20

    20

    24

    6

    5

    t t

    t

    e i e dt

    e C

    =

    = +

    206( )5

    ti t Ce = +

    ( )20

    Impose the condition, 0, 0

    6

    5

    6( ) 1

    5

    t

    i t

    C

    i t e

    = =

    =

    =

    (b)

    ( )

    5

    5 5

    2 10 20cos 5

    5 10 cos 5

    ( ) 5, ( ) 10 cos 5

    5 5

    .

    10 cos 5

    t

    t t

    dii t

    dt

    di i tdt

    p t q t t

    dt t

    i f e

    de i e t

    dt

    + =

    + =

    = =

    =

    =

    =

    ( )

    5 5

    5

    10 cos5

    cos5 sin 5

    t t

    t

    e i e tdt

    e t t C

    =

    = + +

    5( ) cos5 sin 5 ti t t t Ce = + +

  • 8/8/2019 Solution Tutorial ump

    4/5

    5

    Impose the condition, 0, 0

    1

    ( ) cos5 sin 5 t

    i t

    C

    i t t t e

    = =

    =

    = +

    3.(a) 0)()( =+++ dyxeedxyee

    yxxy

    xyxy eey

    MyeeyxM +=

    +=),(

    yxyxee

    x

    NxeeyxN +=

    +=),(

    x

    N

    y

    M

    =

    0)()( =+++ dyxeedxyee yxxy is an exact difftn. equation.

    xy yee

    x

    u+=

    (1)yx xee

    y

    u+=

    (2)

    To find the general solution ),( yxu , we integrate (1) with respect to x

    +=

    = dxyeedxx

    uyxu xy )(),(

    )(yyexexy ++= (3)

    where )( y is some function in terms ofy only.

    Differentiate (3) with respect to y,

    )(' yexey

    u xy++=

    (4)

    Compare (4) with (2), we have0)(' =y

    ThereforeAy =)( , A a constant

    The general solution is

    )(),( yyexeyxu xy ++=kAyexe xy =++=

    that is

    kABByexeyxu xy ==++= ,0),(

    (b) 0)(2 =+ dyyxydx

    1),( =

    =

    y

    MyyxM

    1)(),( 2 =+=xNyxyxN

  • 8/8/2019 Solution Tutorial ump

    5/5

    x

    N

    y

    M

    0)( 2 =+ dyyxydx is not an exact diffrtn. equation.

    (c)

    ( ) ( )

    ( )

    2 2

    2 2

    2 2

    2 2

    2 2

    2 0 , 1 2

    !

    2 2

    2 ( )2

    ( )2

    Rejecting the term in (ii) that already

    dx

    xt x t xdt

    Exact

    uM xt xt dx

    x

    x tx i

    u N x t x tdt

    t

    x t

    ii

    = =

    = =

    =

    = =

    =

    2 2

    exist in (i) and then equate to the constant.

    u(t,x) 22

    x tx k = =

    2 2

    2 2

    2 (where C any constant)2

    Impose the condition:

    42(2) 22

    2 22

    or

    x tx C

    C C

    x tx

    =

    = =

    =