solution thermodynamics theory—part iv chapter 11

32
Solution thermodynamics theory— Part IV Chapter 11

Upload: alexander-johnston

Post on 21-Dec-2015

299 views

Category:

Documents


8 download

TRANSCRIPT

Page 1: Solution thermodynamics theory—Part IV Chapter 11

Solution thermodynamics theory—Part IV

Chapter 11

Page 2: Solution thermodynamics theory—Part IV Chapter 11

When we deal with mixtures of liquids or solids

• We define the ideal solution model

• Compare it to the ideal gas mixture, analyze its similarities and differences

Page 3: Solution thermodynamics theory—Part IV Chapter 11

)ln()( PyRTT iiig

i

iig

iigi

iig

i

yRTPTG

PRTTG

ln),(

ln)(

iiidi xRTPTG ln),(

This eqn. is obtained by combining

Component i in a mixtureof ideal gases

Now we define

Ideal solution model

Page 4: Solution thermodynamics theory—Part IV Chapter 11

Other thermodynamic propertiesfor the ideal solution: partial molar volume

iii

idi

ii

id

i

T

i

xT

idiid

i

VxVxV

VP

G

P

GV

,

iiid

i xRTPTGG ln),(

Page 5: Solution thermodynamics theory—Part IV Chapter 11

partial molar entropy in the ideal solution

ii i

iiiid

ii

iid

iii

P

i

xP

idiid

i

xxRSxSxS

xRSxRT

G

T

GS

ln

lnln,

iiid

i xRTPTGG ln),(

Page 6: Solution thermodynamics theory—Part IV Chapter 11

partial molar enthalpy in the ideal solution

ii

iidi

ii

id

iiiiiid

iid

iidi

HxHxH

HxRTTSxRTGSTGH

lnln

iiid

i xRTPTGG ln),(

Page 7: Solution thermodynamics theory—Part IV Chapter 11

Chemical potential ideal solution

i

iii f

fRTG

ˆln

iii fRTTG ln)(

iii fRTT ˆln)( Chemical potential component i in a Real solution

Chemical potential Pure component i

Subtracting:

For the ideal solution

i

idi

iid

i f

fRTG

ˆln

Page 8: Solution thermodynamics theory—Part IV Chapter 11

Lewis-Randall rule

iid

i

iiid

i fxf

ˆ

ˆi

idi

iid

i

iiid

i

f

fRTG

xRTG

ˆln

ln

Lewis-Randall rule

(Dividing by Pxi each side of the equation)

Page 9: Solution thermodynamics theory—Part IV Chapter 11
Page 10: Solution thermodynamics theory—Part IV Chapter 11
Page 11: Solution thermodynamics theory—Part IV Chapter 11
Page 12: Solution thermodynamics theory—Part IV Chapter 11

When is the ideal solution valid?

• Mixtures of molecules of similar size and similar chemical nature

• Mixtures of isomers• Adjacent members of homologous series

Page 13: Solution thermodynamics theory—Part IV Chapter 11

Virial EOS applied to mixtures

RT

BPZ 1

ijji j

i ByyB

Page 14: Solution thermodynamics theory—Part IV Chapter 11

How to obtain the cross coefficients Bij

10ˆ BBB ijij

cij

cijij

ij T

PBB ˆ

Mixing rules for Pcij, Tcij, ij, 11-70 to 11.73

Page 15: Solution thermodynamics theory—Part IV Chapter 11

Fugacity coefficient from virial EOS

i

22111212

1222111

2

ˆln

BBB

yBRT

P

For a multicomponent mixture, see eqn. 11.64

Page 16: Solution thermodynamics theory—Part IV Chapter 11

problem• For the system methane (1)/ethane (2)/propane (3)

as a gas, estimate

at T = 100oC, P = 35 bar, y1 =0.21, and y2 =0.43

321321ˆ,ˆ,ˆˆ,ˆ,ˆ and fff

Pyf

BBT

P

kid

kid

k

kkkkrk

rkidk

ˆ

)(exp 10

Assume that the mixture is an ideal solution

Obtain reduced pressures, reduced temperatures, and calculate

Page 17: Solution thermodynamics theory—Part IV Chapter 11

Results: methane (1) ethane (2) propane (3)

barfff

barfff

ididid 57.9ˆ;25.13ˆ;18.7ˆ

76.0;88.0;98.0

76.9ˆ;25.13ˆ;49.7ˆ

78.0ˆ;88.0ˆ;02.1ˆ

321

321

321

321

Virial model

Ideal solution

Page 18: Solution thermodynamics theory—Part IV Chapter 11

Now we want to define a new type of residual properties

• Instead of using the ideal gas as the reference, we use the ideal solution

Page 19: Solution thermodynamics theory—Part IV Chapter 11

Excess properties

idE MMM The most important excess function is the excess Gibbs free energy GE

Excess entropy can be calculated from the derivative of GE wrt T

Excess volume can be calculated from the derivative of GE wrt P

And we also define partial molar excess properties

Page 20: Solution thermodynamics theory—Part IV Chapter 11
Page 21: Solution thermodynamics theory—Part IV Chapter 11

:

ln)(

ˆln)(

gsubtractin

fxRTTG

fRTTG

iiiid

i

iii

ii

ii fx

f Definition of activity coefficient

Page 22: Solution thermodynamics theory—Part IV Chapter 11

Summary

iR

i

iE

i

RTG

RTG

ˆln

ln

Page 23: Solution thermodynamics theory—Part IV Chapter 11

Summary

iiii

iiidi

iigi

igi

xRTG

xRTG

yRTG

ln

ln

ln

Page 24: Solution thermodynamics theory—Part IV Chapter 11

Note that:

ii

iiiiiiii

idii

iiiiiidi

iiiigi

igi

fRTT

fxRTTxRTG

fRTT

fxRTTxRTG

PyRTTyRTG

ˆln)(

ln)(ln

ˆln)(

ln)(ln

ln)(ln

Page 25: Solution thermodynamics theory—Part IV Chapter 11

problem• The excess Gibbs energy of a binary liquid mixture

at T and P is given by

2121 )8.16.2(/ xxxxRTGE

a) Find expressions for ln 1 and ln 2 at T and P

Using x2 =1 – x1

GE/RT= x12 -1.8 x1 +0.8 x1

3

Page 26: Solution thermodynamics theory—Part IV Chapter 11

Since i comes from

iE

i RTG lnWe can use eqns 11.15 and 11.16

21

12

11

21

ln

ln

RTdx

dGxGG

RTdx

dGxGG

EEE

EEE

Page 27: Solution thermodynamics theory—Part IV Chapter 11

then

211

1

4.228.1/

xxdx

RTdGE

31

212

31

2111

6.1ln

6.14.128.1ln

xx

xxx

And we obtain

Page 28: Solution thermodynamics theory—Part IV Chapter 11

If we apply the additivity rule and the Gibbs-Duhem equation

0ln

ln

ii

i

ii

i

E

dx

xRT

G

At T and P

(b and c) Show that the ln i expressions satisfy these equations Note: to apply Gibbs-

Duhem, divide the equation by dx1 first

Page 29: Solution thermodynamics theory—Part IV Chapter 11

Plot the functions and show their values

-3

-2.5

-2

-1.5

-1

-0.5

0

0 0.2 0.4 0.6 0.8 1

x1

GE/RT

ln g2

ln g1

ln 2

ln 1

GE/RT

Page 30: Solution thermodynamics theory—Part IV Chapter 11
Page 31: Solution thermodynamics theory—Part IV Chapter 11
Page 32: Solution thermodynamics theory—Part IV Chapter 11