solution manual for - springer

110
Solution Manual for Structural Dynamics: Theory and Computation Sixth Edition Mario Paz and Young Hoon Kim

Upload: others

Post on 17-Oct-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Solution Manual for

Structural Dynamics: Theory and Computation

Sixth Edition

Mario Paz and Young Hoon Kim

1

1.1

If the weight w is displaced by amount, y, the beam and the springs will exert a total force on the mass of

๐‘ƒ = #3๐ธ๐ผ๐ฟ( + 2๐‘˜,๐‘ข

The beam and springs act in parallel. The equivalent stiffness is:

๐‘˜. =๐‘ƒ๐‘ข = #

3๐ธ๐ผ๐ฟ( + 2๐‘˜,

Natural frequency:

๐œ” = 0๐‘˜๐‘š = 0๐‘”

๐‘Š #3๐ธ๐ผ๐ฟ( + 2๐‘˜,

Natural period:

๐‘‡ =2๐œ‹๐œ” = 2๐œ‹๐ฟ0

๐‘Š๐‘” #

๐ฟ3๐ธ๐ผ + 2๐‘˜๐ฟ(,

1.2 Stiffness:

๐‘˜. = #3๐ธ๐ผ๐ฟ( + 2๐‘˜, =

3 ร— 109

100( + 2 ร— 1000 = 4,300๐‘™๐‘/๐‘–๐‘›. Natural frequency:

๐œ” = 0๐‘˜๐‘š = 04300 ร— 386

3000 = 23.52๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

Free vibration response of undamped oscillator:

๐‘ข(๐‘ก) = ๐‘ขO๐‘๐‘œ๐‘ ๐œ”๐‘ก +๏ฟฝ๏ฟฝO๐œ” ๐‘ ๐‘–๐‘›๐œ”๐‘ก

2

๏ฟฝ๏ฟฝ(๐‘ก) = โˆ’๐‘ขO๐œ”๐‘ ๐‘–๐‘›๐œ”๐‘ก + ๏ฟฝ๏ฟฝO๐‘๐‘œ๐‘ ๐œ”๐‘ก Displacement and velocity at ๐‘ก = 1๐‘ ๐‘’๐‘ with the initial values

๐‘ขO = 1๐‘–๐‘›. , ๏ฟฝ๏ฟฝO = 20๐‘–๐‘›./๐‘ ๐‘’๐‘:

๐‘ข(1) = 1 โˆ™ ๐‘๐‘œ๐‘ (23.5 โˆ™ 1) +2023.5 ๐‘ ๐‘–๐‘›

(23.5 โˆ™ 1) = โˆ’0.89๐‘–๐‘›. ๏ฟฝ๏ฟฝ(1) = โˆ’1 โˆ™ 23.5๐‘ ๐‘–๐‘›(23.5 โˆ™ 1) + 20๐‘๐‘œ๐‘ (23.5 โˆ™ 1) = 22.66๐‘–๐‘›./๐‘ ๐‘’๐‘

1.3 The stiffness of the beam is

๐‘˜ = V12๐ธ๐ผW๐ฟ( +

3๐ธ(2๐ผX)๐ฟ( Y =

12 โˆ™ (30 โˆ™ 10Z) โˆ™ 170.9144( +

3 โˆ™ (30 โˆ™ 10Z) โˆ™ 82.5144( = 25,577๐‘™๐‘/๐‘–๐‘›.

Natural frequency:

๐‘“ =12๐œ‹

0๐‘˜๐‘š =

12๐œ‹

025,577 ร— 386

50,000 = 2.24๐‘๐‘๐‘ 

1.4 a) Infinitely rigid horizontal member Stiffness:

๐‘˜ = 2 #12๐ธ๐ผ๐ฟ( , =

12 โˆ™ (30 โˆ™ 10Z) โˆ™ 171(12 โˆ™ 15)( = 21,100๐‘™๐‘/๐‘–๐‘›.

Natural frequency:

3

๐œ” = 0๐‘˜๐‘š = 0

21,100 ร— 38625,000 = 18.05๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

๐‘“ =๐œ”2๐œ‹ = 2.87๐‘๐‘๐‘ 

b) Flexible horizontal member consisting of W18X30 Compute the stiffness by moment distribution method. Displace the frame horizontally by one inch and determine the stiffness of the frame as the sum of the shear forces in both columns. Take advantage of the symmetry by modifying the stiffness of horizontal member by factor 3/2.

Distribution factors

๐‘˜^_ =4๐ธ๐ผ๐ฟ =

4๐ธ๐ฟ โˆ™ 171 โ†’ 171 โ†’ 0.1244

๐‘˜^a =4๐ธ๐ผ๐ฟ32 =

4๐ธ๐ฟ โˆ™

32 โˆ™ 802 โ†’ 1203 โ†’ 0.8756

Fixed end moments:

๐‘€^_ = ๐‘€_^ =6๐ธ๐ผ๐ฟX =

6 โˆ™ (30 โˆ™ 10Z) โˆ™ 170.9(12 โˆ™ 15)X

= 950(๐‘˜ โˆ’ ๐‘–๐‘›. ) Shear force:

๐‘˜ =832 + 891

180 โˆ™ 2 = 19.14๐‘˜๐‘–๐‘/๐‘–๐‘›. Natural frequency:

๐‘“ =12๐œ‹

0๐‘˜๐‘š =

12๐œ‹

019,140 ร— 386

25,000 = 2.74๐‘๐‘๐‘ 

Note: 1. Assuming a flexible girder decreases the natural frequency by only

832

A

950 -59

891

0.1244 0.8756

950 -118

-832 -832

B C

D

4

1 โˆ’2.742.87 = 0.05 = 5%

2. Adding the weight of the girder and half of the weight of the two columns decrease the

natural frequency by:

๐‘Š = 25,000 + 50 โˆ™ 15 + 2 โˆ™ 33 โˆ™152 = 26,2456๐‘™๐‘

๐‘“ =12๐œ‹

0๐‘˜๐‘š =

12๐œ‹

019,140 ร— 386

26,245 = 2.67๐‘๐‘๐‘ 

1 โˆ’2.672.74 = 0.05 = 2.5%

1.5

Stiffness coefficient:

๐‘˜ = 2#12๐ธ๐ผ(2 ๐ฟโ„ )(, =

192 โˆ™ ๐ธ๐ผ(๐ฟ)(

Natural frequency:

๐œ” = 0๐‘˜๐‘š = 0

192 โˆ™ ๐ธ๐ผ๐‘”(๐ฟ)(๐‘Š

๐‘“ =๐œ”2๐œ‹ =

4๐œ‹0

3 โˆ™ ๐ธ๐ผ๐‘”(๐ฟ)(๐‘Š

1.6

๐œ” = 0๐‘˜๐‘š = 0

192 โˆ™ 10e โˆ™ 386(120)( โˆ™ 5,000 = 92.61๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

๐‘ข(๐‘ก = 2) = ๐‘ขO๐‘๐‘œ๐‘ ๐œ”๐‘ก +๏ฟฝ๏ฟฝO๐œ” ๐‘ ๐‘–๐‘›๐œ”๐‘ก = 0.5 cos(92.61 โˆ™ 2) +

1592.61 ๐‘ ๐‘–๐‘›

(92.61 โˆ™ 2)

๐‘ข(๐‘ก = 2) = โˆ’0.474๐‘–๐‘›.

5

๏ฟฝ๏ฟฝ(๐‘ก) = โˆ’๐‘ขO๐œ”๐‘ ๐‘–๐‘›๐œ”๐‘ก + ๏ฟฝ๏ฟฝO๐‘๐‘œ๐‘ ๐œ”๐‘ก = โˆ’92.61 โˆ™ 0.5 โˆ™ sin(92.61 โˆ™ 2) + 15๐‘๐‘œ๐‘ (92.61 โˆ™ 2)

๏ฟฝ๏ฟฝ(๐‘ก = 2) = โˆ’21.05๐‘–๐‘›./๐‘ ๐‘’๐‘

๏ฟฝ๏ฟฝ(๐‘ก) = โˆ’๐œ”X๐‘ขO๐‘๐‘œ๐‘ ๐œ”๐‘ก โˆ’ ๏ฟฝ๏ฟฝO๐œ”๐‘ ๐‘–๐‘›๐œ”๐‘ก = โˆ’๐œ”X๐‘ข(๐‘ก)

๏ฟฝ๏ฟฝ(๐‘ก = 2) = 4,665๐‘–๐‘›./๐‘ ๐‘’๐‘X

1.7

l๐‘€m = ๐ผ โˆ™ ๐›ผ

๐›ผ = ๐‘Ž๐‘ฃ๐‘”. ๐‘Ž๐‘๐‘.

โˆ’๐‘š โˆ™ ๐‘” โˆ™ ๐ฟ โˆ™ ๐‘ ๐‘–๐‘›๐œƒ = ๐‘š โˆ™ ๐ฟX โˆ™ ๏ฟฝ๏ฟฝ

For ๐œƒ small, ๐‘ ๐‘–๐‘›๐œƒ โ‰ˆ ๐œƒ

0 = ๏ฟฝ๏ฟฝ +๐‘”๐ฟ โˆ™ ๐œƒ

๐œƒ = ๐œƒm๐‘๐‘œ๐‘ ๐œ”๐‘ก +๏ฟฝ๏ฟฝm๐œ” ๐‘ ๐‘–๐‘›๐œ”๐‘ก

Where ๐œ” = rst is the natural frequency.

T

W= mg

6

1.8

l๐‘€m = ๐ผ โˆ™ ๐›ผ

โˆ’๐‘˜ โˆ™ ๐‘Ž โˆ™ ๐‘ก๐‘Ž๐‘›๐œƒ โˆ™ ๐‘Ž + ๐‘š โˆ™ ๐‘” โˆ™ ๐ฟ โˆ™ ๐‘ ๐‘–๐‘›๐œƒ = ๐‘š โˆ™ ๐ฟX โˆ™ ๏ฟฝ๏ฟฝ

For ๐œƒ small, ๐‘ ๐‘–๐‘›๐œƒ โ‰ˆ ๐œƒ๐‘ก๐‘Ž๐‘›๐œƒ โ‰ˆ ๐œƒ

๐‘š โˆ™ ๐ฟX โˆ™ ๏ฟฝ๏ฟฝ + (๐‘˜ โˆ™ ๐‘ŽX โˆ’ ๐‘š โˆ™ ๐‘” โˆ™ ๐ฟ)๐œƒ = 0

๐‘“ =12๐œ‹

0๐‘˜ โˆ™ ๐‘ŽX โˆ’ ๐‘š โˆ™ ๐‘” โˆ™ ๐ฟ๐‘š โˆ™ ๐ฟX

Note: If ๐‘š โˆ™ ๐‘” โˆ™ ๐ฟ > ๐‘˜ โˆ™ ๐‘ŽX, the inverted pendulum is unstable.

L a

mg ๐‘˜๐‘Ž๐‘ ๐‘–๐‘›๐œƒ

๐œƒ

7

1.13 The deflection curve may be assumed to have the shape shown in Fig. 1.13 (a), which is bend due to a force at the top of the pole.

In this case the slope ๐œƒ at the tip is given as

๐œƒ =๐‘ƒ๐ฟX

2๐ธ๐ผ and the displacement ๐›ฟ as

๐›ฟ =๐‘ƒ๐ฟ(

3๐ธ๐ผ

The distance ๐‘Ž is

๐‘Ž =๐›ฟ๐œƒ =

23๐ฟ

and is independent of ๐œƒ. Go a first approximation: therefore, it may be assumed that the system is essentially equivalent to that of Fig. 1.13 (b) in which the stiffness is given by

๐‘˜ =๐‘ƒ๐›ฟ =

3๐ธ๐ผ๐ฟ(

From Fig. 1.13 (c) taking moments about O,

๐œƒ

y

a

ky

O

Ry

Rx

mg

a

P

๐œƒ

d

O

O

a

Fig. 1.13 (a)

Fig. 1.13 (b) Fig. 1.13 (c)

8

l๐‘€m = ๐ผ โˆ™ ๐›ผ

โˆ’๐‘˜ โˆ™ ๐‘Ž โˆ™ ๐‘๐‘œ๐‘ ๐œƒ โˆ™ ๐‘Ž + ๐‘š โˆ™ ๐‘” โˆ™ ๐ฟ โˆ™ ๐‘ ๐‘–๐‘›๐œƒ = ๐‘š โˆ™ ๐‘ŽX โˆ™ ๏ฟฝ๏ฟฝ

For small ๐œƒ๐‘๐‘œ๐‘ ๐œƒ โ‰ˆ 1๐‘ ๐‘–๐‘›๐œƒ โ‰ˆ ๐œƒ๐‘ฆ = ๐‘Ž๐œƒ Then

๐‘š โˆ™ ๐‘ŽX โˆ™ ๏ฟฝ๏ฟฝ + (๐‘˜ โˆ™ ๐‘ŽX โˆ’ ๐‘š โˆ™ ๐‘” โˆ™ ๐‘Ž)๐œƒ = 0

๐‘“ =12๐œ‹

0๐‘˜๐‘š โˆ’

๐‘”๐‘Ž =

12๐œ‹

03๐ธ๐ผ๐‘š๐ฟ( โˆ’

3๐‘”2๐ฟ

1.15 Case a) The spring constant ๐‘˜x for the beam is

๐‘˜x =3๐ธ๐ผ๐ฟ(

Springs are in series, therefore the equivalent stiffness is

1๐‘˜.=1๐‘˜ +

1๐‘˜x=1๐‘˜ +

๐ฟ(

3๐ธ๐ผ =3๐ธ๐ผ + ๐‘˜๐ฟ(

3๐ธ๐ผ ร— ๐‘˜

๐‘˜. =3๐ธ๐ผ ร— ๐‘˜3๐ธ๐ผ + ๐‘˜๐ฟ(

Natural frequency:

๐‘“ =12๐œ‹

0๐‘˜.๐‘š =

12๐œ‹

03๐ธ๐ผ โˆ™ ๐‘˜ โˆ™ ๐‘”

(3๐ธ๐ผ + ๐‘˜๐ฟ()๐‘Š

Case b) The spring constant of the beam is

9

๐‘˜x =48๐ธ๐ผ๐ฟ(

Springs are in series, therefore the equivalent stiffness is

1๐‘˜.=1๐‘˜ +

1๐‘˜x=1๐‘˜ +

๐ฟ(

48 โˆ™ ๐ธ๐ผ =48๐ธ๐ผ + ๐‘˜๐ฟ(

48๐ธ๐ผ โˆ™ ๐‘˜

Natural frequency:

๐‘“ =12๐œ‹

0๐‘˜.๐‘š =

12๐œ‹

048๐ธ๐ผ โˆ™ ๐‘˜ โˆ™ ๐‘”

(48๐ธ๐ผ + ๐‘˜ โˆ™ ๐ฟ()๐‘Š

Case c) Deflection of simply supported beam with load P is

๐›ฟ =๐‘ƒ โˆ™ ๐‘ŽX โˆ™ ๐‘X

3๐ธ๐ผ โˆ™ ๐ฟ

So

๐‘˜ =๐‘ƒ๐›ฟ =

3๐ธ๐ผ๐‘ŽX๐‘X

and

๐‘“ =12๐œ‹

03๐ธ๐ผ โˆ™ ๐ฟ โˆ™ ๐‘”๐‘ŽX๐‘X โˆ™ ๐‘Š

Case d) Stiffness of the beam, from case c)

๐‘˜x =3๐ธ๐ผ๐ฟ๐‘ŽX๐ฟX

10

Spring in series:

1๐‘˜.=1๐‘˜ +

1๐‘˜x=1๐‘˜ +

๐‘ŽX๐‘X

3๐ธ๐ผ โˆ™ ๐ฟ =3๐ธ๐ผ + ๐‘˜ โˆ™ ๐‘ŽX๐‘X

3๐ธ๐ผ โˆ™ ๐‘˜ โˆ™ ๐ฟ

Natural frequency:

๐‘“ =12๐œ‹

0๐‘˜.๐‘š =

12๐œ‹

03๐ธ๐ผ โˆ™ ๐‘˜ โˆ™ ๐‘”

(3๐ธ๐ผ โˆ™ ๐ฟ + ๐‘˜ โˆ™ ๐‘ŽX๐‘X)๐‘Š

11

1.16

Newtonโ€™s Law gives: โˆ‘๐น = 0

๐‘šW๏ฟฝ๏ฟฝW โˆ’ ๐‘˜(๐‘ขX โˆ’ ๐‘ขW) = 0 Eq.1

๐‘šX๏ฟฝ๏ฟฝX + ๐‘˜(๐‘ขX โˆ’ ๐‘ขW) = 0 Eq.2 Multiplying Eq. 1 by ๐‘šX and Eq. 2 by ๐‘šW, and subtract Eq. 1 from Eq. 2

๐‘šW๐‘šX(๏ฟฝ๏ฟฝW โˆ’ ๏ฟฝ๏ฟฝX) โˆ’ ๐‘˜(๐‘šW + ๐‘šX)(๐‘ขX โˆ’ ๐‘ขW) = 0 Let ๐‘ฆ = ๐‘ขX โˆ’ ๐‘ขW

๏ฟฝ๏ฟฝ โˆ’ ๐‘˜ #1๐‘šW

+1๐‘šX,๐‘ฆ = 0

Natural frequency:

๐‘“ =12๐œ‹

0๐‘˜ #1๐‘šW

+1๐‘šX,

u1 u2

๐‘šW๏ฟฝ๏ฟฝW ๐‘šW๏ฟฝ๏ฟฝX ๐‘˜(๐‘ขX โˆ’ ๐‘ขW)

12

2.1 The following numerical values are given:

๐ฟ = 100๐‘–๐‘›.๐ธ๐ผ = 109๐‘™๐‘.๐‘šX๐‘Š = 3,000๐‘™๐‘ ๐‘˜ = 2,000๐‘™๐‘/๐‘–๐‘›.๐‘ขO = 1.0๐‘–๐‘›.๏ฟฝ๏ฟฝO = 20๐‘–๐‘›./๐‘ ๐‘’๐‘๐œ‰ = 0.15

Stiffness:

๐‘˜. =3๐ธ๐ผ๐ฟ( + 2๐‘˜ =

3 โˆ™ 109

100( + 2 โˆ™ 2,000 = 4,300๐‘™๐‘/๐‘–๐‘›. Natural frequency:

๐œ” = 0๐‘˜๐‘š = 0

4,300 โˆ™ 3863,000 = 23.52๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

๐œ”| = ๐œ”}1 โˆ’ ๐œ‰X = 23.52}1 โˆ’ 0.15X = 23.25๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘ Displacement and velocity after๐‘ก = 1๐‘ ๐‘’๐‘.

๐‘ข(๐‘ก) = ๐ถ๐‘’๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝcos(๐œ”|๐‘ก โˆ’ ๐›ผ) ๏ฟฝ๏ฟฝ(๐‘ก) = โˆ’๐ถ๐‘’๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ[๐œ‰๐œ” cos(๐œ”|๐‘ก โˆ’ ๐›ผ) + ๐œ”|sin(๐œ”|๐‘ก โˆ’ ๐›ผ)]

where

๐ถ = 0๐‘ขOX +(๏ฟฝ๏ฟฝO + ๐‘ขO๐œ‰๐œ”)X

๐œ”|X= 01X +

(20 + 0.15 โˆ™ 23.52)X

23.52X = 1.423๐‘–๐‘›.

13

2.2 From problem 1.6

๐œ” = 0๐‘˜๐‘š = 0

192 โˆ™ 10e โˆ™ 386(120)( โˆ™ 5,000 = 92.61๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

Natural frequency:

๐œ”| = ๐œ”}1 โˆ’ ๐œ‰X = 92.61}1 โˆ’ 0.10X = 92.15๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

๐‘ข(๐‘ก) = ๐ถ๐‘’๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝcos(๐œ”|๐‘ก โˆ’ ๐›ผ) ๏ฟฝ๏ฟฝ(๐‘ก) = โˆ’๐ถ๐‘’๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ[๐œ‰๐œ” cos(๐œ”|๐‘ก โˆ’ ๐›ผ) + ๐œ”|sin(๐œ”|๐‘ก โˆ’ ๐›ผ)] ๏ฟฝ๏ฟฝ(๐‘ก) = ๐ถ๐‘’๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ[2๐œ‰๐œ”๐œ”|sin(๐œ”|๐‘ก โˆ’ ๐›ผ) + (๐œ‰X๐œ”X โˆ’ ๐œ”|X)cos(๐œ”|๐‘ก โˆ’ ๐›ผ)]

For initial conditions (๐‘ก = 0sec)

๐‘ขO = 0.5๐‘–๐‘›.๏ฟฝ๏ฟฝO = 15๐‘–๐‘›./๐‘ ๐‘’๐‘

๐ถ = 0๐‘ขOX +(๏ฟฝ๏ฟฝO + ๐‘ขO๐œ‰๐œ”)X

๐œ”|X= 00.5X +

(15 + 0.5 โˆ™ 0.1 โˆ™ 92.61)X

92.15X = 0.5435๐‘–๐‘›.

tan ๐›ผ =๏ฟฝ๏ฟฝO + ๐‘ขO๐œ‰๐œ”๐œ”|๐‘ขO

=15 + 0.5 โˆ™ 0.1 โˆ™ 92.61

0.5 โˆ™ 92.15 = 0.4261

๐›ผ = arctan(0.4261) = 23.08 Final conditions (๐‘ก = 2sec)

๐‘’๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ = ๐‘’๏ฟฝO.Wโˆ™eX.ZWโˆ™X = 9.0364 โˆ™ 10๏ฟฝe cos(๐œ”|๐‘ก โˆ’ ๐›ผ) = cos(92.15 โˆ™ 2 โˆ’ 23.077) = โˆ’0.9468 sin(๐œ”|๐‘ก โˆ’ ๐›ผ) = cos(92.15 โˆ™ 2 โˆ’ 23.077) = 0.3219

๐‘ข(๐‘ก = 2) = 0.5435 โˆ™ 9.0364 โˆ™ 10๏ฟฝe โˆ™ โˆ’0.9468 ๏ฟฝ๏ฟฝ(๐‘ก = 2) = โˆ’0.5435 โˆ™ 9.0364 โˆ™ 10๏ฟฝe[โˆ’0.1 โˆ™ 92.61 โˆ™ 0.9468 + 92.15 โˆ™ 0.3219]

= โˆ’4.084 โˆ™ 10๏ฟฝ9๐‘–๐‘›./๐‘ ๐‘’๐‘ ๏ฟฝ๏ฟฝ(๐‘ก = 2) = 0.5435 โˆ™ 9.0364

โˆ™ 10๏ฟฝe[2 โˆ™ 0.1 โˆ™ 92.61 โˆ™ 92.15 โˆ™ 0.3219 โˆ’ (0.1X โˆ™ 92.61X โˆ’ 92.15X) โˆ™ 0.9468]= 4.18 โˆ™ 10๏ฟฝ๏ฟฝ๐‘–๐‘›./๐‘ ๐‘’๐‘X

14

2.3 The following numerical values are given:

๐‘˜ = 200๐‘™๐‘/๐‘–๐‘›. ๐‘š = 10๐‘™๐‘ โˆ™ ๐‘ ๐‘’๐‘X/๐‘–๐‘›.

๐‘๏ฟฝ๏ฟฝ = 2โˆš๐‘˜๐‘š = 2โˆš200 โˆ™ 10 = 89.443

๐‘ขW = 1.0๐‘–๐‘›. ๐‘ขX = 0.95๐‘–๐‘›.

๐›ฟ = ๐‘™๐‘›๐‘ขW๐‘ขX= ๐‘™๐‘›

10.95 = 0.0513

๐œ‰ =๐›ฟ2๐œ‹ =

0.05132๐œ‹ = 0.00816

๐‘ = ๐œ‰ โˆ™ ๐‘๏ฟฝ๏ฟฝ = 0.00816 โˆ™ 89.443๐‘™๐‘ โˆ™ ๐‘ ๐‘’๐‘/๐‘–๐‘›.

2.4 Ratio between first amplitude ๐‘ขO and amplitude after ๐‘˜ cycles:

๐‘™๐‘›๐‘ขO๐‘ข๏ฟฝ

= ๐‘˜๐›ฟ

๐›ฟ =1๐‘˜ ๐‘™๐‘›

๐‘ขO๐‘ข๏ฟฝ

=110 ๐‘™๐‘›

10.4 = 0.09163

Damping:

๐œ‰ =๐›ฟ2๐œ‹ =

0.091632๐œ‹ = 0.01458

๐œ‰ = 1.5%

15

2.5

a) for ๐œ‰ = 1

๐‘ข = (๐ถW + ๐ถX๐‘ก)๐‘’๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝX๏ฟฝ๏ฟฝ

๐‘๏ฟฝ๏ฟฝ = 2๐‘š๐œ” ๐‘ข = (๐ถW + ๐ถX๐‘ก)๐‘’๏ฟฝ๏ฟฝ๏ฟฝ

๏ฟฝ๏ฟฝ = โˆ’๐œ”(๐ถW + ๐ถX๐‘ก)๐‘’๏ฟฝ๏ฟฝ๏ฟฝ + ๐ถX๐‘’๏ฟฝ๏ฟฝ๏ฟฝ At ๐‘ก = 0

๐‘ขO = ๐ถW๏ฟฝ๏ฟฝO = โˆ’๐œ”๐ถW + ๐ถX

๐‘ข = [๐‘ขO(1 + ๐œ”๐‘ก) + ๏ฟฝ๏ฟฝO๐‘ก]๐‘’๏ฟฝ๏ฟฝ๏ฟฝ

b) for ๐œ‰ > 1 ๐‘ข = ๐ถW๐‘’๏ฟฝ๏ฟฝ๏ฟฝ + ๐ถX๐‘’๏ฟฝ๏ฟฝ๏ฟฝ

๐‘ƒW๐‘ƒX= โˆ’

๐‘2๐‘š ยฑ0๏ฟฝ

๐‘2๐‘š๏ฟฝ

Xโˆ’๐‘˜๐‘š

Using ๐œ‰ = ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๐‘๏ฟฝ๏ฟฝ = 2โˆš๐‘˜๐‘š ๐œ” = r๏ฟฝ

๏ฟฝ

๐‘ƒW๐‘ƒX= โˆ’๐œ‰๐œ” ยฑ ๐œ”๏ฟฝ

|๐œ”โ€ฒ| = ๐œ”}๐œ‰X โˆ’ 1

๐‘ข = ๐‘’๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ[๐ถW๐‘’๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ + ๐ถX๐‘’๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ]

๏ฟฝ๏ฟฝ = โˆ’๐‘’๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๐œ‰๐œ”[๐ถW๐‘’๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ + ๐ถX๐‘’๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ] + ๐‘’๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ[๐œ”โ€ฒ|๐ถW๐‘’๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โˆ’ ๐ถX๐œ”โ€ฒ|๐‘’๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ] at ๐‘ก = 0;

๐‘ขO = ๐ถW + ๐ถX ๏ฟฝ๏ฟฝO = โˆ’๐œ‰๐œ”(๐ถW + ๐ถX) + ๐œ”โ€ฒ|(๐ถW โˆ’ ๐ถX)

Solving for ๐ถW and ๐ถX

๐ถW =๏ฟฝ๏ฟฝX+ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ

X๏ฟฝ๏ฟฝ๏ฟฝ; ๐ถX =

๏ฟฝ๏ฟฝXโˆ’ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ

X๏ฟฝ๏ฟฝ๏ฟฝ

๐‘ข = ๐‘’๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ#๐‘ขO2 +

๏ฟฝ๏ฟฝO + ๐œ‰๐œ”๐‘ขO2๐œ”โ€ฒ|

, (cosh(๐œ”๏ฟฝ|๐‘ก) + sinh(๐œ”๏ฟฝ

|๐‘ก)) + #๐‘ขO2 โˆ’

๏ฟฝ๏ฟฝO + ๐œ‰๐œ”๐‘ขO2๐œ”โ€ฒ|

, (cosh(๐œ”๏ฟฝ|๐‘ก) โˆ’ sinh(๐œ”๏ฟฝ

|๐‘ก))๏ฟฝ

= ๐‘’๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๐‘ขOcosh(๐œ”๏ฟฝ|๐‘ก) +

๏ฟฝ๏ฟฝO + ๐œ‰๐œ”๐‘ขO2๐œ”โ€ฒ|

sinh(๐œ”๏ฟฝ|๐‘ก)๏ฟฝ

16

2.6 The following values are given:

๐‘˜ = 30,000๐‘™๐‘๐‘–๐‘›. ๐œ” = 25๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

Damping force:

๐น| = ๐‘๏ฟฝ๏ฟฝ

๐‘ =๐น|๏ฟฝ๏ฟฝ =

10001.0 = 1000

๐‘™๐‘ โˆ™ ๐‘ ๐‘’๐‘๐‘–๐‘›.

๐œ”X =๐‘˜๐‘š ๐‘š =

๐‘˜๐œ”X =

30,00025X = 48.0

๐‘™๐‘ โˆ™ ๐‘ ๐‘’๐‘X

๐‘–๐‘›.

๐‘๏ฟฝ๏ฟฝ = 2โˆš๐‘˜๐‘š = 2}30,000 โˆ™ 48.0 = 2,400๐‘™๐‘ โˆ™ ๐‘ ๐‘’๐‘X

๐‘–๐‘›.

a)

๐œ‰ =๐‘๐‘๏ฟฝ๏ฟฝ

=10002400 = 0.4167

b)

๐‘‡| =2๐œ‹

๐œ”}1 โˆ’ ๐œ‰X=

2๐œ‹25โˆš1 โˆ’ 0.4167X

= 0.2765๐‘ ๐‘’๐‘.

c) ๐›ฟ = ๐œ‰๐œ”๐‘‡| = 0.4167 โˆ™ 25 โˆ™ 0.2767 = 2.8801

d)

๐‘™๐‘›๐‘ขW๐‘ขX= ๐›ฟ

๐‘ขW๐‘ขX= ๐‘’  = ๐‘’X.99OW = 17.8161

17

2.7 The peaks occur whenever ๏ฟฝ๏ฟฝ = 0.

๐‘ข(๐‘ก) = ๐ถ๐‘’๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝcos(๐œ”|๐‘ก โˆ’ ๐›ผ) ๏ฟฝ๏ฟฝ(๐‘ก) = โˆ’๐ถ๐‘’๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ[๐œ‰๐œ” cos(๐œ”|๐‘ก โˆ’ ๐›ผ) + ๐œ”|sin(๐œ”|๐‘ก โˆ’ ๐›ผ)]

๏ฟฝ๏ฟฝO = 0say time ๐‘กO

0 = [๐œ‰๐œ” cos(๐œ”|๐‘กO โˆ’ ๐›ผ) + ๐œ”|sin(๐œ”|๐‘กO โˆ’ ๐›ผ)] Then at time ๐‘ก = ๐‘กO + ๐‘‡|

๏ฟฝ๏ฟฝ(๐‘กO + ๐‘‡|) = โˆ’๐ถ๐‘’๏ฟฝ๏ฟฝ๏ฟฝ(๏ฟฝ๏ฟฝ๏ฟฝยก๏ฟฝ)[๐œ‰๐œ” cos(๐œ”|๐‘กO + ๐œ”|๐‘‡| โˆ’ ๐›ผ) + ๐œ”|sin(๐œ”|๐‘กO+ ๐œ”|๐‘‡| โˆ’ ๐›ผ)]

๐œ”|๐‘‡| = 2๐œ‹

Therefore, the bracket in ๏ฟฝ๏ฟฝ(๐‘กO + ๐‘‡|) to equal to zero and there is a peak at this time. So peals occurs at 2๐œ‹ interval in ๐œ”|๐‘ก

18

2.8 The ratio ๏ฟฝยข

๏ฟฝยขยฃยค may be written as

๐‘ขยฅ๐‘ขยฅ๏ฟฝ๏ฟฝ

=๐‘ขยฅ๐‘ขยฅ๏ฟฝW

โˆ™๐‘ขยฅ๏ฟฝW๐‘ขยฅ๏ฟฝX

โˆ™๐‘ขยฅ๏ฟฝX๐‘ขยฅ๏ฟฝ(

โ‹ฏ โˆ™๐‘ขยฅ๏ฟฝ๏ฟฝ๏ฟฝW๐‘ขยฅ๏ฟฝ๏ฟฝ

Taken log on both sides

๐‘™๐‘› #๐‘ขยฅ๐‘ขยฅ๏ฟฝ๏ฟฝ

, = ๐‘™๐‘› ๏ฟฝ๐‘ขยฅ๐‘ขยฅ๏ฟฝW

โˆ™๐‘ขยฅ๏ฟฝW๐‘ขยฅ๏ฟฝX

โˆ™๐‘ขยฅ๏ฟฝX๐‘ขยฅ๏ฟฝ(

โ‹ฏ โˆ™๐‘ขยฅ๏ฟฝ๏ฟฝ๏ฟฝW๐‘ขยฅ๏ฟฝ๏ฟฝ

๏ฟฝ

= ๐‘™๐‘› #๐‘ขยฅ๐‘ขยฅ๏ฟฝW

, + ๐‘™๐‘› #๐‘ขยฅ๏ฟฝW๐‘ขยฅ๏ฟฝX

, + ๐‘™๐‘› #๐‘ขยฅ๏ฟฝX๐‘ขยฅ๏ฟฝ(

, + โ‹ฏ+ ๐‘™๐‘› #๐‘ขยฅ๏ฟฝ๏ฟฝ๏ฟฝW๐‘ขยฅ๏ฟฝ๏ฟฝ

,

๐‘™๐‘› #๐‘ขยฅ๐‘ขยฅ๏ฟฝ๏ฟฝ

, = ๐‘˜๐›ฟ

19

2.10

a) The damping force is ๐น| = ๐‘๏ฟฝ๏ฟฝ

๐‘ =๏ฟฝ๏ฟฝ๐น|

=10012 = 8.33

๐‘™๐‘ โˆ™ ๐‘ ๐‘’๐‘๐‘–๐‘›.

๐‘๏ฟฝ๏ฟฝ = 2โˆš๐‘˜๐‘š = 2}3,000 โˆ™ 1 = 109.54๐‘™๐‘ โˆ™ ๐‘ ๐‘’๐‘X

๐‘–๐‘›.

๐œ‰ =๐‘๐‘๏ฟฝ๏ฟฝ

=8.33109.54 = 0.076

b) The damping frequency is ๐œ”| = ๐œ”}1 โˆ’ ๐œ‰X = 57.77}1 โˆ’ 0.076X = 54.61๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

๐œ” = 030001 = 57.77

๐‘Ÿ๐‘Ž๐‘‘๐‘ ๐‘’๐‘

๐‘“| =๐œ”|2๐œ‹ =

54.612๐œ‹ = 8.69๐‘๐‘๐‘ 

c) ๐›ฟ is

๐›ฟ =2๐œ‹๐œ‰

}1 โˆ’ ๐œ‰X=

2๐œ‹ โˆ™ 0.076โˆš1 โˆ’ 0.076X

= 0.48

d) ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ

is

๐‘™๐‘› #๐‘ขW๐‘ขX, = ๐›ฟ = 0.48

๐‘ขW๐‘ขX= ๐‘’  = ๐‘’O.ยง9 = 1.61

20

2.11 From Problem 2.10 a)

a) The damping force is

๐‘๏ฟฝ๏ฟฝ = 2โˆš๐‘˜๐‘š = 2}3,000 โˆ™ 1 = 109.54๐‘™๐‘ โˆ™ ๐‘ ๐‘’๐‘X

๐‘–๐‘›.

๐œ‰ =๐‘๐‘๏ฟฝ๏ฟฝ

=2

109.54 = 0.018

b) The damping frequency is ๐œ”| = ๐œ”}1 โˆ’ ๐œ‰X = 57.77}1 โˆ’ 0.018X = 57.76๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

๐‘“| =๐œ”|2๐œ‹ =

57.762๐œ‹ = 9.19๐‘๐‘๐‘ 

c) ๐›ฟ is

๐›ฟ =2๐œ‹๐œ‰

}1 โˆ’ ๐œ‰X=

2๐œ‹ โˆ™ 0.018โˆš1 โˆ’ 0.018X

= 0.113

d) ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ

is

๐‘™๐‘› #๐‘ขW๐‘ขX, = ๐›ฟ = 0.113

๐‘ขW๐‘ขX= ๐‘’  = ๐‘’O.WW( = 1.12

21

2.14 Let ๐‘ข = ๐‘ฆW โˆ’ ๐‘ฆX

Newtonโ€™s law โˆ‘๐น = 0

๐‘šX๏ฟฝ๏ฟฝX + ๐‘๏ฟฝ๏ฟฝ + ๐‘˜๐‘ข = 0(๐ธ๐‘ž. 1) ๐‘šW๏ฟฝ๏ฟฝW โˆ’ ๐‘๏ฟฝ๏ฟฝ โˆ’ ๐‘˜๐‘ข = 0(๐ธ๐‘ž. 2)

Multiply eq. (1) by ๐‘šW, eq. (2) by ๐‘šX and subtract

๐‘šW๐‘šX๏ฟฝ๏ฟฝ + (๐‘šW + ๐‘šX)๐‘๏ฟฝ๏ฟฝ + (๐‘šW + ๐‘šX)๐‘˜๐‘ข = 0 where ๏ฟฝ๏ฟฝ = ๏ฟฝ๏ฟฝW โˆ’ ๏ฟฝ๏ฟฝX 2.15 Let in Problem 2.14 divide by (๐‘šW + ๐‘šX) and let

๐‘€ =๐‘šW๐‘šX

(๐‘šW + ๐‘šX)

Then, ๐‘€๏ฟฝ๏ฟฝ + ๐‘๏ฟฝ๏ฟฝ + ๐‘˜๐‘ข = 0

Also,

๐œ” = 0๐‘˜๐‘€

๐œ”| = ๐œ”}1 โˆ’ ๐œ‰X

๐œ‰ =๐‘๐‘๏ฟฝ๏ฟฝ

Substituting,

๏ฟฝ๏ฟฝ + 2๐œ‰๐œ”๏ฟฝ๏ฟฝ + ๐œ”X๐‘ข = 0 3.2

y1 y2

๐‘šW๏ฟฝ๏ฟฝW ๐‘šW๏ฟฝ๏ฟฝX

๐‘˜๐‘ข

๐‘๏ฟฝ๏ฟฝ

22

Stiffness:

๐‘˜x =48๐ธ๐ผ๐ฟ( =

48 โˆ™ 30 โˆ™ 10Z โˆ™ 110(15 โˆ™ 12)( = 27,160๐‘™๐‘/๐‘–๐‘›.

Natural frequency:

๐œ” = 0๐‘˜๐‘š = 027,160 โˆ™ 386

1000 = 102.4๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

Force frequency:

๐œ”ยฉ =900 โˆ™ 2๐œ‹60 = 94.25๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

Frequency ratio:

๐‘Ÿ =๐œ”ยฉ๐œ” =

94.25102.4 = 0.9204

Amplitude of force:

๐นm = ๐‘š๏ฟฝ๐‘’m๐œ”ยฉ =138694.25

X = 23.01๐‘™๐‘

Amplitude of vertical motion:

๐‘Œ =๐นm/๐‘˜

}(1 โˆ’ ๐‘ŸX)X + (2๐œ‰๐‘Ÿ)X=

23.01/27,160}(1 โˆ’ 0.92X)X + (2 โˆ™ 0.1 โˆ™ 0.92)X

= 0.0037๐‘–๐‘›.

Note the high dynamic amplification factor ยซ

ยฌยญยฎ= 4.375; the frequency ratio is close to the point

of resonance, that is ๐‘Ÿ = 1.

23

3.3 From Problem 3.2:

๐นm = 23.01๐‘™๐‘ ๐‘˜ = 27,160๐‘™๐‘/๐‘–๐‘›.

๐œ‰ = 0.1 ๐‘Ÿ = 0.9204

Transmissibility

๐‘‡๏ฟฝ =๐ดยก๐นm= 0

1 + (2๐œ‰๐‘Ÿ)X

(1 โˆ’ ๐‘ŸX)X + (2๐œ‰๐‘Ÿ)X =0

1 + (2 โˆ™ 0.1 โˆ™ 0.92)X

(1 โˆ’ 0.92X)X + (2 โˆ™ 0.1 โˆ™ 0.92)X = 4.45

Force transmitted to the supports (per support):

๐ดยก =12๐นm๐‘‡๏ฟฝ =

1223.01 โˆ™ 4.45 = 51.2๐‘™๐‘

In addition, each support carries one-half of the total motor weight of ๐‘Š = 1000๐‘™๐‘๐‘ . 3.4 Stiffness:

๐‘˜ = 212๐ธ๐ผ๐ฟ( = 2

23 โˆ™ 30 โˆ™ 10Z โˆ™ 170(15 โˆ™ 12)( = 20,990๐‘™๐‘/๐‘–๐‘›.

Natural frequency:

๐œ” = 0๐‘˜๐‘š = 029,990 โˆ™ 386

2000 โˆ™ 20 = 14.23๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

๐‘Ÿ =๐œ”ยฉ๐œ” =

1214.23 = 0.843

Dynamic magnification factor:

๐ท =1

1 โˆ’ ๐‘ŸX =1

1 โˆ’ 0.843X = 3.456

Steady-state amplitude:

24

๐‘Œ = ๐‘ฆยฑ๏ฟฝ๐ท =๐นm๐‘˜ ๐ท =

5,00020,990 โˆ™ 3.456 = 0.823๐‘–๐‘›.

3.5

๐œ‰ = 0.08 From problem 3.4:

๐นm = 5,000๐‘™๐‘ ๐‘˜ = 20,990๐‘™๐‘/๐‘–๐‘›.

๐‘Ÿ = 0.843 Dynamic amplification factor:

๐ท =1

}(1 โˆ’ ๐‘ŸX)X + (2๐œ‰๐‘Ÿ)X=

1}(1 โˆ’ 0.843X)X + (2 โˆ™ 0.08 โˆ™ 0.843)X

= 3.132

Steady-state amplitude:

๐‘Œ = ๐‘ฆยฑ๏ฟฝ๐ท =๐นm๐‘˜ ๐ท =

5,00020,990 โˆ™ 3.132 = 0.746๐‘–๐‘›.

Note: Structural damping of 8 percent of critical damping reduced in this case. The dynamic magnification factor from 3.456 to 3.132. 3.6 a)

๐ดยก = ๐นm01 + (2๐œ‰๐‘Ÿ)X

(1 โˆ’ ๐‘ŸX)X + (2๐œ‰๐‘Ÿ)X = 5,00001 + (2 โˆ™ 0.1 โˆ™ 0.843)X

(1 โˆ’ 0.843X)X + (2 โˆ™ 0.1 โˆ™ 0.843)X = 15,803๐‘™๐‘

b)

๐‘‡๏ฟฝ =๐ดยก๐นm= 3.16

25

3.7 Harmonic motion

๐‘ฆO = 0.1

๐œ”ยฉ = 10 โˆ™ 2๐œ‹ = 62.83๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘ From equation for transmissibility:

๐‘‡๏ฟฝ =๐‘Œ๐‘ฆm= 0

1 + (2๐œ‰๐‘Ÿ)X

(1 โˆ’ ๐‘ŸX)X + (2๐œ‰๐‘Ÿ)X

๐œ‰ = 0

ยฑ(1 โˆ’ ๐‘ŸX) =๐‘ฆm๐‘Œ =

0.10.01 = 10

Retain negative root ๐‘ŸX = 11

๐‘Ÿ = 3.317 =๐œ”ยฉ๐œ” =

62.83

r386 โˆ™ ๐‘˜100

๐‘˜ = 93๐‘™๐‘/๐‘–๐‘›.

3.8 Effective force acting on the tower:

๐น.ยฒยฒ = โˆ’๐‘š๏ฟฝ๏ฟฝยฑ = โˆ’๐‘Š๐‘” 0.1 โˆ™ ๐‘” โˆ™ ๐‘ ๐‘–๐‘›๐œ”ยฉ๐‘ก

๐น.ยฒยฒ = โˆ’10๐‘ ๐‘–๐‘›(10 โˆ™ 2๐œ‹ โˆ™ ๐‘ก)

๐นO = 10๐‘˜๐‘–๐‘

๐‘ฆยฑ๏ฟฝ =๐นO๐‘˜ =

103000/12 = 0.04

Natural Frequency:

๐œ” = 0๐‘˜๐‘š = 0

3000/12100/386 = 31.06๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

๐œ”| = ๐œ”}1 โˆ’ ๐œ‰X = 30.9๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

๐‘Œ = 0.01๐‘š

๐‘ฆยฑ(๏ฟฝ) = ๐‘ฆO sin๐œ”ยฉ๐‘ก ๐‘˜

๐‘Š

26

๐œ”ยฉ = 10 โˆ™ 2๐œ‹ = 62.83๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

๐‘Ÿ =๐œ”ยฉ๐œ” =

62.8331.06 = 2.023

Tower relative to foundation motion by the following equation:

๐‘ˆ =๐‘ฆยฑ๏ฟฝ

}(1 โˆ’ ๐‘ŸX)X + (2๐œ‰๐‘Ÿ)X=

0.04}(1 โˆ’ 2.023X)X + (2 โˆ™ 2.023 โˆ™ 0.1)X

= 0.013๐‘–๐‘›.

3.9 Transmissibility is given by

๐‘‡๏ฟฝ = 01 + (2๐œ‰๐‘Ÿ)X

(1 โˆ’ ๐‘ŸX)X + (2๐œ‰๐‘Ÿ)X =0

1 + (2 โˆ™ 2.023 โˆ™ 0.1)X

(1 โˆ’ 2.023X)X + (2 โˆ™ 2.023 โˆ™ 0.1)X = 0.34

3.10 First find the equivalent spring constant, that is the force to produce a unit deflection on the beam at the location of the motor.

๐œƒ =๐‘€O๐ฟX

3๐ธ๐ผ =๐‘ƒ๐ฟ4 ๐ฟX

3๐ธ๐ผ =๐‘ƒ๐ฟ(

12๐ธ๐ผ

๐›ฟ =๐‘ƒ๐ฟ(

12๐ธ๐ผ โˆ™๐ฟ4 +

๐‘ƒ ๏ฟฝ๐ฟ4๏ฟฝ(

3๐ธ๐ผ =5๐‘ƒ๐ฟ(

192๐ธ๐ผ

๐‘˜ =๐‘ƒ๐›ฟ =

192๐ธ๐ผ5๐‘ƒ๐ฟ( =

192 โˆ™ 30 โˆ™ 109

5 โˆ™ 120( = 66,670๐‘™๐‘/๐‘–๐‘›.

๐‘ƒ

๐›ฟ ๐œƒ

27

๐‘š =๐‘Š๐‘” =

3330386 = 8.63

๐‘™๐‘ โˆ™ ๐‘ ๐‘’๐‘X

๐‘–๐‘›.

๐œ” = 0๐‘˜๐‘š = 87.89

๐‘Ÿ๐‘Ž๐‘‘๐‘ ๐‘’๐‘ = 839๐‘…๐‘ƒ๐‘€

Mathematical model is the damped oscillator: Amplitude of motion:

๐‘Œ =

๐‘Šโ€ฒ๐‘’๐‘” ๐œ”ยฉ ๐‘˜ยต

}(1 โˆ’ ๐‘ŸX)X + (2๐œ‰๐‘Ÿ)X

๐œ”ยฉW =800 โˆ™ 2๐œ‹60 = 83.77๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

๐œ”ยฉX =1000 โˆ™ 2๐œ‹

60 = 104.72๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

๐œ”ยฉ( =1200 โˆ™ 2๐œ‹

60 = 125.66๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

๐‘ŸW =๐œ”ยฉW๐œ” = 0.95;๐‘ŸX =

๐œ”ยฉX๐œ” = 1.19;๐‘ŸX =

๐œ”ยฉ(๐œ” = 1.43

๐‘ฆยฑ๏ฟฝ =๐‘Š๏ฟฝ โˆ™ ๐‘’ โˆ™ ๐œ”ยฉX

๐‘” โˆ™ ๐‘˜๐‘š โˆ™ ๐‘š=๐‘Š๏ฟฝ โˆ™ ๐‘’ โˆ™ ๐‘ŸX

๐‘” โˆ™ ๐‘Š๐‘”=๐‘Š๏ฟฝ โˆ™ ๐‘’ โˆ™ ๐‘ŸX

๐‘Š

๐‘Œ(๐‘Ÿ = 1) =๐‘ฆยฑ๏ฟฝ2๐œ‰ =

๐‘Š๏ฟฝ๐‘’๐‘Š =

503300 โˆ™ 2 โˆ™ 0.1

= 0.076๐‘–๐‘›.

๐‘ŒW = 0.064๐‘–๐‘›.

๐‘ŒX = 0.0446๐‘–๐‘›.

๐‘Œ( = 0.0302๐‘–๐‘›.

=๐‘Šโ€ฒ๐‘’๐‘” ๐œ”ยฉX sin๐œ”ยฉ ๐‘ก

๐‘Œ(๐‘–๐‘›. )

0.02

๐‘…๐‘ƒ๐‘€ 839

1000 1200 800

0.04

0.06

0.08

28

3.14 Let the stiffness of the floor be ๐‘˜. Then the resonant frequency is

๐‘“ยท =12๐œ‹

0๐‘˜

๐‘š +๐‘šยฑ

And the natural frequency

๐‘“ =12๐œ‹

0๐‘˜๐‘š

Dividing

๐‘“๐‘“ยท= 0

๐‘š +๐‘šยฑ

๐‘š

Then

๐‘“ = ๐‘“ยทr1 +๐‘šยฑ

๐‘š

29

3.15

๐ท =๐‘Œ๐‘ฆยฑ๏ฟฝ

=1

}(1 โˆ’ ๐‘ŸX)X + (2๐œ‰๐‘Ÿ)X

The peak will occurs when ยธ|

ยธ๏ฟฝ= 0

๐‘‘๐ท๐‘‘๐‘Ÿ =

2๐‘Ÿยนยบ1 โˆ’ ๐‘ŸยนXยป โˆ’ 4๐œ‰X๐‘Ÿยน

ยผยบ1 โˆ’ ๐‘ŸยนXยปX + ยบ2๐œ‰๐‘Ÿยนยป

Xยฝ(/X = 0

๐‘ŸยนX = 1 โˆ’ 2๐œ‰X =๐œ”ยน๐œ”X

๐œ”ยน is the peak frequency.

๐œ”ยนX = ๐œ”}1 โˆ’ 2๐œ‰X for ๐œ‰ < WโˆšX

And

๐‘Œยน =๐‘ฆยฑ๏ฟฝ

2๐œ‰}1 โˆ’ ๐œ‰X

The corresponding phase angel is given by the following equation.

๐œƒยน = ๐‘ก๐‘Ž๐‘›๏ฟฝW2๐œ‰๐‘Ÿยน1 โˆ’ ๐‘ŸยนX

= ๐‘ก๐‘Ž๐‘›๏ฟฝW2๐œ‰}1 โˆ’ 2๐œ‰X

2๐œ‰X = ๐‘ก๐‘Ž๐‘›๏ฟฝW}1 โˆ’ 2๐œ‰X

๐œ‰

Note: These results are, of course, only valid for 2๐œ‰X < 1 or๐œ‰ < W

โˆšX= 0.707.

Since the amount of damping in structures ๐œ”ยฉ usually small (๐œ‰ < 0.1) the peak frequency, ๐œ”ยน may be considered to be the same as the natural frequency ๐œ”, that is, the resonant frequency.

30

3.16 a)

๐‘“ =12๐œ‹

0๐‘˜๐‘š =

12๐œ‹

089,000 โˆ™ 386

2,520 = 18.58๐‘๐‘๐‘ 

b)

๐œ‰ =๐‘๐‘๏ฟฝ๏ฟฝ

=112

2}89,000 โˆ™ 2520/386= 0.0735

c) From solution of Problem 3.15

๐‘Œยน =๐‘ฆยฑ๏ฟฝ

2๐œ‰}1 โˆ’ ๐œ‰X

๐‘ฆยฑ๏ฟฝ =๐นO๐‘˜

๐นO = 2๐œ‰๐‘Œยน๐‘˜}1 โˆ’ ๐œ‰X = 2 โˆ™ 0.0735 โˆ™ 0.37 โˆ™ 89,000}1 โˆ’ 0.0735X = 4825๐‘™๐‘

d) At resonance

๐‘Œ๐‘ฆยฑ๏ฟฝ

=12๐œ‰

๐นO = 2๐œ‰๐‘Œ๐‘˜ = 2 โˆ™ 0.0735 โˆ™ 0.37 โˆ™ 89,000 = 4840๐‘™๐‘

31

3.17 From Eq. in illustrative Example 3.1

๐‘š๏ฟฝ๏ฟฝ + ๐‘๏ฟฝ๏ฟฝ + ๐‘˜๐‘ข = ๐‘š๏ฟฝ๐‘’O๐œ”ยฉX๐‘ ๐‘–๐‘›๐œ”ยฉ๐‘ก Using eq. 3.20

๐‘Œ =๐‘šโ€ฒ๐‘’๐‘˜ ๐œ”ยฉX

}(1 โˆ’ ๐‘ŸX)X + (2๐œ‰๐‘Ÿ)X=

๐‘šโ€ฒ๐‘’๐‘š ๐‘ŸX

}(1 โˆ’ ๐‘ŸX)X + (2๐œ‰๐‘Ÿ)X

At resonance ๐‘Ÿ = 1:

๐‘Œ๏ฟฝ =๐‘šโ€ฒ๐‘’2๐‘š๐œ‰

or

2๐œ‰๐‘Œ๏ฟฝ =๐‘šโ€ฒ๐‘’๐‘š

at

๐‘Ÿ = ๐‘ŸW

๐‘ŒW =๐‘šโ€ฒ๐‘’๐‘š ๐‘ŸWX

}(1 โˆ’ ๐‘ŸWX)X + (2๐œ‰๐‘ŸW)X

Solve for ๐œ‰

2๐œ‰๐‘Œ๏ฟฝ๐‘ŸWX = ๐‘ŒW}(1 โˆ’ ๐‘ŸWX)X + (2๐œ‰๐‘ŸW)X 4๐œ‰X๐‘Œ๏ฟฝX๐‘ŸWยง = ๐‘ŒWX[(1 โˆ’ ๐‘ŸWX)X + (2๐œ‰๐‘ŸW)X]

๐œ‰ =๐‘ŒW(1 โˆ’ ๐‘ŸWX)

2๐‘ŸW}๐‘Œ๏ฟฝX๐‘ŸWX โˆ’ ๐‘ŒWX

Force at resonance:

๐น๏ฟฝ = ๐‘š๏ฟฝ๐‘’๐œ”ยฉ๏ฟฝX = ๐‘š๏ฟฝ๐‘’๐‘˜๐‘š

๐น๏ฟฝ = 2๐œ‰๐‘Œ๏ฟฝ๐‘˜

๐น๏ฟฝ =๐‘ŒW๐‘Œ๏ฟฝ(1 โˆ’ ๐‘ŸWX)๐‘˜

๐‘ŸW}๐‘Œ๏ฟฝX๐‘ŸWX โˆ’ ๐‘ŒWX

32

3.18 Let ๐‘ข = ๐‘ฆW โˆ’ ๐‘ฆX

๐‘šX๏ฟฝ๏ฟฝX + ๐‘๏ฟฝ๏ฟฝ + ๐‘˜๐‘ข = ๐นO๐‘ ๐‘–๐‘›๐œ”ยฉ๐‘ก(๐ธ๐‘ž. 1) ๐‘šW๏ฟฝ๏ฟฝW โˆ’ ๐‘๏ฟฝ๏ฟฝ โˆ’ ๐‘˜๐‘ข = 0(๐ธ๐‘ž. 2)

Multiply eq. (1) by ๐‘šW, eq. (2) by ๐‘šX and subtract

๐‘šW๐‘šX๏ฟฝ๏ฟฝ + (๐‘šW + ๐‘šX)๐‘๏ฟฝ๏ฟฝ + (๐‘šW + ๐‘šX)๐‘˜๐‘ข = ๐‘šW๐นO๐‘ ๐‘–๐‘›๐œ”ยฉ๐‘ก divide by (๐‘šW + ๐‘šX) and let

๐‘€ =๐‘šW๐‘šX

(๐‘šW + ๐‘šX)

a)

๐‘€๏ฟฝ๏ฟฝ + ๐‘๏ฟฝ๏ฟฝ + ๐‘˜๐‘ข =๐‘šW๐นO

๐‘šW + ๐‘šX๐‘ ๐‘–๐‘›๐œ”ยฉ๐‘ก

Steady-state solution: b)

๐‘ข =

๐‘šW๐นO๐‘˜(๐‘šW + ๐‘šX)

๐‘ ๐‘–๐‘›(๐œ”ยฉ๐‘ก โˆ’ ๐œƒ)

}(1 โˆ’ ๐‘ŸX)X + (2๐œ‰๐‘Ÿ)X

๐‘ก๐‘Ž๐‘›๐œƒ =2๐œ‰๐‘Ÿ1 โˆ’ ๐‘ŸX

where

๐‘Ÿ =๐œ”ยฉ๐œ” ; ๐œ” = 0๐‘˜

๐‘š

๐‘๏ฟฝ๏ฟฝ = 2โˆš๐‘˜๐‘š

๐œ‰ =๐‘๐‘๏ฟฝ๏ฟฝ

y1 y2

๐‘šW๏ฟฝ๏ฟฝW ๐‘šW๏ฟฝ๏ฟฝX

๐‘˜๐‘ข

๐‘๏ฟฝ๏ฟฝ ๐นO๐‘ ๐‘–๐‘›๐œ”ยฉ๐‘ก

33

4.3 Columns are massless and girder are rigid. Neglect damping

๐‘˜W + ๐‘˜X =12๐ธ๐ผ๐ฟW(

+3๐ธ๐ผ๐ฟX(

๐‘˜ =12 โˆ™ 30 โˆ™ 10Z โˆ™ 82.8

(15 โˆ™ 12)( +3 โˆ™ 30 โˆ™ 10Z โˆ™ 82.(20 โˆ™ 12)( = 5111.1 + 539.1 = 5650.2

๐‘™๐‘๐‘–๐‘›.

๐œ” = 0๐‘˜๐‘š = 0

5650.2 โˆ™ 38620,000 = 10.44๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

Then, for ๐‘ก < ๐‘กยธ: (a)

๐‘ข(๐‘ก) =๐นO๐‘˜(1 โˆ’ ๐‘๐‘œ๐‘ ๐œ”๐‘ก) +

๐นO๐‘˜๐‘กยธ

#๐‘ ๐‘–๐‘›๐œ”๐‘ก๐œ” โˆ’ ๐‘ก,

at๐‘ก = 0.5๐‘ ๐‘’๐‘.

๐‘ข(๐‘ก) =5,0005,650.2 ยบ1 โˆ’ ๐‘๐‘œ๐‘ 

(10.44 โˆ™ 0.5)ยป +5,000

5,650.2 โˆ™ 0.6 V๐‘ ๐‘–๐‘›(10.44 โˆ™ 0.5)

10.44 โˆ’ 0.5Y

= โˆ’0.4072๐‘–๐‘›. (b) Maximum Horizontal Deflection using Chart Fig. 4.5

๐‘‡ =2๐œ‹๐œ” =

2๐œ‹10.44 = 0.602๐‘ ๐‘’๐‘.

๐‘กยธ๐‘‡ =

0.60.602 = 0.9972

๐‘“๐‘œ๐‘Ÿ๐‘กยธ๐‘‡ = 0.997 โ†’ (๐ท๐ฟ๐น)๏ฟฝยฟร€ = 1.55

โˆด๐‘ข๏ฟฝยฟร€๐‘ขยฑ๏ฟฝ

= 1.55

๐‘ข๏ฟฝยฟร€ = 1.55 โˆ™ ๐‘ขยฑ๏ฟฝ = 1.55 โˆ™5,0005,650.2 = 1.37๐‘–๐‘›.

๐น(๐œ)

๐นO = 5๐‘˜๐‘–๐‘๐‘ 

๐‘กยธ = 0.6๐‘ ๐‘’๐‘ ๐œ

34

4.5

Determine DLF. First interval for ๐‘ก < ๐‘กยธ:

๐น(๐œ) = ๐นO๐œ๐‘กยธ; ๐‘ขO = 0;๏ฟฝ๏ฟฝO = 0

Duhamelโ€™s integral

๐‘ข(๐‘ก) =1๐‘š๐œ”รƒ ๐น(๐œ)

๏ฟฝ

Osin๐œ”(๐‘ก โˆ’ ๐œ) ๐‘‘๐œ

๐‘ข(๐‘ก) =1๐‘š๐œ”รƒ ๐นO

๐œ๐‘กยธ

๏ฟฝ

Osin๐œ”(๐‘ก โˆ’ ๐œ) ๐‘‘๐œ

where

รƒ ๐œ๏ฟฝ

Osin๐œ”(๐‘ก โˆ’ ๐œ)๐‘‘๐œ =

๐œ๐œ” cos๐œ”

(๐‘ก โˆ’ ๐œ) โˆ’1๐œ”รƒ cos๐œ”(๐‘ก โˆ’ ๐œ)

๏ฟฝ

O๐‘‘๐œ

=๐œ๐œ” cos๐œ”

(๐‘ก โˆ’ ๐œ) +1๐œ”X sin๐œ”(๐‘ก โˆ’ ๐œ)

Then:

๐‘ข(๐‘ก) =๐นO

๐‘š๐œ”X๐‘กยธ๏ฟฝ๐œ โˆ™ cos๐œ”(๐‘ก โˆ’ ๐œ) +

1๐œ” sin๐œ”

(๐‘ก โˆ’ ๐œ)๏ฟฝO

๏ฟฝ

=๐นO๐‘˜๐‘กยธ

#๐‘ก โˆ’sin๐œ”๐‘ก๐œ” , ๐ธ๐‘ž. 1;

๐นO๐‘˜ = ๐‘ขยฑ๏ฟฝ

DLF =๐‘ข(๐‘ก)๐‘ขยฑ๏ฟฝ

=1๐‘กยธ#๐‘ก โˆ’

sin๐œ”๐‘ก๐œ” ,

First interval for ๐‘ก โ‰ฅ ๐‘กยธ:

๐น(๐œ) = ๐นO; ๐‘ขO = ๐‘ขยธ;๏ฟฝ๏ฟฝO = ๏ฟฝ๏ฟฝยธ From Eq.1 at ๐‘ก = ๐‘กยธ

๐‘ขยธ =๐นO๐‘˜๐‘กยธ

#๐‘กยธ โˆ’sin๐œ”๐‘กยธ๐œ” , ; ๐‘ขยธ =

๐นO๐‘˜ #1 โˆ’

sin๐œ”๐‘กยธ๐œ”๐‘กยธ

,

Derivate Eq. 1

35

๏ฟฝ๏ฟฝ(๐‘ก) =๐นO๐‘˜๐‘กยธ

(1 โˆ’ cos๐œ”๐‘ก); ๏ฟฝ๏ฟฝยธ =๐นO๐‘˜๐‘กยธ

(1 โˆ’ cos๐œ”๐‘กยธ)

The governing equation for the second interval is Eq. 4.4

๐‘ข(๐‘ก) = ๐‘ขยธ cos๐œ”๐‘ก +๏ฟฝ๏ฟฝยธ๐œ” sin๐œ”๐‘ก +

1๐‘š๐œ”รƒ ๐น(๐œ)

๏ฟฝ

Osin๐œ”(๐‘ก โˆ’ ๐œ) ๐‘‘๐œ

๐‘ข(๐‘ก) = ๐‘ขยธ cos๐œ”๐‘ก +๏ฟฝ๏ฟฝยธ๐œ” sin๐œ”๐‘ก +

๐นO๐‘š๐œ”รƒ sin๐œ”(๐‘ก โˆ’ ๐œ)

๏ฟฝ

O๐‘‘๐œ

๐‘ข(๐‘ก) = ๐‘ขยธ cos๐œ”๐‘ก +๏ฟฝ๏ฟฝยธ๐œ” sin๐œ”๐‘ก +

๐นO๐‘š๐œ”X (1 โˆ’ cos๐œ”๐‘ก)

Plugging values of ๐‘ขยธ and ๏ฟฝ๏ฟฝยธ:

๐‘ข(๐‘ก) =๐นO๐‘˜ #1 โˆ’

sin๐œ”๐‘กยธ๐œ”๐‘กยธ

, cos๐œ”๐‘ก +๐นO๐œ”๐‘˜๐‘กยธ

(1 โˆ’ cos๐œ”๐‘กยธ) sin๐œ”๐‘ก +๐นO๐‘˜(1 โˆ’ cos๐œ”๐‘ก)

๐‘ข(๐‘ก) = ๐‘ขยฑ๏ฟฝ #1 โˆ’sin๐œ”๐‘กยธ๐œ”๐‘กยธ

, cos๐œ”๐‘ก +๐‘ขยฑ๏ฟฝ๐œ” #

1๐‘กยธโˆ’cos๐œ”๐‘กยธ๐‘กยธ

, sin๐œ”๐‘ก + ๐‘ขยฑ๏ฟฝ(1 โˆ’ cos๐œ”๐‘ก)

๐ท๐ฟ๐น =๐‘ข(๐‘ก)๐‘ขยฑ๏ฟฝ

= #1 โˆ’sin๐œ”๐‘กยธ๐œ”๐‘กยธ

, cos๐œ”๐‘ก +1๐œ” #

1๐‘กยธโˆ’cos๐œ”๐‘กยธ๐‘กยธ

, sin๐œ”๐‘ก + (1 โˆ’ cos๐œ”๐‘ก)

= 1+1๐œ”๐‘กยธ

(โˆ’ sin๐œ”๐‘กยธ cos๐œ”๐‘ก + sin๐œ”๐‘ก โˆ’ cos๐œ”๐‘กยธ sin๐œ”๐‘ก)

๐ท๐ฟ๐น = 1+1๐œ”๐‘กยธ

(sin๐œ”๐‘ก โˆ’ sin๐œ”(๐‘ก + ๐‘กยธ))

36

4.6 The model of the system is the free body diagram.

where

๐‘ข = ๐‘ฆ โˆ’ ๐‘ฆยฑ ๏ฟฝ๏ฟฝ = ๏ฟฝ๏ฟฝ + ๏ฟฝ๏ฟฝยฑ

๐‘š(๏ฟฝ๏ฟฝ + ๏ฟฝ๏ฟฝยฑ) + ๐‘˜๐‘ข = 0 ๐‘š๏ฟฝ๏ฟฝ + ๐‘˜๐‘ข = โˆ’๐‘š๏ฟฝ๏ฟฝยฑ ๏ฟฝ๏ฟฝ + ๐œ”๐‘ข = โˆ’๏ฟฝ๏ฟฝยฑ

In this case, the acceleration is a constant, ๏ฟฝ๏ฟฝยฑ = 0.5๐‘”

๏ฟฝ๏ฟฝ + ๐œ”๐‘ข = โˆ’0.5๐‘” The solution of this equation is:

๐‘ข = ๐ด cos๐œ”๐‘ก + ๐ต sin๐œ”๐‘ก + ๐‘ขยน The particular solution is:

๐‘ขยน = ๐ถ;

0 + ๐œ”X๐ถ = โˆ’0.5๐‘”;

๐ถ =โˆ’0.5๐‘”๐œ”X ;

๐‘ขยน =โˆ’0.5๐‘”๐œ”X

Then,

๐‘ข = ๐ด cos๐œ”๐‘ก + ๐ต sin๐œ”๐‘ก โˆ’0.5๐‘”๐œ”X

From initial conditions at ๐‘ก = 0;๐‘ขO = 0; ๏ฟฝ๏ฟฝO = 0

๐‘ขO = ๐ด โˆ’0.5๐‘”๐œ”X = 0,๐ด =

0.5๐‘”๐œ”X

๐‘˜

๐‘ฆ

๐‘š

๐‘ฆยฑ

๐‘š๏ฟฝ๏ฟฝ ๐‘˜(๐‘ฆ โˆ’ ๐‘ฆยฑ)

37

๏ฟฝ๏ฟฝ = โˆ’๐œ”๐ด sin๐œ”๐‘ก + ๐ต๐œ”cos๐œ”๐‘ก

๏ฟฝ๏ฟฝO = ๐ต๐œ” = 0,๐ต = 0

Finally

๐‘ข =0.5๐‘”๐œ”X cos๐œ”๐‘ก โˆ’

0.5๐‘”๐œ”X

Find ๐‘ข๏ฟฝยฟร€:

๏ฟฝ๏ฟฝ =0.5๐‘”๐œ”X sin๐œ”๐‘ก = 0

๐‘ก = 0; ๐‘ขO = 0, ๐‘ก =

๐œ‹๐œ” ; ๐‘ข = ๐‘ข๏ฟฝยฟร€

๐‘ข๏ฟฝยฟร€ =0.5๐‘”๐œ”X cos๐œ”

๐œ‹๐œ” โˆ’

0.5๐‘”๐œ”X = โˆ’

0.5๐‘”๐œ”X โˆ’

0.5๐‘”๐œ”X = โˆ’

๐‘”๐œ”X = โˆ’

386109.05 = โˆ’3.54๐‘–๐‘›.

Maximum Shear forces in columns: Left column ๐‘‰๏ฟฝยฟร€ = ๐‘˜W๐‘ข๏ฟฝยฟร€ = 5,111.1(3.54) = 18,093๐‘™๐‘ Right column ๐‘‰๏ฟฝยฟร€ = ๐‘˜X๐‘ข๏ฟฝยฟร€ = 539.1(3.54) = 1,908๐‘™๐‘

38

4.7 Repeat problem 4.6 for 10% of critical damping.

๐œ‰ = 0.1; ๐œ” = 10.44๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘;๐‘˜. = 5650๐‘™๐‘/๐‘ ๐‘’๐‘;๐น.ยฒยฒ = 10,000๐‘™๐‘

๐œ”| = ๐œ”}1 โˆ’ ๐œ‰X = 10.44}1 โˆ’ 0.1X = 10.39๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

๐‘ข(๐‘ก) =1

๐‘š๐œ”|รƒ ๐น(๐œ)๏ฟฝ

O๐‘’๏ฟฝ๏ฟฝ๏ฟฝ(๏ฟฝ๏ฟฝรŠ) sin๐œ”|(๐‘ก โˆ’ ๐œ) ๐‘‘๐œ

=10,000๐‘š๐œ”|

ร‹๐‘’๏ฟฝ๏ฟฝ๏ฟฝ(๏ฟฝ๏ฟฝรŠ)

(๐œ‰๐œ”)X + ๐œ”|X(๐œ‰๐œ” sin๐œ”|(๐‘ก โˆ’ ๐œ) + ๐œ”| cos๐œ”|(๐‘ก โˆ’ ๐œ))รŒ

O

๏ฟฝ

=10,000๐‘š๐œ”|

ร1

(๐œ‰๐œ”)X + ๐œ”|X(0 + ๐œ”|) โˆ’

๐‘’๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ

(๐œ‰๐œ”)X + ๐œ”|X[๐œ‰๐œ” sin๐œ”|๐‘ก + ๐œ”| cos๐œ”|๐‘ก]รŽ =

=10,000 โˆ™ 38620,000 โˆ™ 10.39 ร

10.391.044X + 10.39X โˆ’

๐‘’๏ฟฝW.Oยงยง๏ฟฝ

1.044X + 10.39X[1.044 sin 10.39๐‘ก + 10.39 cos 10.39๐‘ก]รŽ

= 0.17035{10.39 โˆ’ ๐‘’๏ฟฝW.Oยงยง๏ฟฝ[1.044 sin 10.39๐‘ก + 10.39 cos 10.39๐‘ก]} For ๐‘ข๏ฟฝยฟร€ = 0;

๐‘‘๐‘ข๐‘‘๐‘ก = ๐‘’๏ฟฝW.Oยงยง๏ฟฝ[1.044 โˆ™ (1.044sin 10.39๐‘ก + 10.39 cos 10.39๐‘ก)

โˆ’ (10.39 โˆ™ 1.044cos 10.39๐‘ก โˆ’ 10.39X sin 10.39๐‘ก)] = 0

sin(10.39๐‘ก) = 0 ; 10.39๐‘ก = ๐‘˜๐œ‹; ๐‘˜ = 0, 1, 2, โ€ฆ

๐‘ก๏ฟฝ = 0.302๐‘ ๐‘’๐‘ ๐‘ข๏ฟฝยฟร€ = 0.17035[10.39 โˆ’ ๐‘’๏ฟฝO.(W๏ฟฝร’(1.044sin ๐œ‹ + 10.39 cos ๐œ‹)] = 0.17035 โˆ™ 10.39 โˆ™ 1.729

= 3.06๐‘–๐‘›.

Left column ๐‘‰๏ฟฝยฟร€ =WXร“ร”tร•

๐‘ข๏ฟฝยฟร€ =WXโˆ™(Oโˆ™WOร–โˆ™9X๏ฟฝ(W๏ฟฝโˆ™WX)ร•

3.06 = 15,640๐‘™๐‘

Right column ๐‘‰๏ฟฝยฟร€ = ๐‘˜X๐‘ข๏ฟฝยฟร€ = 1,648๐‘™๐‘

39

4.19 The stiffness of the frame is

๐‘˜ =3๐ธ(2๐ผ)๐ฟ( =

12 โˆ™ 30 โˆ™ 10Z โˆ™ 2 โˆ™ 69.2120( = 7208.75๐‘™๐‘/๐‘–๐‘›.

๐‘š๏ฟฝ๏ฟฝ + ๐‘˜(๐‘ข โˆ’ ๐‘ขยฑ) = 0

๐‘š๏ฟฝ๏ฟฝ + ๐‘˜๐‘ข = ๐‘˜๐‘ขยฑ = ๐น(๐‘ก)

๐‘š =20,000386 = 51.814

๐‘™๐‘. ๐‘ ๐‘’๐‘X

๐‘–๐‘›.

๐น(๐‘ก) = 7208.75 โˆ™ ๐‘ขยฑ(๐‘ก)

๐‘ก ๐น(๐‘ก) 0 0

0.25 7208.75 0.5 0 1.0 0

๐‘˜

๐‘ฆ

๐‘š

๐‘ฆยฑ

๐‘š๏ฟฝ๏ฟฝ ๐‘˜(๐‘ฆ โˆ’ ๐‘ฆยฑ)

40

4.20 From Problem 4.19

๐‘˜ = 7208.75๐‘™๐‘/๐‘–๐‘›.

๐‘š = 51.81๐‘™๐‘ โˆ™ ๐‘ ๐‘’๐‘X

๐‘–๐‘›.

๐‘๏ฟฝ๏ฟฝ = 2โˆš๐‘˜๐‘š = 1222.21๐‘™๐‘ โˆ™ ๐‘ ๐‘’๐‘๐‘–๐‘›.

๐‘ = ๐œ‰๐‘๏ฟฝ๏ฟฝ = 0.1 โˆ™ 1222.21 = 122.23

Equation of Motion:

๐‘š๏ฟฝ๏ฟฝ + ๐‘(๏ฟฝ๏ฟฝ โˆ’ ๏ฟฝ๏ฟฝยฑ) + ๐‘˜(๐‘ข โˆ’ ๐‘ขยฑ) = 0

๐‘š๏ฟฝ๏ฟฝ + ๐‘๏ฟฝ๏ฟฝ + ๐‘˜๐‘ข = ๐‘๏ฟฝ๏ฟฝยฑ + ๐‘˜๐‘ขยฑ = ๐น(๐‘ก)

๏ฟฝ๏ฟฝยฑ =10.25 = 4๐‘–๐‘›.โ†’ ๐ด๐‘ ๐‘ ๐‘ข๐‘š๐‘–๐‘›๐‘”๐‘ข๐‘›๐‘–๐‘“๐‘œ๐‘Ÿ๐‘š๐‘ ๐‘๐‘’๐‘’๐‘‘๐‘œ๐‘“๐‘ ๐‘ข๐‘๐‘๐‘œ๐‘Ÿ๐‘ก๐‘–๐‘›๐‘š๐‘œ๐‘ก๐‘–๐‘œ๐‘›

๐‘ก ๐น(๐‘ก) 0 489.0

0.25 7697.5 0.5 489.0 1.0 489.0

41

4.25

๐‘š =1000386 = 233.44

๐‘™๐‘ โˆ™ ๐‘ ๐‘’๐‘X

๐‘–๐‘›.

๐‘˜ =3๐ธ๐ผ๐ฟW(

+12๐ธ๐ผ๐ฟW(

=3 โˆ™ 30 โˆ™ 10Z โˆ™ 1892.5

(20 โˆ™ 12)( +12 โˆ™ 30 โˆ™ 10Z โˆ™ 1892.5

(30 โˆ™ 12)( = 26,924(๐‘™๐‘/๐‘–๐‘›. )

๐‘ = ๐œ‰๐‘๏ฟฝ๏ฟฝ = 2๐œ‰โˆš๐‘˜๐‘š = 490.55๐‘™๐‘ โˆ™ ๐‘ ๐‘’๐‘๐‘–๐‘›.

๐‘‡ = 2๐œ‹0๐‘˜๐‘š = 0.5724๐‘ ๐‘’๐‘

๐œ”ยฉ =102๐œ‹ = 1.5724๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

โˆ†๐‘‡ =๐‘‡10 โ‰ˆ 0.05๐‘ ๐‘’๐‘

๐‘ก๏ฟฝยฟร€ = 2.5๐‘ ๐‘’๐‘

๐น(๐‘ก) = 0.1 sin #10๐‘ก2๐œ‹ ,

42

4.26 Maximum shear forces:

๐‘‰W๏ฟฝยฟร€ =3๐ธ๐ผ๐ฟW(

๐‘ข๏ฟฝยฟร€ =3 โˆ™ 30 โˆ™ 10Z โˆ™ 1892.5

(20 โˆ™ 12)( 0.342 = 4214๐‘™๐‘

๐‘‰X๏ฟฝยฟร€ =12๐ธ๐ผ๐ฟX(

๐‘ข๏ฟฝยฟร€ =12 โˆ™ 30 โˆ™ 10Z โˆ™ 1892.5

(30 โˆ™ 12)( 0.342 = 4994๐‘™๐‘

The bending moments:

๐‘€W๏ฟฝยฟร€ = ๐‘‰W๏ฟฝยฟร€ โˆ™ ๐ฟW = 4214 โˆ™ 240 = 1,011,360๐‘™๐‘ โˆ™ ๐‘–๐‘›.

๐‘€X๏ฟฝยฟร€ = ๐‘‰X๏ฟฝยฟร€ โˆ™ ๐ฟX = 4994 โˆ™ 360 = 1,797,840๐‘™๐‘ โˆ™ ๐‘–๐‘›. And the max. stress:

๐œŽW๏ฟฝยฟร€ =๐‘€W๏ฟฝยฟร€

๐‘† =1,011,360263.2 = 3842๐‘๐‘ ๐‘–

๐œŽX๏ฟฝยฟร€ =๐‘€X๏ฟฝยฟร€

๐‘† =1,797,840263.2 = 6831๐‘๐‘ ๐‘–

where ๐‘† = 263.2๐‘–๐‘›.( is the section modulus. To check the calculations using the response in terms of the maximum absolute acceleration, we consider the differential equation for relative motion,

๐‘š๏ฟฝ๏ฟฝ + ๐‘๏ฟฝ๏ฟฝ + ๐‘˜๐‘ข = 0 Eq. (a) where

๐‘ข = ๐‘ฆ โˆ’ ๐‘ฆยฑ Eq. (b) ๐‘ฆยฑ = support displacement Solving Eq.(a) for the total force in the column ๐‘‰ = ๐‘˜๐‘ขyields

๐‘‰ = โˆ’๐‘š๏ฟฝ๏ฟฝ โˆ’ ๐‘ฆยฑ and replacing values from the response obtained in Problem 3.15 at time ๐‘ก = 1 sec. which is the time for maximum displacement:

๏ฟฝ๏ฟฝ๏ฟฝยฟร€ = 41.308๐‘–๐‘›./๐‘ ๐‘’๐‘X๏ฟฝ๏ฟฝ = โˆ’0.036๐‘–๐‘›./๐‘ ๐‘’๐‘ gives

๐‘‰๏ฟฝยฟร€ = 9212๐‘™๐‘

43

This last value checks closely with the total shear force calculated using the relative displacements in the columns, that is,

๐‘‰๏ฟฝยฟร€ = ๐‘‰W๏ฟฝยฟร€ + ๐‘‰X๏ฟฝยฟร€ = 4214 + 4994 = 9208๐‘™๐‘

๐‘‰W๏ฟฝยฟร€ =3๐ธ๐ผ๐ฟW(

๐‘ข๏ฟฝยฟร€ =3 โˆ™ 30 โˆ™ 10Z โˆ™ 1892.5

(20 โˆ™ 12)( 3.845 = 47,376๐‘™๐‘

๐‘‰X๏ฟฝยฟร€ =12๐ธ๐ผ๐ฟX(

๐‘ข๏ฟฝยฟร€ =12 โˆ™ 30 โˆ™ 10Z โˆ™ 1892.5

(30 โˆ™ 12)( 3.845 = 56,146๐‘™๐‘

The bending moments:

๐‘€W๏ฟฝยฟร€ = ๐‘‰W๏ฟฝยฟร€ โˆ™ ๐ฟW = 47,376 โˆ™ 240 = 11,370,240๐‘™๐‘ โˆ™ ๐‘–๐‘›.

๐‘€X๏ฟฝยฟร€ = ๐‘‰X๏ฟฝยฟร€ โˆ™ ๐ฟX = 56,146 โˆ™ 360 = 20,212,560๐‘™๐‘ โˆ™ ๐‘–๐‘›. And the max. stress:

๐œŽW๏ฟฝยฟร€ =๐‘€W๏ฟฝยฟร€

๐‘† =11,370,240

263.2 = 43,200๐‘๐‘ ๐‘–

๐œŽX๏ฟฝยฟร€ =๐‘€X๏ฟฝยฟร€

๐‘† =20,212,560263.2 = 76,795๐‘๐‘ ๐‘–

where ๐‘† = 263.2๐‘–๐‘›.( is the section modulus.

44

4.27 The deflection ๐›ฟ produced by a force ๐‘ƒ applied at the center of a fixed beam is given by

๐›ฟ =๐‘ƒ๐ฟ(

192๐ธ๐ผ Therefore, the equivalent spring constant ๐พร› for the beam is

๐พร› =๐‘ƒ๐›ฟ =

192๐ธ๐ผ๐ฟ( =

192 โˆ™ 30 โˆ™ 10Z โˆ™ 348(20 โˆ™ 12)( = 145,000๐‘™๐‘/๐‘–๐‘›.

Since the coil spring and the beam are in series, the combined spring constant ๐พร›for the system is:

1๐พ.

=1๐พ๏ฟฝ+1๐พร›=

118000 +

1145000

or

๐พ. = 16,012๐‘™๐‘/๐‘–๐‘›. Problem Data:

๐‘š =3000386 = 7.772

๐‘™๐‘ โˆ™ ๐‘ ๐‘’๐‘X

๐‘–๐‘›.

๐‘˜ = 16,012(๐‘™๐‘/๐‘–๐‘›. )

๐‘ = 0

๐‘“ =12๐œ‹

0๐‘˜๐‘š = 7.224๐‘๐‘๐‘ 

๐‘‡ = 0.138

โˆ†๐‘‡ =๐‘‡10 โ‰ˆ 0.01๐‘ ๐‘’๐‘

45

4.28 ๐‘ƒ๏ฟฝยฟร€ = ๐‘˜.๐‘ข๏ฟฝยฟร€

๐‘˜. = 16,012๐‘™๐‘

๐‘ข๏ฟฝยฟร€ = 0.71

๐‘ƒ๏ฟฝยฟร€ = ๐‘˜.๐‘ข๏ฟฝยฟร€ = 16,012 โˆ™ 0.71 = 11,368๐‘™๐‘

The maximum moment on fixed beam resulting from a concentrated force ๐‘ƒ๏ฟฝยฟร€ applied at its center is given by,

๐‘€๏ฟฝยฟร€ =๐‘ƒ๏ฟฝยฟร€๐ฟ8 =

11,368.5 โˆ™ 2408 = 341,055๐‘™๐‘ โˆ™ ๐‘–๐‘›.

And the maximum dynamic stress ๐œŽ๏ฟฝยฟร€ by

๐œŽ๏ฟฝยฟร€ = ยฑ๐‘€๏ฟฝยฟร€๐‘๐ผ = ยฑ

34,1055 โˆ™ 5348 = ยฑ4900๐‘๐‘ ๐‘–

The static moment ๐‘€ยฑ๏ฟฝ and the static stress ๐œŽยฑ๏ฟฝ resulting from the weight of the motor are then calculated as

๐‘€ยฑ๏ฟฝ =18๐‘Š๐ฟ =

18 โˆ™ 3000 โˆ™ 240 = 90,000๐‘™๐‘ โˆ™ ๐‘–๐‘›.

and

๐œŽยฑ๏ฟฝ =๐‘€ยฑ๏ฟฝ๐‘๐ผ =

90,000 โˆ™ 5348 = 1293๐‘๐‘ ๐‘–

The total maximum stresses are then

๐œŽ๏ฟฝ.ยทยฑ = 4900 + 1293 = 6193๐‘๐‘ ๐‘– ๐œŽ๏ฟฝm๏ฟฝยน๏ฟฝ = 4900 + 1293 = 6193๐‘๐‘ ๐‘–

Maximum displacement of the beam:

๐‘ข^,๏ฟฝยฟร€ =๐‘ƒ๏ฟฝยฟร€๐พร›

=11,368.5145,000 = 0.0784๐‘–๐‘›.

Maximum stretch of the coil spring:

๐‘ข๏ฟฝ,๏ฟฝยฟร€ = 0.71 โˆ’ 0.0784 = 0.632๐‘–๐‘›. Maximum force ๐น๏ฟฝ,๏ฟฝยฟร€ in the coil spring:

๐น๏ฟฝ,๏ฟฝยฟร€ = ๐พ๏ฟฝ๐‘ข๏ฟฝ,๏ฟฝยฟร€ = 18000 โˆ™ 0.632 = 11,376๐‘™๐‘.

46

5.1

๐น = รœ1000 sin 10๐‘ก ๏ฟฝ๐‘ก โ‰ค

๐œ‹10๏ฟฝ

0 ๏ฟฝ๐‘ก >๐œ‹10๏ฟฝ

๐œ”ยฉ = 10๐‘๐‘๐‘ 

๐‘˜W =3๐ธ(2๐ผ)๐ฟ( =

3 โˆ™ 30 โˆ™ 10( โˆ™ 2 โˆ™ 82.8120( = 4.3125๐‘˜/๐‘–๐‘›.

๐œ” = 04.3125 โˆ™ 38612 = 11.78

๐‘Ÿ๐‘Ž๐‘‘๐‘ ๐‘’๐‘

๐‘“ =๐œ”2๐œ‹ =

11.782๐œ‹ = 1.875๐‘๐‘๐‘ 

๐‘‡ =1๐‘“ =

11.875 = 0.5333๐‘ ๐‘’๐‘

๐‘กยธ =๐œ‹10 = 0.31416

๐‘ขยฑ๏ฟฝ =๐นm๐‘˜ =

14.3125 = 0.232

Using Fig. 5.3

๐‘กยธ๐‘‡ = 0.589 โ†’

๐‘ข๐‘ขยฑ๏ฟฝ

โ‰ˆ 1.6

๐‘ข๏ฟฝยฟร€ = 1.6๐‘ขยฑ๏ฟฝ = 1.6(0.232) = 0.374๐‘–๐‘›.

5.2 From Problem 5.1,

๐‘ข๏ฟฝยฟร€ = 0.374๐‘–๐‘›.

๐‘˜ = 4.3125๐‘˜/๐‘–๐‘›.

๐ธ = 30 โˆ™ 10(๐‘˜๐‘ ๐‘–

๐œŽ๏ฟฝยฟร€ =๐‘€๏ฟฝยฟร€๐‘๐ผ =

๐‘‰๏ฟฝยฟร€๐ฟ๐‘๐ผ =

3๐ธ๐ผ๐‘ฆ๏ฟฝยฟร€๐ฟ๐‘๐ฟ(๐ผ =

3๐ธ๐ผ๐‘ฆ๏ฟฝยฟร€๐‘๐ฟX =

3 โˆ™ 30 โˆ™ 10( โˆ™ 0.374 โˆ™ 3.1120X = 7.246

๐œŽ๏ฟฝยฟร€ = 7.246๐‘˜๐‘ ๐‘–

47

5.3 Mathematical model: Effective force

๐น.ยฒยฒ = ๐‘š๐‘Ž(๐‘ก) =5386 โˆ™ 200 sin 10๐‘ก = 2.5907 sin 10๐‘ก ๐œ”ยฉ = 10๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

๐œ”ยฉ๐‘กยธ = ๐œ‹

๐‘กยธ =๐œ‹๐œ”ยฉ=๐œ‹10 = 0.1๐œ‹

๐‘˜ =12๐ธ(2๐ผW)

๐ฟ( +3๐ธ๐ผX๐ฟ( =

12 โˆ™ 30 โˆ™ 10( โˆ™ 2 โˆ™ 82.8216( +

3 โˆ™ 30 โˆ™ 10( โˆ™ 2 โˆ™ 170216( = 7.4338๐‘˜/๐‘–๐‘›.

๐‘“ =12๐œ‹

0๐‘˜๐‘š =

12๐œ‹

07.4338 โˆ™ 3865 = 38.5๐‘๐‘๐‘ 

๐‘‡ =1๐‘“ =

138.5 = 0.260๐‘ ๐‘’๐‘

๐‘กยธ๐‘‡ =

0.1๐œ‹0.260 = 1.2

Using Fig. 5.3

๐‘กยธ๐‘‡ = 1.2 โ†’

๐‘ข๐‘ขยฑ๏ฟฝ

โ‰ˆ 1.6

๐‘ขยฑ๏ฟฝ =๐นm๐‘˜ =

2.59077.4338 = 0.348๐‘–๐‘›.

๐‘ข๏ฟฝยฟร€ = 1.6๐‘ขยฑ๏ฟฝ = 1.6(0.348) = 0.557๐‘–๐‘›.

48

5.4

๐œŽ๏ฟฝยฟร€ =๐‘€๏ฟฝยฟร€๐‘๐ผ =

๐‘‰๏ฟฝยฟร€๐ฟ๐‘๐ผ

๐‘ข๏ฟฝยฟร€ = 0.557๐‘–๐‘›.

๐‘‰๏ฟฝยฟร€ =12๐ธ๐ผ๐‘ข๏ฟฝยฟร€

๐ฟ( (๐ธ๐‘ฅ๐‘ก๐‘’๐‘Ÿ๐‘›๐‘Ž๐‘™๐‘๐‘œ๐‘™๐‘ข๐‘š๐‘›)

๐‘‰๏ฟฝยฟร€ =3๐ธ๐ผ๐‘ข๏ฟฝยฟร€

๐ฟ( (๐ผ๐‘›๐‘ก๐‘’๐‘Ÿ๐‘›๐‘Ž๐‘™๐‘๐‘œ๐‘™๐‘ข๐‘š๐‘›)

External columns:

๐œŽ๏ฟฝยฟร€ =12๐ธ๐ผ๐‘ฆ๏ฟฝยฟร€๐ฟ๐‘

๐ฟ(๐ผ =12 โˆ™ 30 โˆ™ 10( โˆ™ 0.557 โˆ™ 3.965

216X = 17.0409๐‘˜๐‘ ๐‘–

Internal columns:

๐œŽ๏ฟฝยฟร€ =3๐ธ๐ผ๐‘ฆ๏ฟฝยฟร€๐ฟ๐‘

๐ฟ(๐ผ =3 โˆ™ 30 โˆ™ 10( โˆ™ 0.557 โˆ™ 4.875

216X = 5.2380๐‘˜๐‘ ๐‘–

49

5.5

From problem 5.1:

๐‘“ = 1.875๐‘๐‘๐‘ 

From Fig. 5.8 with ๐œ‰ = 0.1

๐‘†| = 1.9๐‘–๐‘›.

๐‘†รŸ = 22.4๐‘–๐‘›./๐‘ ๐‘’๐‘

๐‘†ยฟ = 0.68๐‘”

5.6

From Fig. 5.9 with

๐‘“ = 1.575๐‘๐‘๐‘ 

And for ๐œ‰ = 0.1

๐‘†| = 4.0 โˆ™ 0.32 = 1.28๐‘–๐‘›.

๐‘†รŸ = 48 โˆ™ 0.32 = 15.36๐‘–๐‘›./๐‘ ๐‘’๐‘

๐‘†ยฟ = 1.5 โˆ™ 0.32 = 0.48๐‘”

5.7

๐œ” = 0๐‘˜๐‘š = 08 โˆ™ 386

400 = 2.778๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

๐‘“ =๐œ”2๐œ‹ =

2.7782๐œ‹ = 0.442๐‘๐‘๐‘ 

From Fig. 5.8

๐‘†| = 11.0๐‘–๐‘›.

(๐นร›)๏ฟฝยฟร€ = ๐พ โˆ™ ๐‘†| = 8 โˆ™ 11.0 = 88.0๐‘˜๐‘–๐‘๐‘ 

5.8

From Fig. 5.8, with ๐‘“ = 0.442๐‘๐‘๐‘  and ๐œ‰ = 0.1

๐‘†| = 4.5๐‘–๐‘›.

(๐นร›)๏ฟฝยฟร€ = ๐พ โˆ™ ๐‘†| = 8 โˆ™ 4.5 = 36.0๐‘˜๐‘–๐‘๐‘ 

50

5.9 Force transmits to Foundation:

๐‘š๏ฟฝ๏ฟฝ + ๐‘๏ฟฝ๏ฟฝ + ๐‘˜๐‘ข = 0

๐นยก = ๐‘๏ฟฝ๏ฟฝ + ๐‘˜๐‘ข = ๐‘š๏ฟฝ๏ฟฝ

(๐นยก)๏ฟฝยฟร€ = ๐‘š๏ฟฝ๏ฟฝ๏ฟฝยฟร€ = ๐‘š๐‘†ยฟ

Froom Fig. 5.8 for ๐‘“ = 0.442๐‘๐‘๐‘ and ๐œ‰ = 0.1:

๐‘†ยฟ = 0.119

(๐นยก)๏ฟฝยฟร€ = 400 โˆ™ 0.11 = 44.0๐‘˜๐‘–๐‘๐‘ 

5.10

From Problem 5.7: Max. Force in spring (๐นร›)๏ฟฝยฟร€ = 88.0 kips

๐‘…ยก =88.02 = 44๐‘˜๐‘–๐‘๐‘ 

๐‘…a = โˆ’44๐‘˜๐‘–๐‘๐‘ 

From Fig. 5.14 with ๐œ‡ = 2.0,

๐‘‡ =1๐‘“=

10.442

= 2.26๐‘ ๐‘’๐‘:

๐‘†| = 6.0๐‘–๐‘›.

yield point:

๐‘ฆ๏ฟฝ =๐‘…ยก๐‘˜ =

448 = 5.5

๐œ‡ =6.05.5 = 1.1

From Fig. 5.14 with ๐œ‡ = 1.25,๐‘‡ = 2.26๐‘ ๐‘’๐‘,

๐‘†| = 10๐‘–๐‘›.

๐œ‡ =105.5 = 1.8

From Fig. 5.14 with ๐œ‡ = 1.5,๐‘‡ = 2.26๐‘ ๐‘’๐‘,

๐‘†| = 8๐‘–๐‘›.

๐œ‡ =85.5 = 1.45

51

5.11

From Problem 5.10 ๐‘‡ = 2.26๐‘ ๐‘’๐‘

From Fig. 5.15 with ๐‘‡ = 2.26๐‘ ๐‘’๐‘

๐œ‡ = 2.0,๐‘†| = 3๐‘–๐‘›.

From Problem 5.8 (๐นร›)๏ฟฝยฟร€ = 36.00

๐‘…ยก =362= 18๐‘˜๐‘–๐‘๐‘ 

๐‘ฆยฌยฅ.รกยธ =๐‘…ยก๐‘˜=188= 2.25

๐œ‡ =๐‘†|

๐‘ฆยฌยฅ.รกยธ=3.02.25

= 1.33

From Fig. 5.15 with ๐‘‡ = 2.26๐‘ ๐‘’๐‘

๐œ‡ = 1.50๐‘†| = 4.5๐‘–๐‘›.

๐œ‡ =๐‘†|

๐‘ฆยฌยฅ.รกยธ=4.02.25

= 1.8

5.12

a) From Fig. 5.8 with

๐‘“ =1๐‘‡ =

10.5 = 2.0๐‘๐‘๐‘ ,๐œ” = 12.566๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

๐‘†| = 4.0๐‘–๐‘›.

๐‘†รŸ = 50.3๐‘–๐‘›./๐‘ ๐‘’๐‘

๐‘†ยฟ = 1.63๐‘”

a) From Fig. 5.9 with

๐‘“ =1๐‘‡ =

10.5 = 2.0๐‘๐‘๐‘ ,๐œ‰ = 0

๐‘†| = 16.0 โˆ™ 0.3 = 4.8๐‘–๐‘›.

๐‘†รŸ = 200 โˆ™ 0.3 = 60.0๐‘–๐‘›./๐‘ ๐‘’๐‘

๐‘†ยฟ = 6.54๐‘” โˆ™ 0.3 = 1.96๐‘”

52

5.13 a) ๐‘‡ = 0.5๐‘ ๐‘’๐‘

From Fig. 5.12 for ๐œ‡ = 4

๐‘†| = 0.48๐‘–๐‘›.ร— 4 = 1.92๐‘–๐‘›.

๐‘†รŸ = 6.0๐‘–๐‘›./๐‘ ๐‘’๐‘

๐‘†ยฟ = 0.2๐‘”

b) From Fig. 5.18

๐‘“ = 2.0๐‘๐‘๐‘ ,๐œ‡ = 4

๐‘†| = 5 โˆ™ 4 โˆ™ 0.3 = 6.0๐‘–๐‘›.

๐‘†รŸ = 60 โˆ™ 0.3 = 18.0๐‘–๐‘›./๐‘ ๐‘’๐‘

๐‘†ยฟ = 2๐‘” โˆ™ 0.3 = 0.6๐‘”

53

6.7 Ductility factor ๐œ‡ is defined as the ratio of maximum displacement to the yield displacement From Problem 6.2 Max. displacements:

๐‘ข๏ฟฝยฟร€ = 2.56๐‘–๐‘›. Yield displacements:

๐‘ขยฌ =๐‘…๐‘˜=

30๐‘˜20๐‘˜/๐‘–๐‘›.

= 1.5๐‘–๐‘›.

Ductility ratio:

๐œ‡ =๐‘ข๏ฟฝยฟร€๐‘ขยฌ

=2.561.5

= 1.7

54

7.1

๐‘˜W =12๐ธ๐ผ๐ฟW(

=12 โˆ™ 5 โˆ™ 109

(12 โˆ™ 15)( = 1028.81๐‘™๐‘/๐‘–๐‘›.

๐‘˜X =12๐ธ๐ผ๐ฟX(

=12 โˆ™ 2.5 โˆ™ 109

(12 โˆ™ 12)( = 1004.69๐‘™๐‘/๐‘–๐‘›.

๐‘šW =3860386 = 10

๐‘™๐‘ โˆ™ ๐‘ ๐‘’๐‘X

๐‘–๐‘›.

๐‘šX =1930386 = 5

๐‘™๐‘ โˆ™ ๐‘ ๐‘’๐‘X

๐‘–๐‘›.

For free vibration:

๏ฟฝ๐‘˜W + ๐‘˜X โˆ’๐‘šW๐œ”X โˆ’๐‘˜Xโˆ’๐‘˜X ๐‘˜X โˆ’ ๐‘šX๐œ”X

๏ฟฝ ๏ฟฝ๐‘ŽW๐‘ŽX๏ฟฝ = ๏ฟฝ00๏ฟฝ

Non-trivial solution:

รข2033.50 โˆ’ 10๐œ”X โˆ’1004.69

โˆ’1004.69 1004.69 โˆ’ 5๐œ”Xรข = 0

50๐œ”ยง โˆ’ 20214.4๐œ”X + 1033.63 = 0 ๐œ”WX = 60.05,๐œ”W = 7.75๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘ ๐œ”XX = 344.23,๐œ”X = 18.55๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

Set ๐œ”WX = 60.05 1433๐‘ŽWW โˆ’ 1004.69๐‘ŽXW = 0

๐‘ŽWW = 1.000 ๐‘ŽXW = 1.426

Set ๐œ”XX = 344.24 1433๐‘ŽWX โˆ’ 1004.69๐‘ŽXX = 0

๐‘ŽWX = 1.000 ๐‘ŽXX = โˆ’1.402

Normalize first modes by factor:

rl๐‘šยฅ๐‘ŽยฅWX = 4.491

rl๐‘šยฅ๐‘ŽยฅXX = 4.453

๐œ™WW =1.0004.491

= 0.2227,๐œ™WX =1.0004.453

= 0.2246

๐œ™XW =1.4264.491

= 0.3175,๐œ™XX =โˆ’1.4024.453

= โˆ’0.3148

[ฮฆ] = ยผ0.2227 0.22460.3175 โˆ’0.3148ยฝ

55

7.2

๐‘˜W = 50,000๐‘™๐‘/๐‘–๐‘›. ๐‘˜X = 40,000๐‘™๐‘/๐‘–๐‘›. ๐‘˜( = 30,000๐‘™๐‘/๐‘–๐‘›.

๐‘ŠW = 10๐‘˜, ๐‘ŠX = 6๐‘˜, ๐‘Š( = 4๐‘˜

๐‘€W = 25.91๐‘™๐‘ โˆ™ ๐‘ ๐‘’๐‘X

๐‘–๐‘›, ๐‘€X = 15.54

๐‘™๐‘ โˆ™ ๐‘ ๐‘’๐‘X

๐‘–๐‘›,๐‘€( = 10.36

๐‘™๐‘ โˆ™ ๐‘ ๐‘’๐‘X

๐‘–๐‘›

[๐พ] = รฅ90000 โˆ’ 25.91๐œ”X โˆ’40000 0

โˆ’40000 70000 โˆ’ 15.54๐œ”X โˆ’300000 โˆ’30000 30000 โˆ’ 10.36๐œ”X

รฆ

|๐พ| = (90000 โˆ’ 25.91๐œ”X)[(70000 โˆ’ 15.54๐œ”X)(30000 โˆ’ 10.36๐œ”X) โˆ’ (โˆ’30000)(โˆ’30000)]

+ 40000[โˆ’40000(30000 โˆ’ 10.36๐œ”X)] = 0 โˆ’4169.641๐œ”Z + 45346360๐œ”ยง โˆ’ 1.2173 โˆ™ 10ยง๐œ”X + 6.0 โˆ™ 10W( = 0

๐œ”WX = 633.78,๐œ”W = 25.17๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘ ๐œ”XX = 3244,๐œ”X = 56.96๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘ ๐œ”(X = 6996,๐œ”( = 83.64๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

(90000 โˆ’ 25.91๐œ”X)๐‘ŽWW โˆ’ 40000๐‘ŽXW = 0

๐‘ŽWW = 1, ๐‘ŽXW = 1.8396,

โˆ’30000๐‘ŽXW + (30000 โˆ’ 10.36๐œ”WX)๐‘Ž(W = 0 ๐‘Ž(W = 2.3551

[๐‘Ž] = รฅ1.0 1.0 1.0

1.8396 0.1490 โˆ’2.28042.3551 โˆ’1.2362 1.6102

รฆ

๐‘—W = }(25.91)(1)X + (15.52)(1.8396)X + (10.36)(2.3551)X = 11.6602 ๐‘—X = }(25.91)(1)X + (15.52)(0.1490)X + (10.36)(1.2362)X = 6.4875 ๐‘—( = }(25.91)(1)X + (15.52)(2.2804)X + (10.36)(1.6102)X = 11.5604

๐œ™ยฅรฉ =๐‘Žยฅรฉ๐‘—ยฅ

[ฮฆ] = รฅ0.0858 0.1541 0.08650.1578 0.0230 โˆ’0.19730.2020 โˆ’0.1906 0.1393

รฆ

56

7.3

๐‘˜W =3๐ธ(2๐ผ)๐ฟW(

+12๐ธ๐ผ๐ฟW(

=18 โˆ™ 1 โˆ™ 10Z

(144)( = 6.028๐‘˜/๐‘–๐‘›.

๐‘˜X =12๐ธ(2๐ผ)๐ฟX(

=24 โˆ™ 10Z

(120)( = 13.889๐‘˜/๐‘–๐‘›.

๐‘€W =2 โˆ™ 40386

= 0.2073๐‘™๐‘ โˆ™ ๐‘ ๐‘’๐‘X

๐‘–๐‘›, ๐‘€X =

3 โˆ™ 40386

= 0.1154๐‘™๐‘ โˆ™ ๐‘ ๐‘’๐‘X

๐‘–๐‘›

For free vibration:

๏ฟฝ๐‘˜W + ๐‘˜X โˆ’๐‘šW๐œ”X โˆ’๐‘˜Xโˆ’๐‘˜X ๐‘˜X โˆ’ ๐‘šX๐œ”X

๏ฟฝ ๏ฟฝ๐‘ŽW๐‘ŽX๏ฟฝ = ๏ฟฝ00๏ฟฝ

Non-trivial solution:

รข19.917 โˆ’ 0.2073๐œ”X โˆ’13.889

โˆ’13.889 13.889 โˆ’ 0.1554๐œ”Xรข = 0

0.03221๐œ”ยง โˆ’ 5.9743๐œ”X + 83.7229 = 0 ๐œ”WX = 15.27,๐œ”W = 3.91๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

๐œ”XX = 170.21,๐œ”X = 13.046๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘ Set ๐œ”WX = 15.27

16.7515๐‘ŽWW โˆ’ 13.889๐‘ŽXW = 0 ๐‘ŽWW = 1.000 ๐‘ŽXW = 1.206

Set ๐œ”XX = 170.31 โˆ’15.3675๐‘ŽWX โˆ’ 13.889๐‘ŽXX = 0

๐‘ŽWX = 1.000 ๐‘ŽXX = โˆ’1.1065

Normalize first modes by factor:

rl๐‘šยฅ๐‘ŽยฅWX = 0.6583

rl๐‘šยฅ๐‘ŽยฅXX = 0.6306

[ฮฆ] = ยผ1.5191 1.58581.8321 โˆ’1.7547ยฝ

57

7.5

๐‘š๐‘ขW + 2๐‘˜๐‘ขW โˆ’ ๐‘˜๐‘ขX = 0

๐‘š๐‘ขX โˆ’ 2๐‘˜๐‘ขW + 2๐‘˜๐‘ขX โˆ’ ๐‘˜๐‘ข( = 0

๐‘š๐‘ข( โˆ’ ๐‘˜๐‘ขX + ๐‘˜๐‘ข( = 0

In general using matrices:

[๐‘€]{๏ฟฝ๏ฟฝ} + [๐พ]{๐‘ข} = 0

Where [๐‘€] = ๐‘š[๐ผ]รชร—รช

[๐พ] =

โŽฃโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽก 2 โˆ’1โˆ’1 2 โˆ’1

โˆ’1 2

0 0 00 0 0

โˆ’1 0 0 0โˆ’1 2 โˆ’1 0 0 0

โ€ฆโ€ฆ

0 0 0โˆ’1 2 โˆ’10 0 00 โˆ’1 1 โŽฆ

โŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽค

58

7.6

[๐พ] = รฅ๐‘˜W + ๐‘˜X โˆ’๐‘˜X 0โˆ’๐‘˜X ๐‘˜X + ๐‘˜( โˆ’๐‘˜(0 โˆ’๐‘˜( ๐‘˜(

รฆ = รฅ50000 โˆ’20000 0โˆ’20000 30000 โˆ’10000

0 โˆ’10000 10000รฆ

[๐‘€] = รฅ150 0 00 100 00 0 50

รฆ

๐œ”WX = 59.824,๐œ”XX = 260.84,๐œ”(X = 512.67,

[ฮฆ] = รฅ0.03164 0.05429 0.052130.06490 0.02952 โˆ’0.070120.09259 โˆ’0.09703 0.4485

รฆ

๐œ”W = 7.73๐‘Ÿ๐‘Ž๐‘‘๐‘ ๐‘’ ๐œ”X = 16.15๐‘Ÿ๐‘Ž๐‘‘๐‘ ๐‘’ ๐œ”( = 22.64๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

๐‘ขW = ๐ถW๐œ™WW sin๐œ”W๐‘ก

+ ๐ถX๐œ™WW cos๐œ”W๐‘ก + ๐ถ(๐œ™WX sin๐œ”X๐‘ก + ๐ถยง๐œ™WX cos๐œ”X๐‘ก + ๐ถ๏ฟฝ๐œ™W( sin๐œ”(๐‘ก + ๐ถZ๐œ™W( cos๐œ”(๐‘ก ๐‘ขX = ๐ถW๐œ™XW sin๐œ”W๐‘ก

+ ๐ถX๐œ™XW cos๐œ”W๐‘ก + ๐ถ(๐œ™XX sin๐œ”X๐‘ก + ๐ถยง๐œ™XX cos๐œ”X๐‘ก + ๐ถ๏ฟฝ๐œ™X( sin๐œ”(๐‘ก + ๐ถZ๐œ™X( cos๐œ”(๐‘ก ๐‘ข( = ๐ถW๐œ™(W sin๐œ”W๐‘ก

+ ๐ถX๐œ™(W cos๐œ”W๐‘ก + ๐ถ(๐œ™(X sin๐œ”X๐‘ก + ๐ถยง๐œ™(X cos๐œ”X๐‘ก + ๐ถ๏ฟฝ๐œ™(( sin๐œ”(๐‘ก + ๐ถZ๐œ™(( cos๐œ”(๐‘ก

59

8.1 Mathematical model:

๐‘˜W =2 โˆ™ 12๐ธ๐ผ๐ฟW(

=2 โˆ™ 12 โˆ™ 30 โˆ™ 10Z โˆ™ 248.6

(12 โˆ™ 15)( = 30700๐‘™๐‘/๐‘–๐‘›.

๐‘˜X =2 โˆ™ 12๐ธ๐ผ๐ฟX(

=2 โˆ™ 12 โˆ™ 30 โˆ™ 10Z โˆ™ 106.3

(12 โˆ™ 10)( = 44300๐‘™๐‘/๐‘–๐‘›.

๐‘šW =52500386 = 136

๐‘™๐‘ โˆ™ ๐‘ ๐‘’๐‘X

๐‘–๐‘›.

๐‘šX =25500386 = 66

๐‘™๐‘ โˆ™ ๐‘ ๐‘’๐‘X

๐‘–๐‘›.

From illustrative example 7.1 and 7.2

๐œ”W = 11.83๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’c ๐œ”X = 32.9๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’c

[ฮฆ] = ยผ0.06437 0.0567

0.0813 โˆ’0.0924ยฝ Modal equations:

๏ฟฝ๏ฟฝW + 140๐‘žW = 0.0813 โˆ™ 5000 = 406.5 ๏ฟฝ๏ฟฝX + 1082๐‘žX = โˆ’0.0924 โˆ™ 5000 = โˆ’462.0

Solution for constant force with zero initial conditions is:

๐‘žW = ๐‘žWยฑ๏ฟฝ(1 โˆ’ cos 11.83๐‘ก),๐‘žWยฑ๏ฟฝ =406.5140 = 2.90

๐‘žX = ๐‘žXยฑ๏ฟฝ(1 โˆ’ cos 32.9๐‘ก), ๐‘žXยฑ๏ฟฝ =โˆ’462.01082 = โˆ’0.427

Transforming coordinate, {๐‘ข} = [ฮฆ]{๐‘ž}

รฑ๐‘ขW๐‘ขXรฒ = ยผ0.06437 0.0567

0.0813 โˆ’0.0924ยฝ รณ2.90(1 โˆ’ cos 11.83๐‘ก)โˆ’0.427(1 โˆ’ cos 32.9๐‘ก)รด

๐‘ขW = 0.2109 โˆ’ 0.1867 cos 11.83๐‘ก โˆ’ 0.0242 cos 32.9๐‘ก ๐‘ขX = 0.1250 โˆ’ 0.1645 cos 11.83๐‘ก + 0.0394 cos 32.9๐‘ก

๐นO = 5000๐‘™๐‘

60

8.2 Use data from Problem 8.1:

๐‘ƒW = โˆ’๐‘šW๏ฟฝ๏ฟฝยฑ = โˆ’136 โˆ™ 0.5 โˆ™ 386 = โˆ’26248 ๐‘ƒX = โˆ’๐‘šX๏ฟฝ๏ฟฝยฑ = โˆ’66 โˆ™ 0.5 โˆ™ 386 = โˆ’12738

Modal equations:

๏ฟฝ๏ฟฝW + 140๐‘žW = ๐œ™WW๐‘ƒW + ๐œ™XW๐‘ƒX = โˆ’0.6437 โˆ™ 26248 โˆ’ 0.0813 โˆ™ 12738 ๏ฟฝ๏ฟฝW + 140๐‘žW = 17931

๏ฟฝ๏ฟฝW + 1082๐‘žW = ๐œ™WX๐‘ƒW + ๐œ™XX๐‘ƒX = โˆ’0.0567 โˆ™ 26248 + 0.0924 โˆ™ 12738

๏ฟฝ๏ฟฝW + 1082๐‘žW = โˆ’311.3

๐‘žW =17931140

(1 โˆ’ cos 11.83๐‘ก) = 128.1(1 โˆ’ cos 11.83๐‘ก)

๐‘žW =โˆ’311.31082

(1 โˆ’ cos 32.9๐‘ก) = โˆ’0.2874(1 โˆ’ cos 32.9๐‘ก) Transforming coordinates

{๐‘ข} = [ฮฆ]{๐‘ž} where

๐‘ข๏ฟฝW = ๐‘ขW โˆ’ ๐‘ขยฑ ๐‘ข๏ฟฝX = ๐‘ขX โˆ’ ๐‘ขยฑ

รฑ๐‘ข๏ฟฝW๐‘ข๏ฟฝXรฒ = ยผ0.06437 0.0567

0.0813 โˆ’0.0924ยฝ รณ128.1(1 โˆ’ cos 11.83๐‘ก)โˆ’0.2874(1 โˆ’ cos 32.9๐‘ก)รด

๐‘ข๏ฟฝW = 8.23 โˆ’ 8.25 cos 11.83๐‘ก โˆ’ 0.0163 cos 32.9๐‘ก ๐‘ข๏ฟฝX = 10.44 โˆ’ 10.41 cos 11.83๐‘ก โˆ’ 0.0266 cos 32.9๐‘ก

61

8.3

Stiffness matrix:

[๐พ] = รฅ3000 โˆ’1500 0โˆ’1500 3000 โˆ’15000 โˆ’1500 1500

รฆ

[๐‘€] = รฅ0.3886 0 00 0.3886 00 0 0.3886

รฆ

Solve Eigenproblem

๐œ”WX = 764.52๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’c ๐œ”XX = 6002.2๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’c ๐œ”(X = 12533๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’c

[ฮฆ] = รฅ0.52614 1.1822 0.948080.94808 0.52614 โˆ’1.18221.1822 โˆ’0.94808 0.52614

รฆ

Modal Equations:

๐นW = 1000 #1 โˆ’๐‘ก0.2,

(๐‘™๐‘)

๐นX = 2000 #1 โˆ’๐‘ก0.2,

(๐‘™๐‘)

๐น( = 3000 #1 โˆ’๐‘ก0.2,

(๐‘™๐‘)

๏ฟฝ๏ฟฝW + ๐œ”WX๐‘žW = ๐œ™WW๐นW + ๐œ™XW๐นX + ๐œ™(W๐น( ๏ฟฝ๏ฟฝX + ๐œ”XX๐‘žX = ๐œ™WX๐นW + ๐œ™XX๐นX + ๐œ™(X๐น( ๏ฟฝ๏ฟฝ( + ๐œ”(X๐‘ž( = ๐œ™W(๐นW + ๐œ™X(๐นX + ๐œ™((๐น(

or

๏ฟฝ๏ฟฝW + 764.52๐‘žW = 5969 #1 โˆ’๐‘ก0.2,

๏ฟฝ๏ฟฝX + 6002.2๐‘žX = โˆ’610#1 โˆ’๐‘ก0.2,

62

๏ฟฝ๏ฟฝ( + 12533๐‘ž( = 162 #1 โˆ’๐‘ก0.2,

For maximum values use spectral chart Fig. 4.5

๐‘กยธ = 0.2๐‘ ๐‘’๐‘.

๐œ”W = โˆš764.52 = 27.65๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’c ๐œ”X = โˆš6002.2 = 77.46๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’c ๐œ”( = โˆš12533 = 111.95๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’c

๐‘‡W = 0.2272 ๐‘‡X = 0.0811 ๐‘‡( = 0.0561

๐‘กยธ/๐‘‡W = 0.88 ๐‘กยธ/๐‘‡X = 2.466 ๐‘กยธ/๐‘‡( = 3.565

(๐ท๐ฟ๐น)W๏ฟฝยฟร€ = 1.5 (๐ท๐ฟ๐น)X๏ฟฝยฟร€ = 1.8 (๐ท๐ฟ๐น)(๏ฟฝยฟร€ = 1.85

๐‘žWยฑ๏ฟฝ =5969764.2 = 7.811

๐‘žXยฑ๏ฟฝ =โˆ’6106002.2 = โˆ’0.1016

๐‘ž(ยฑ๏ฟฝ =16212533 = 0.01292

๐‘žW๏ฟฝยฟร€ = 7.811 โˆ™ 1.5 = 11.7165

๐‘žX๏ฟฝยฟร€ = โˆ’0.1829 ๐‘ž(๏ฟฝยฟร€ = 0.0239

Estimate maximum response using square root sum of the squares of modal contributions:

๐‘ขยฅ๏ฟฝยฟร€ = 0lยบ๐œ™ยฅรฉโˆ™๐‘ž1๐‘š๐‘Ž๐‘ฅยปX

รฉ

๐‘– = 1, 2, 3

๐‘ขW๏ฟฝยฟร€ = }(0.52614 โˆ™ 11.71)X + (1.1822 โˆ™ 0.1829)X + (0.94808 โˆ™ 0.0239)X = 6.16๐‘–๐‘›. ๐‘ขX๏ฟฝยฟร€ = }(0.9408 โˆ™ 11.71)X + (0.52614 โˆ™ 0.1829)X + (1.1822 โˆ™ 0.0239)X = 11.02๐‘–๐‘›. ๐‘ข(๏ฟฝยฟร€ = }(1.1822 โˆ™ 11.71)X + (0.94808 โˆ™ 0.1829)X + (0.52614 โˆ™ 0.0239)X = 13.84๐‘–๐‘›.

63

8.4 The maximum shear force ๐‘‰ยฅรฉ at story ๐‘– corresponding to mode ๐‘— is given by

๐‘‰ยฅรฉ = ๐‘งยฅ๏ฟฝยฟร€ยบ๐œ™ยฅรฉ โˆ’ ๐œ™ยฅ๏ฟฝW,รฉยป๐‘˜ยฅ From 8.3

๐‘žW๏ฟฝยฟร€ = 7.811 โˆ™ 1.5 = 11.7165 ๐‘žX๏ฟฝยฟร€ = โˆ’0.1829 ๐‘ž(๏ฟฝยฟร€ = 0.0239

[ฮฆ] = รฅ0.52614 1.1822 0.948080.94808 0.52614 โˆ’1.18221.1822 โˆ’0.94808 0.52614

รฆ

๐‘‰XW = 11.7165(0.94808 โˆ’ 0.52614)1500 = 7415.5๐‘™๐‘ ๐‘‰XX = โˆ’0.1839(0.52614 โˆ’ 1.1822)1500 = 180.0๐‘™๐‘ ๐‘‰X( = 0.0239(โˆ’1.1822 โˆ’ 0.94808)1500 = โˆ’76.4๐‘™๐‘

๐‘‰X = }7415.5X + 180X + 76.4X = 7418๐‘™๐‘

64

8.8

๐‘˜W =12๐ธ๐ผ๐ฟW(

=12 โˆ™ 10 โˆ™ 109

(12 โˆ™ 15)( = 2058๐‘™๐‘/๐‘–๐‘›.

๐‘˜X =12๐ธ๐ผ๐ฟX(

=12 โˆ™ 5 โˆ™ 109

(12 โˆ™ 12)( = 2009๐‘™๐‘๐‘–๐‘›.

๐‘˜( =12๐ธ๐ผ๐ฟX(

=12 โˆ™ 5 โˆ™ 109

(10 โˆ™ 12)( = 3472๐‘™๐‘/๐‘–๐‘›.

๐‘šW =3860386 = 10

๐‘™๐‘ โˆ™ ๐‘ ๐‘’๐‘X

๐‘–๐‘›.

๐‘šX =1930386 = 5

๐‘™๐‘ โˆ™ ๐‘ ๐‘’๐‘X

๐‘–๐‘›.

๐‘š( =1930386 = 5

๐‘™๐‘ โˆ™ ๐‘ ๐‘’๐‘X

๐‘–๐‘›.

(a) ๐‘ขW = 2.218 sin ๐‘ก ๐‘ขX = 3.981 sin ๐‘ก ๐‘ข( = 4.419 sin ๐‘ก

(b)

๐‘ขW = 4.436 cos ๐‘ก ๐‘ขX = 7.963 cos ๐‘ก ๐‘ข( = 9.128 cos ๐‘ก

(c)

๐‘ขW = 4.436 cos ๐‘ก + 2.218 sin ๐‘ก ๐‘ขX = 7.963 cos ๐‘ก + 3.981 sin ๐‘ก ๐‘ข( = 9.128 cos ๐‘ก + 4.419 sin ๐‘ก

65

9.1 (a)

[๐พ] = รถ10 โˆ’2โˆ’2 6

โˆ’1 0โˆ’3 โˆ’2

โˆ’1 โˆ’30 โˆ’2

12 โˆ’1โˆ’1 8

รท,[๐‘€] = รถ0 00 0

0 00 0

0 00 0

3 00 2

รท

Apply Gauss-Jordan elimination to two-first rows:

รถ1 โˆ’0.20 5.6

โˆ’0.1 0โˆ’3.2 โˆ’2

0 โˆ’3.20 โˆ’2

11.9 โˆ’1โˆ’1 8

รท

รถ1 โˆ’0.20 5.6

โˆ’0.1 0โˆ’0.5714 โˆ’0.3591

0 โˆ’3.20 โˆ’2

11.9 โˆ’1โˆ’2.1428 7.2858

รท

รถ1 00 1

โˆ’0.2193 โˆ’0.07142โˆ’0.5714 โˆ’0.3591

0 00 0

10.0715 โˆ’2.1428โˆ’2.1428 7.2858

รท

By Eq. 9.11

[๐‘‡รธ] = ยผ0.2193 0.071420.5714 0.3571 ยฝ ๐‘ ๐‘œ

[๐‘‡] = รถ0.2193 0.071420.5714 0.3571

1 00 1

รท

Check [๐พยฉ] = [๐‘‡รธ]ยก[๐พ][๐‘‡รธ]

[๐พยฉ] = ยผ 0.21930.071420.57140.3571

10

01ยฝ รถ

10 โˆ’2โˆ’2 6

โˆ’1 0โˆ’3 โˆ’2

โˆ’1 โˆ’30 โˆ’2

12 โˆ’1โˆ’1 8

รท รถ0.2193 0.071420.5714 0.3571

1 00 1

รท

[๐พยฉ] = ยผ10.0715 โˆ’2.1425โˆ’2.1428 7.2858 ยฝ

Check [๐‘€ยฉ] = ยผ3 00 2ยฝ

(b)

[๐พยฉ โˆ’๐‘€ยฉ๐œ”X]{๐‘Ž} = {0}(๐ธ๐‘ž. 1) Set determinant equal to zero:

รน10.0715 โˆ’ 3๐œ”X โˆ’2.1425

โˆ’2.1428 7.2858 โˆ’ 3๐œ”Xรน = 0

๐œ”ยง โˆ’ 7๐œ”X + 11.4645 = 0

๐œ”WX = 2.6137,๐œ”W = 1.6167๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘ ๐œ”XX = 4.386,๐œ”X = 2.094๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

66

From Eq. (1) For ๐œ”WX = 2.6137

[10.0715 โˆ’ 3(2.6137)]๐‘ŽWW โˆ’ 2.1428๐‘ŽWX = 0 Set

๐‘Ž(W = 1.0 ๐‘ŽยงW = 1.0409

or

๐œ™(W =1

โˆš3 โˆ™ 1.0X + 2 โˆ™ 1.0409X= 0.4399

๐œ™ยงW =1.0409

โˆš3 โˆ™ 1.0X + 2 โˆ™ 1.0409X= 0.4579

For ๐œ”XX = 4.386

[10.0715 โˆ’ 3(4.386)]๐‘Ž(X โˆ’ 2.1428๐‘ŽยงX = 0 Set

๐‘Ž(W = 1.0 ๐‘ŽยงW = โˆ’1.4409

or

๐œ™(X =1

โˆš3 โˆ™ 1.0X + 2 โˆ™ 1.4409X= 0.3739

๐œ™ยงX =โˆ’1.4409

โˆš3 โˆ™ 1.0X + 2 โˆ™ 1.4409X= โˆ’0.5388

{๐œ™}๏ฟฝW = ๏ฟฝ๐œ™(W๐œ™ยงW๏ฟฝ = ยผ0.43990.4579ยฝ

{๐œ™}๏ฟฝX = ๏ฟฝ๐œ™(X๐œ™ยงX๏ฟฝ = ยผ 0.3739โˆ’0.5388ยฝ

[๐‘‡] = รถ0.2193 0.071420.5714 0.3571

1 00 1

รท

For the first mode:

{๐œ™}W = [๐‘‡]{๐œ™}๏ฟฝW = รบ

0.12700.41480.43990.4579

รป,{๐œ™}X = [๐‘‡]{๐œ™}๏ฟฝX = รบ

0.04160.02120.3739โˆ’0.5388

รป

67

9.2

[๐‘€] = รถ1 00 1

0 00 0

0 00 0

3 00 2

รท

From Prblem 9.1

[๐‘‡] = รถ0.2193 0.071420.5714 0.3571

1 00 1

รท

Check [๐‘€ยฉ] = [๐‘‡รธ]ยก[๐‘€][๐‘‡รธ]

[๐‘€ยฉ] = ยผ 0.21930.071420.57140.3571

10

01ยฝ รถ

1 00 1

0 00 0

0 00 0

3 00 2

รท รถ0.2193 0.071420.5714 0.3571

1 00 1

รท

[๐‘€ยฉ] = ยผ 3.372 โˆ’0.2193โˆ’0.2193 2.133 ยฝ

[๐พยฉ] = ยผ10.0715 โˆ’2.1425โˆ’2.1428 7.2858 ยฝ

[๐พยฉ โˆ’๐‘€ยฉ๐œ”X]{๐‘Ž} = {0}(๐ธ๐‘ž. 1)

Set determinant equal to zero:

รน 10.0715 โˆ’ 3.372๐œ”X โˆ’2.1425 โˆ’ 0.2193๐œ”X

โˆ’2.1428 โˆ’ 0.2193๐œ”X 7.2858 โˆ’ 2.133๐œ”Xรน = 0

๐œ”ยง โˆ’ 6.5767๐œ”X + 9.6281 = 0

๐œ”WX = 2.1997,๐œ”W = 1.4831๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘ ๐œ”XX = 4.377,๐œ”X = 2.0921๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

68

From Eq. (1) For ๐œ”WX = 2.1997

[10.0715 โˆ’ 3.372(2.1997)]๐‘Ž(W โˆ’ [2.1428 + 0.2193(2.1997)]๐‘ŽยงW = 0 Set

๐‘Ž(W = 1.0 ๐‘ŽยงW = 1.011

or

๐œ™(W =12.45 = 0.4082

๐œ™ยงW =1.0112.45 = 0.4126

For ๐œ”WX = 4.377

[10.0715 โˆ’ 3.372(2.1997)]๐‘Ž(W โˆ’ [2.1428 + 0.2193(2.1997)]๐‘ŽยงW = 0 Set

๐‘Ž(X = 1.0 ๐‘ŽยงX = โˆ’1.5126

or

๐œ™(W =1

2.755 = 0.3630

๐œ™ยงW =1.0112.755 = 0.5490

To normalize compute:

{๐‘Ž}Wยก[๐‘€ยฉ]{๐‘Ž}W = [1.0 1.011] ยผ 3.372 0.21930.2193 2.133 ยฝ ยผ

1.01.011ยฝ = 2.45

{๐‘Ž}Xยก[๐‘€ยฉ]{๐‘Ž}X = [1.0 โˆ’1.5126] ยผ 3.372 0.21930.2193 2.133 ยฝ ยผ

1.0โˆ’1.5126ยฝ = 2.755

{๐‘Ž} = [๐‘‡]{๐‘Ž}ยน

From Problem 9.1:

[๐‘‡] = รถ0.2193 0.071420.5714 0.3571

1 00 1

รท

{๐œ™}๏ฟฝW = ๏ฟฝ๐œ™(W๐œ™ยงW๏ฟฝ = ยผ0.40820.4126ยฝ

{๐œ™}๏ฟฝX = ๏ฟฝ๐œ™(X๐œ™ยงX๏ฟฝ = ยผ 0.3630โˆ’0.5490ยฝ

{๐‘Ž}W = รบ0.2143 0.071420.5714 0.3571

1 00 1

รป ยผ0.40820.4126ยฝ = รถ0.11700.38080.40820.4126

รท โ†’ {๐œ™}W = รถ0.11700.38080.40820.4126

รท

{๐‘Ž}X = รบ0.2143 0.071420.5714 0.3571

1 00 1

รป ยผ 0.3630โˆ’0.5490ยฝ = รถ0.03860.01130.3630โˆ’0.5490

รท โ†’ {๐œ™}X = รถ0.03860.01130.3630โˆ’0.5490

รท

69

9.5 From Problem 9.4: Natural frequencies

ฯ‰W = โˆš164 = 12.81 ฯ‰X = โˆš1748 = 41.81

From Fig. 5.10: Spectral displacements:

๐‘†|W = 6.274 ๐‘†|X = 0.6119

Participation factors:

ฮ“ยฅ =l๐‘šรฉ๐œ™รฉยฅ

ฮ“W = 1(0.1691) + 1(0.3397) + 1(0.5697) + 1(0.5697) = 2.103Also,

ฮ“X = 0.606 Max. displacement

๐‘ขยฅรพรฟ! = rlยบฮ“ยฅ๐‘†|รฉ๐œ™รฉยฅยปX

๐‘ขWรพรฟ! = 2.246๐‘–๐‘›. ๐‘ขXรพรฟ! = 4.492๐‘–๐‘›. ๐‘ข(รพรฟ! = 6.001๐‘–๐‘›. ๐‘ขยงรพรฟ! = 7.520๐‘–๐‘›. ๐‘ข๏ฟฝรพรฟ! = 7.520๐‘–๐‘›.

9.6 The modal shear force ๐‘‰ยฅรฉat story ๐‘– due to mode ๐‘— is:

๐‘‰ยฅรฉ = ฮ“ยฅ๐‘†|รฉโˆ†๐œ™ยฅรฉ๐‘˜ยฅ Where โˆ†๐œ™ยฅรฉ = ๐œ™ยฅรฉ โˆ’ ๐œ™ยฅ๏ฟฝW,รฉ with ๐œ™Oรฉ = 0

And ๐‘‰ยฅ = rโˆ‘ ๐‘‰ยฅรฉXยฅ

๐‘‰W = }(2.104 โˆ™ 6.274 โˆ™ 0.1699)X + (0.6063 โˆ™ 0.6119 โˆ™ 0.3755)X โˆ™ 1949

๐‘‰W = 4371๐‘™๐‘ ๐‘‰X = 4002๐‘™๐‘ ๐‘‰( = 3327๐‘™๐‘ ๐‘‰ยง = 2345๐‘™๐‘ ๐‘‰๏ฟฝ = 1410๐‘™๐‘

70

9.7 From Problem 9.5:

ฯ‰WX = 2.3131 ฯ‰XX = 4.1622

From Problem 9.1 and 9.4:

[๐พ] = รถ10 โˆ’2โˆ’2 6

โˆ’1 0โˆ’3 โˆ’2

โˆ’1 โˆ’30 โˆ’2

12 โˆ’1โˆ’1 8

รท,[๐‘€] = รถ1 00 1

0 00 0

0 00 0

3 00 2

รท

[๐พ โˆ’๐‘€๐œ”WX] = รถ7.6868 โˆ’2โˆ’2 3.6868

โˆ’1 0โˆ’3 โˆ’2

โˆ’1 โˆ’30 โˆ’2

5.0604 โˆ’1โˆ’1 3.3736

รท

Apply Gauss-Jordan elimination to two-first rows:

รถ1 00 1

โˆ’0.3980 โˆ’0.1643โˆ’1.0297 โˆ’0.6316

0 00 0

1.5129 โˆ’3.05933.0593 2.1104

รท

[๐‘‡ร“] = ๏ฟฝ๐‘‡ร“รธรธรธ๐ผ๏ฟฝ = รถ

0.3980 0.16431.0297 0.6316

1 00 1

รท

The imporved modal shapes are:

{๐‘Ž} = [๐‘‡]{๐‘Ž}ยน

{๐œ™}๏ฟฝW = ๏ฟฝ๐œ™(W๐œ™ยงW๏ฟฝ = ยผ0.18580.1592ยฝ

{๐œ™}๏ฟฝX = ๏ฟฝ๐œ™(X๐œ™ยงX๏ฟฝ = ยผ 0.1565โˆ’0.2029ยฝ

{๐‘Ž}W = รบ0.3980 0.16431.0297 0.6316

1 00 1

รป ยผ0.18580.1592ยฝ = รถ0.10010.29100.18580.1592

รท โ†’ {๐œ™}W = รถ0.20040.58440.37200.3187

รท

{๐‘Ž}X = รบ0.3980 0.16431.0297 0.6316

1 00 1

รป ยผ 0.1565โˆ’0.2029ยฝ = รถโˆ’0.0085โˆ’0.04700.1565โˆ’0.2029

รท โ†’ {๐œ™}X = รถโˆ’0.0085โˆ’0.04700.1565โˆ’0.2029

รท

Normalizing factor = 0.6142

71

9.9 From Problem 9.4 a)

ฯ‰WX = 164.56 ฯ‰XX = 1473

{๐œ™}W = "0.16970.33940.52860.6231

# ,{๐œ™}X = "0.34660.6932โˆ’0.1360โˆ’0.5506

#

Modal response: Praticipation factors:

ฮ“ยฅ =l๐‘šรฉ๐œ™รฉยฅ

ฮ“W = โˆ’[1(0.1697) + 1(0.3394) + 1(0.4340) + 1(0.5256) + 1(0.6331)] = โˆ’2.0945Also,

ฮ“X = 0.6318 Spectral response

๐‘‡W =2๐œ‹๐œ”W

= 0.500,๐‘‡X =2๐œ‹๐œ”X

= 0.1637

๐‘กยธ๐‘‡W=0.250.50 = 0.125,

๐‘กยธ๐‘‡X=

0.250.1637 = 1.527

๐‘งW๏ฟฝยฟร€๐‘งWยฑ๏ฟฝ

= 0.39,๐‘งX๏ฟฝยฟร€๐‘งXยฑ๏ฟฝ

= 1.7

๐‘งWยฑ๏ฟฝ =๐‘ƒOฮ“Wฯ‰WX

=400 โˆ™ 2.0948164.56 = 5.09

๐‘งXยฑ๏ฟฝ =๐‘ƒOฮ“Wฯ‰WX

=400 โˆ™ 0.63181473.4 = 0.17

๐‘งW๏ฟฝยฟร€ = 0.39 โˆ™ 5.09 = 1.99 ๐‘งX๏ฟฝยฟร€ = 1.7 โˆ™ 0.17 = 0.29

b) ๐‘ขยฅรฉ = max. displacement at floor โ€œ๐‘–" and โ€œ๐‘—โ€ mode relative to base displacement

๐‘ขยฅรฉ = 0lยบ๐œ™ยฅรฉ๐‘งรฉ๏ฟฝยฟร€ยปX

รฉ

๐‘ขW = }(0.1697 โˆ™ 1.99)X + (0.3466 โˆ™ 0.29)X = 0.3523๐‘–๐‘›. ๐‘ขX = }(0.3394 โˆ™ 1.99)X + (0.6932 โˆ™ 0.29)X = 0.7172๐‘–๐‘›. ๐‘ข( = }(0.4340 โˆ™ 1.99)X + (0.2786 โˆ™ 0.29)X = 0.8674๐‘–๐‘›. ๐‘ขยง = }(0.5280 โˆ™ 1.99)X + (0.1360 โˆ™ 0.29)X = 1.0526๐‘–๐‘›. ๐‘ข๏ฟฝ = }(0.6231 โˆ™ 1.99)X + (0.5506 โˆ™ 0.29)X = 1.2502๐‘–๐‘›.

72

c) ๐นยฅรฉ = max.inertialforceatfloor๐‘–inmode๐‘—:

๐นยฅรฉ = ๐‘šยฅ๐œ™ยฅรฉ๐œ”รฉX๐‘งรฉ๏ฟฝยฟร€

๐‘šยฅ = 1๐‘™๐‘ โˆ™ ๐‘ ๐‘’๐‘X

๐‘–๐‘›.

๐นWW = 1 โˆ™ 0.1697 โˆ™ 164.56 โˆ™ 1.99 = 55.57 ๐นXW = 1 โˆ™ 0.3394 โˆ™ 164.56 โˆ™ 1.99 = 111.14

๐น(W = 142.12 ๐นยงW = 173.10 ๐น๏ฟฝW = 204.05

๐นWX = 1 โˆ™ 0.3466 โˆ™ 1473.4 โˆ™ 0.29 = 148.10

๐นXX = 269.19 ๐น(X = 119.04 ๐นยงX = โˆ’58.11 ๐น๏ฟฝX = โˆ’235.26

๐‘‰ยฅรฉ = Max.shearforceatstory๐‘–inmode๐‘—

๐‘‰ยฅรฉ =l๐น๏ฟฝรฉ

รช

๏ฟฝ+ยฅ

๐‘‰๏ฟฝW = 204.05 ๐‘‰ยงW = 377.15 ๐‘‰(W = 519.27 ๐‘‰XW = 630.41 ๐‘‰WW = 685.98

๐‘‰๏ฟฝX = โˆ’235.26 ๐‘‰ยงX = โˆ’293.37 ๐‘‰(X = โˆ’174.33 ๐‘‰XX = 97.83 ๐‘‰WX = 245.93

๐‘‰ยฅ = Max.shearforceatstory๐‘–

๐‘‰ยฅ = ,l๐‘‰๐‘–๐‘—22

๐‘–=1

๐‘‰W = 728.73๐‘™๐‘, ๐‘‰X = 637.96๐‘™๐‘,๐‘‰( = 547.50๐‘™๐‘,๐‘‰ยง = 477.81๐‘™๐‘,๐‘‰๏ฟฝ = 311.42๐‘™๐‘

73

10.2

๐‘šยง = 0.01 โˆ™ 100 = 1 V๐‘™๐‘secX

๐‘–๐‘›. Y

๐‘š๏ฟฝ = 1

[๐‘€ยฉ] =

โŽฃโŽขโŽขโŽขโŽก0 0 0 0 00 0 0 0 0000

000

0 0 000

10

01โŽฆโŽฅโŽฅโŽฅโŽค

10.8 From Eq. 10.45

[๐พยฉ-] =1000030 โˆ™ 100

รถ36 300300 40000

โˆ’36 300โˆ’300 โˆ’10000

โˆ’36 โˆ’300300 โˆ’10000

36 โˆ’300โˆ’300 40000

รท

System geometric matrix:

[๐พยฉ.] =103โŽฃโŽขโŽขโŽขโŽก80000 โˆ’10000 0 0 โˆ’300โˆ’10000 80000 โˆ’10000 300 0

00

โˆ’300

โˆ’100003000

0 0 3000300 72โˆ’36

โˆ’3672 โŽฆ

โŽฅโŽฅโŽฅโŽค

1 12 2

2 2

3 32 2

4 4

36 3 36 33 4 336 3 36 3303 3 4

P L LP L L L LNP L LLP L L L L

dddd

-รฌ รผ รฌ รผรฉ รนรฏ รฏ รฏ รฏรช รบ- -รฏ รฏ รฏ รฏรช รบ=รญ รฝ รญ รฝรช รบ- - -รฏ รฏ รฏ รฏรช รบรฏ รฏ รฏ รฏ- -รซ รปรฎ รพ รฎ รพ

74

11.8

For member 1

๐‘ƒ( = รƒ โˆ’๐‘ƒ(๐‘ก)๐œ“X(๐‘ฅ)๐‘‘๐‘ฅt

O= โˆ’๐‘ƒ(๐‘ก)รƒ ๐‘ฅ ๏ฟฝ1 โˆ’

๐‘ฅ๐ฟ๏ฟฝ

X๐‘‘๐‘ฅ = โˆ’

๐‘ƒ(๐‘ก)๐ฟX

12 = โˆ’633.3๐‘ƒ(๐‘ก)t

O

๐‘ƒZ =๐‘ƒ(๐‘ก)๐ฟX

12 = 833.3๐‘ƒ(๐‘ก)

๐‘ƒ๏ฟฝ = โˆ’๐‘ƒ(๐‘ก)๐ฟX

2 = โˆ’50๐‘ƒ(๐‘ก)

๐‘ƒW = ๐‘ƒX = ๐‘ƒยง = 0 For member 2

๐‘ƒยง = ๐‘ƒW = โˆ’3.533๐‘“(๐‘ก) ๐‘ƒX = ๐‘ƒ๏ฟฝ = 3.533๐‘“(๐‘ก)

๐‘ƒ( = 3.533๐‘“(๐‘ก) รข๐‘ฅ ๏ฟฝ1 โˆ’๐‘ฅ๐ฟ๏ฟฝ

Xรขร€+tX

๐‘ƒ( = 3.533๐‘“(๐‘ก)๐ฟ8 = 44.18๐‘“(๐‘ก)

๐‘ƒZ = โˆ’3.533๐‘“(๐‘ก)๐ฟ8 = โˆ’44.18๐‘“(๐‘ก)

11.9

๐นW = 833.3๐‘ƒ(๐‘ก) โˆ’ 44.18๐‘“(๐‘ก) ๐นX = โˆ’833.3๐‘ƒ(๐‘ก) ๐น( = โˆ’5๐‘“(๐‘ก) ๐นยง = โˆ’50๐‘ƒ(๐‘ก)

2

1 2

10๐‘“(๐‘ก)0.707

2

๐‘ƒW

๐‘ƒW

๐‘ƒX ๐‘ƒ(

๐‘ƒ๏ฟฝ

๐‘ƒยง

๐‘ฅ

๐‘ฆ

1

4

3

10๐‘“(๐‘ก)

1

๐‘ƒW

๐‘ƒW

๐‘ƒX

๐‘ƒ(

๐‘ƒ๏ฟฝ ๐‘ƒยง

๐‘ฅ

๐‘ฆ

10๐‘“(๐‘ก)0.707

75

12.10

Equivalent forces = fixed-end reaction with opposite sign.

๐‘ƒW = 0

๐‘ƒX = โˆ’112๐‘ƒO๐‘“

(๐‘ก)๐ฟX

๐‘ƒ( =๐‘ƒO๐‘“(๐‘ก)๐ฟ

2

๐‘ƒยง = 0

๐‘ƒ๏ฟฝ =112๐‘ƒO๐‘“

(๐‘ก)๐ฟX

๐‘ƒZ =๐‘ƒO๐‘“(๐‘ก)๐ฟ

2

12.11

๐‘ƒW = 0

๐‘ƒX = โˆ’๐น(๐‘ก)๐‘Ž๐‘X

๐ฟX

๐‘ƒ( =๐น(๐‘ก)๐‘X

๐ฟX(3๐‘Ž + ๐‘)

๐‘ƒยง = 0

๐‘ƒ๏ฟฝ =๐น(๐‘ก)๐‘ŽX๐‘๐ฟX

๐‘ƒZ =๐น(๐‘ก)๐‘ŽX

๐ฟX(3๐‘Ž + ๐‘)

๐‘ฆ

๐‘ง

๐‘ฅ

๐‘ƒ๏ฟฝ

๐‘ƒยง

๐‘ƒ(๐‘ก) = ๐‘ƒO๐‘“(๐‘ก)

๐‘ƒZ ๐‘ƒ(

๐‘ƒW

๐‘ƒX

๐‘ฆ

๐ฟ

76

i14.2

|[๐พ] โˆ’ [๐‘€]๐œ”X| = 0 Using results from Problem 14.1

รน1563 โˆ’ 7.2๐œ”X 902

902 4688 โˆ’ 7.2๐œ”Xรน = 0

51.84๐œ”ยง โˆ’ 45,007๐œ”X + 6,513,740 = 0

๐œ”WX = 183.5,๐‘“W = 2.16๐‘๐‘๐‘  ๐œ”XX = 684.4,๐‘“X = 4.16๐‘๐‘๐‘ 

Modal shapes: 1st mode

[1563 โˆ’ 7.2(183.5)]๐‘ŽWW โˆ’ 902๐‘ŽXW = 0 Set

๐‘ŽWW = 1.0 ๐‘ŽXW = โˆ’0.268

or

๐œ™WW =1

2.778 = 0.35996

๐œ™XW = โˆ’1.0112.778 = โˆ’0.09647

2nd mode

[1563 โˆ’ 7.2(684.4)]๐‘ŽWX โˆ’ 902๐‘ŽXX = 0 Set

๐‘ŽWX = 1.0 ๐‘ŽXX = 3.73

or

๐œ™WX =1

10.3627 = 0.09649

๐œ™XX =3.73

10.3627 = 0.35994

77

14.5 From Problem 14.2 Natural frequencies:

๐œ”WX = 183.5,๐‘“W = 2.16๐‘๐‘๐‘  ๐œ”XX = 684.4,๐‘“X = 4.16๐‘๐‘๐‘ 

๐œ™WW = 0.35996 ๐œ™XW = โˆ’0.09647 ๐œ™WX = 0.09649 ๐œ™XX = 0.35994

๐‘‡W =12.16 = 0.463๐‘ ๐‘’๐‘,๐‘‡X = 0.240,๐‘กยธ = 0.1๐‘ ๐‘’๐‘

๐‘กยธ๐‘‡ = 0.216,๐ท๐ฟ ๐นWรพรฟ! =

๐‘ง1max๐‘งWยฑ๏ฟฝยฟ๏ฟฝ

= 1.2

๐‘กยธ๐‘‡ = 0.417,๐ท๐ฟ ๐นXรพรฟ! =

๐‘ง2max๐‘งXยฑ๏ฟฝยฟ๏ฟฝ

= 1.9

๏ฟฝ๏ฟฝW + ๐œ”WX๐‘žW = ๐œ™WW๐นW + ๐œ™XW๐นX ๏ฟฝ๏ฟฝX + ๐œ”XX๐‘žX = ๐œ™WX๐นW + ๐œ™XX๐นX

or

๏ฟฝ๏ฟฝW + 183.4๐‘žW = 10(0.35998) = 3.6,๐‘ก โ‰ค 0.1๐‘ ๐‘’๐‘ ๏ฟฝ๏ฟฝX + 6002.2๐‘žX = 10(0.09646) = 0.9646,๐‘ก โ‰ค 0.1๐‘ ๐‘’๐‘

๐‘งW,ยฑ๏ฟฝ =๐นO๐‘˜=

3.618.34

= 0.196,๐‘งX,ยฑ๏ฟฝ =๐นO๐‘˜=0.9646684.6

= 0.0014

๐‘งW,๏ฟฝยฟร€ = 1.2(0.196) = 0.235, ๐‘งX,รพรฟ! = 1.9(0.0014) = 0.0026

Use SSS rule

๐‘ฆW,๏ฟฝยฟร€ = r(๐‘งW,รพรฟ!๐œ™11)X +(๐‘งX,รพรฟ!๐œ™12)

X = r(0.235 โˆ™ 0.36)X +(0.0026 โˆ™ 0.09646)X = 0.0846๐‘–๐‘›.

๐‘ฆX,๏ฟฝยฟร€ = r(๐‘งW,รพรฟ!๐œ™21)X +(๐‘งX,รพรฟ!๐œ™22)

X = r(โˆ’0.235 โˆ™ 0.09646)X +(0.0026 โˆ™ 0.36)X = 0.0227๐‘–๐‘›.

78

17.1

๐ธ๐ผ = 3.5 โˆ™ 10e๐‘™๐‘ โˆ™ ๐‘–๐‘›.X

๐‘Š = 150๐‘™๐‘๐‘“๐‘ก(

๐œ”ยท = ๐‘›X๐œ‹X0๐ธ๐ผ๐‘šยฉ๐ฟยง

๐‘Š =15012( = 0.0868

๐‘™๐‘๐‘–๐‘›.(

๐‘šยฉ =0.0868 โˆ™ 24 โˆ™ 10

386 = 0.054๐‘™๐‘ โˆ™ secX

๐‘–๐‘›.(

๐œ”W = 13.4638,๐‘“1 =๐œ”W2๐œ‹ = 2.14๐‘๐‘๐‘ 

๐œ”X = 53.8552,๐‘“2 =๐œ”X2๐œ‹ = 8.57๐‘๐‘๐‘ 

๐œ”( = 121.1742,๐‘“3 =๐œ”(2๐œ‹ = 19.28๐‘๐‘๐‘ 

17.2 From Table 17.3

๐œ”ยท = ๐ถยท0๐ธ๐ผ๐‘šยฉ๐ฟยง

๐ถW = 22.3733,๐ถX = 61.6828,๐ถ( = 120.9034

From Problem 17.1

๐œ”ยท = ๐ถยท13.4638๐œ‹X = 1.3642๐ถยท

๐œ”W = 30.52,๐‘“W = 4.85๐‘๐‘๐‘  ๐œ”X = 84.13,๐‘“X = 13.39๐‘๐‘๐‘  ๐œ”( = 164.93,๐‘“( = 26.25๐‘๐‘๐‘ 

79

17.3 From Table 17.5

๐œ”ยท = ๐ถยท0๐ธ๐ผ๐‘šยฉ๐ฟยง

๐œ”ยท = ๐ถยท13.4638๐œ‹X = 1.3642๐ถยท

๐ถW = 15.4188,๐ถX = 49.9648,๐ถ( = 140.2477

From Problem 17.1

๐œ”ยท = ๐ถยท13.4638๐œ‹X = 1.3642๐ถยท

๐œ”W = 21.02,๐‘“W = 3.35๐‘๐‘๐‘  ๐œ”X = 68.16,๐‘“X = 10.85๐‘๐‘๐‘  ๐œ”( = 142.21,๐‘“( = 22.63๐‘๐‘๐‘ 

17.4

๐‘ฆ(๐‘ฅ, ๐‘ก) =2๐‘ƒO๐‘šยฉ๐ฟl

1๐œ”ยทX

sin๐‘›๐œ‹๐‘ฅ๐ฟ(1 โˆ’ cos๐œ”ยท ๐‘ก) sin

๐‘›๐œ‹๐‘ฅW๐ฟ

Load ๐‘ƒO = โˆ’2000,๐‘Ž๐‘ก๐‘ฅW = 9(12) = 108๐‘–๐‘›.

Deflection at centers

๐‘ฅ =(36)(12)

2 = 216๐‘–๐‘›. For max. deflection

(1 โˆ’ cos๐œ”ยท ๐‘ก) = 2,๐‘šยฉ = 0.054๐‘™๐‘ โˆ™ secX

๐‘–๐‘›.( ,from problem 17.1

๐‘ฆ๏ฟฝยฟร€๏ฟฝ.ยท๏ฟฝ.๏ฟฝ =โˆ’2(2000)

0.054(36)(12)l2๐œ”ยทX

sin๐‘›๐œ‹(108)(36 โˆ™ 12) sin

๐‘›๐œ‹2 = โˆ’342.93l

1๐œ”ยทX

sin(0.7854๐‘›) sin๐‘›๐œ‹2

First 3 modes: ๐œ”W = 13.46๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘,From Problem 17.1

๐‘ฆ๏ฟฝยฟร€๏ฟฝ.ยท๏ฟฝ.๏ฟฝ = โˆ’342.93 ๏ฟฝ1

13.46X 0.707 +1

53.85X(0) +

0.707121.17X

(โˆ’1)โ€ฆ . . ๏ฟฝ

= โˆ’342.93[0.0039 โˆ’ 0.000048]

= โˆ’1.321๐‘–๐‘›.

80

17.5

๐‘šยฉ = 0.3๐‘™๐‘ โˆ™ secX

๐‘–๐‘›.(

๐ธ๐ผ = 10Z๐‘™๐‘ โˆ™ ๐‘–๐‘›.X

๐ฟ = 150๐‘–๐‘›.

Modal differential equation:

๐‘€ยท๏ฟฝ๏ฟฝยท(๐‘ก) + ๐œ”ยทX๐‘€ยท๐‘งยท(๏ฟฝ) = ๐นยท(๐‘ก) where

๐‘€ยท = รƒ ๐‘šยฉt

O๐œ™ยทX(๐‘ฅ)๐‘‘๐‘ฅ

๐นยท = รƒ ๐œ™ยทX(๐‘ฅ)๐‘ƒ(๐‘ฅ, ๐‘ก)t

O๐‘‘๐‘ฅ

or

๏ฟฝ๏ฟฝยท + ๐œ”ยทX๐‘งยท =๐น(๐‘ก)๐‘€ยท

=๐‘ƒO โˆซ๐œ™ยท(๐‘ฅ)๐‘‘๐‘ฅ

โˆซ ๐‘šยฉtO ๐œ™ยทX(๐‘ฅ)๐‘‘๐‘ฅ

๐ผยท =โˆซ๐œ™ยท(๐‘ฅ)๐‘‘๐‘ฅ

โˆซ ๐‘šยฉtO ๐œ™ยทX(๐‘ฅ)๐‘‘๐‘ฅ

Modal response:

๐‘งยท(๐‘ก) =๐‘ƒO๐ผยท๐œ”ยทX

(1 โˆ’ cos๐œ”ยท๐‘ก)

Total response:

๐‘ข(๐‘ก, ๐‘ฅ) =lฮฆยท(๐‘ฅ)๐‘งยท(๐‘ก),ฮฆยท = sin๐‘›๐œ‹๐‘ฅ๐ฟ

ยท

modalshape

=l๐‘ƒO๐ผยท๐œ”ยทX

(1 โˆ’ cos๐œ”ยท๐‘ก) sin๐‘›๐œ‹๐‘ฅ๐ฟ

ยท

First mode

๐œ”W = ๐ถ10๐ธ๐ผ๐‘šยฉ๐ฟ4

= ๐œ‹20106

0.3(150)4= 0.8

๐‘“W =๐œ”12๐œ‹ = 0.13๐‘๐‘๐‘ 

๐ผยท =4๐œ‹

๐‘ฆW(๐‘ก, ๐‘ฅ) =4๐‘ƒO

๐œ‹0.13X (1 โˆ’ cos 0.13๐‘ก) sin๐œ‹๐‘ฅ150

= 75.34๐‘ƒO (1 โˆ’ cos 0.13๐‘ก) sin๐‘ฅ

47.75

81

17.6

๐‘šยฉ = 0.3๐‘™๐‘ โˆ™ secX

๐‘–๐‘›.(

๐ธ๐ผ = 10Z๐‘™๐‘ โˆ™ ๐‘–๐‘›.X

๐ฟ = 150๐‘–๐‘›.

๐œ”ยท = ๐ถ๐‘›0๐ธ๐ผ๐‘šยฉ๐ฟ4

= ๐ถ๐‘›0106

0.3(150)4= ๐ถ๐‘›0.081

๐œ”W = ๐œ‹2(0.081) = 0.8๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘ ๐œ”X = 4๐œ‹2(0.081) = 3.2๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

Modal differential equation:

๐‘€ยท๏ฟฝ๏ฟฝยท(๐‘ก) + ๐œ”ยทX๐‘€ยท๐‘งยท(๏ฟฝ) = ๐นยท(๏ฟฝ) where

๐นยท = รƒ ๐œ™ยทX(๐‘ฅ)๐‘ƒ(๐‘ฅ, ๐‘ก)t

O๐‘‘๐‘ฅ = sin

๐‘›๐œ‹ ๏ฟฝ๐ฟ2๏ฟฝ๐ฟ

1000 sin 500๐‘ก

For๐‘› = 1,๐นW(๐‘ก) = 1000 sin 500๐‘ก For๐‘› = 2,๐นX(๐‘ก) = 0

๐‘€ยท = รƒ ๐‘šยฉt

O๐œ™ยทX(๐‘ฅ)๐‘‘๐‘ฅ

๐‘€W = รƒ 0.3 sinX๐œ‹๐‘ฅ๐ฟ

t

O๐‘‘๐‘ฅ =

0.32รƒ #1 โˆ’ cos

2๐œ‹๐‘ฅ๐ฟ ,

t

O๐‘‘๐‘ฅ = 0.15๐ฟ = 0.15(150) = 22.5

๏ฟฝ๏ฟฝยท + ๐œ”ยทX๐‘งยท =100022.5

sin 500๐‘ก = 44.44 sin 500๐‘ก

๐‘งW =44.44

0.64 โˆ’ 500Xsin(500๐‘ก) = 0.00018 sin(500๐‘ก)

๐‘ฆ(๐‘ก) = ๐œ™W(๐‘ฅ)๐‘งW(๐‘ก) + ๐œ™X(๐‘ฅ)๐‘งX(๐‘ก) + โ‹ฏ.

๐‘งX(๐‘ก) = 0,Soconsideronlyfirstmode

๐‘ฆ(๐‘ก) =sin ๐œ‹ ๐‘ฅ150

0.00018 sin(500๐‘ก) = 0.0000038 sin(500๐‘ก)

82

17.7

๏ฟฝ๏ฟฝยท(๐‘ก) + 2๐œ‰ยท๐œ”ยท๏ฟฝ๏ฟฝยท(๐‘ก) + ๐œ”ยทX๐‘งยท(๏ฟฝ) =๐นยท(๐‘ก)๐‘€ยท

๐‘€ยท = รƒ ๐‘šยฉt

O๐œ™ยทX(๐‘ฅ)๐‘‘๐‘ฅ

๐‘€W = 22.5

๐นยท = รƒ ๐‘šยฉ๐œ™(๐‘ฅ)๐‘ƒ(๐‘ฅ, ๐‘ก)t

O๐‘‘๐‘ฅ

First mode

๐นW(๐‘ก) = 1000 sin 500๐‘ก ๐œ”W = 0.8๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

๏ฟฝ๏ฟฝW(๐‘ก) + 2 โˆ™ 0.1 โˆ™ 0.8๏ฟฝ๏ฟฝW(๐‘ก) + (0.8)X๐‘งW(๐‘ก) =๐นW(๐‘ก)๐‘€W

Solution

๐‘ง(๐‘ก) =๐‘งยฑ๏ฟฝ sin(๐œ”ยฉ๐‘ก โˆ’ ๐œƒ)

}(1 โˆ’ ๐‘ŸX)X + (2๐œ‰๐‘Ÿ)X

๐œ‰ = 0.1,๐‘Ÿ =5000.8

= 625

tan ๐œƒ =2๐œ‰๐‘Ÿ1 โˆ’ ๐‘ŸX

=2(0.1)(625)1 โˆ’ 625X

= โˆ’0.00032

๐œƒ = โˆ’0.018ยฐ,๐ผW =4๐œ‹

๐‘งยฑ๏ฟฝ =1000(0.8)X

= 1562.5

๐‘งW(๐‘ก) =1562.5390624

sin(500๐‘ก + 0.0003) = 0.004 sin(500๐‘ก + 0.0003)

๐‘ฆ(๐‘ก) = ๐œ™W(๐‘ฅ)๐‘งW(๐‘ก) + ๐œ™X(๐‘ฅ)๐‘งX(๐‘ก) + โ‹ฏ.

๐‘ฆ(๐‘ก) = 0.004sin ๐œ‹ ๐‘ฅ๐ฟ

sin(500๐‘ก โˆ’ 0.003)

83

17.8

๐‘šยฉ = 0.5๐‘™๐‘ โˆ™ secX

๐‘–๐‘›.(

๐ธ๐ผ = 30 โˆ™ 10Z๐‘™๐‘ โˆ™ ๐‘–๐‘›.X ๐ฟ = 100๐‘–๐‘›. ๐ผ = 120๐‘–๐‘›.ยง

๐œ”ยท = 3.5160๐ธ๐ผ๐‘šยฉ๐ฟ4

= 3.516030 โˆ™ 10Z(120)

0.5(100)4= 24.83๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

๏ฟฝ๏ฟฝW(๐‘ก) + ๐œ”WX๐‘งW(๐‘ก) =๐นW(๐‘ก)๐‘€W

๐นW(๐‘ก) = รƒ ๐œ™W(๐‘ฅ)๐‘ƒ(๐‘ฅ, ๐‘ก)t

O๐‘‘๐‘ฅ

where

(๐‘Žยท๐ฟ)X = ๐ถยท,Eq.(17.51)andTable17.4

๐‘Žยท =โˆš3.5160100

= 0.019

๐œ™W(๐ฟ) = coshโˆš3.516 โˆ’ cos โˆš3.516 โˆ’ 0.734(sinhโˆš3.516 โˆ’ sinโˆš3.516)

๐œŽW =coshโˆš3.516 + cosโˆš3.516sinhโˆš3.516 + sinโˆš3.516

= 0.734

๐œ™W(๐ฟ) = 0.0248

๐นW(๐‘ก) = 0.0248๐‘ƒ(๐‘ก)

๐‘€W = รƒ ๐‘šยฉt

O๐œ™ยทX(๐‘ฅ)๐‘‘๐‘ฅ

( ) cosh cos (sinh sin )n n n n n nx a x a x a x a xsF = + - +

cosh cossinh sin

n nn

n n

a L a La L a L

s -=

-

84

๐ผW =โˆซ ๐œ™W(๐‘ฅ)๐‘‘๐‘ฅtO

โˆซ ๐œ™WX(๐‘ฅ)tO ๐‘‘๐‘ฅ

= 0.7830

รƒ ๐œ™W(๐‘ฅ)๐‘‘๐‘ฅt

O= รƒ [cosh ๐‘ŽW๐‘ฅ โˆ’ cos ๐‘ŽW๐‘ฅ โˆ’ ๐œŽ1(sinh ๐‘ŽW๐‘ฅ โˆ’ sin ๐‘ŽW๐‘ฅ)]๐‘‘๐‘ฅ

t

O

๐œŽW =cosh๐‘Ž1๐ฟ + cos๐‘Ž1๐ฟsinh๐‘Ž1๐ฟ + sin๐‘Ž1๐ฟ

= 0.507

(๐‘ŽW๐ฟ)X = ๐ถW = 3.5160

๐‘ŽW๐ฟ = โˆš3.5160 = 1.875

รƒ ๐œ™W(๐‘ฅ)๐‘‘๐‘ฅt

O=1๐‘ŽW{|sinh ๐‘ŽW๐‘ฅ โˆ’ sin ๐‘ŽW๐‘ฅ|OWOO โˆ’ 0.507|cosh ๐‘ŽW๐‘ฅ + cos ๐‘ŽW๐‘ฅ|OWOO}

๐‘ŽW =1.875100

= 0.01875

รƒ ๐œ™W(๐‘ฅ)๐‘‘๐‘ฅt

O= 53.3{(3.1837 โˆ’ 0.9541) โˆ’ 0.507(3.3371 โˆ’ 0.2995 โˆ’ 1 โˆ’ 1)} = 90.80

รƒ ๐œ™WX(๐‘ฅ)๐‘‘๐‘ฅt

O=โˆซ ๐œ™W(๐‘ฅ)๐‘‘๐‘ฅtO

๐ผW=90.800.783

= 115.96

๐นW(๐‘ก) = ๐œ™W(๐ฟ)๐‘ƒ(๐‘ก) = 0.0248๐‘ƒ(๐‘ก)

๏ฟฝ๏ฟฝW(๐‘ก) + 29.83X๐‘งW(๐‘ก) =0.0248๐‘ƒ(๐‘ก)115.96

= ๐‘ƒO๐‘“(๐‘ก),๐‘ก โ‰ค 0.05

๐‘ƒO =0.0249(5000)

115.96= 1.073๐‘“(๐‘ก)

๐‘กยธ๐‘‡W=0.050.21

= 0.24,(๐ท๐ฟ๐น)๏ฟฝยฟร€ = 0.7(FromFig.4.5)

๐‘‡W =2๐œ‹๐œ”W

=2๐œ‹29.83

= 0.21

(๐ท๐ฟ๐น)๏ฟฝยฟร€ =๐‘ง๏ฟฝยฟร€,W๐‘งยฑ๏ฟฝ,W

๐‘งยฑ๏ฟฝ,W =๐‘ƒO๐‘˜=1.07329.83X

=1829

๐‘ง๏ฟฝยฟร€,W = (๐ท๐ฟ๐น)๏ฟฝยฟร€๐‘งยฑ๏ฟฝ,W = 0.7 โˆ™1829

= 0.00084

๐‘ง๏ฟฝยฟร€,W = ๐œ™W(๐‘ฅ = ๐ฟ)๐‘ง๏ฟฝยฟร€,W = 0.0248 โˆ™ 0.00084 = 2.1 โˆ™ 10๏ฟฝ๏ฟฝ๐‘–๐‘›.

85

17.9

๐‘šยฉ = 0.5๐‘™๐‘ โˆ™ secX

๐‘–๐‘›.(

๐ธ๐ผ = 10ร’๐‘™๐‘ โˆ™ ๐‘–๐‘›.X ๐ฟ = 90๐‘–๐‘›.

๐‘ฆ(๐‘ฅ, ๐‘ก) =2๐‘ƒO๐‘šยฉ๐ฟl๏ฟฝ

1๐œ”ยทX

sin๐‘›๐œ‹๐‘ฅ๐ฟ(1 โˆ’ cos๐œ”ยท ๐‘ก) ๏ฟฝsin

๐‘›๐œ‹๐‘ฅW๐ฟ +sin

๐‘›๐œ‹๐‘ฅX๐ฟ ๏ฟฝ๏ฟฝ

๐œ”ยท = ๐œ‹20๐ธ๐ผ๐‘šยฉ๐ฟ4

= ๐œ‹2010ร’

0.5(90)4= 5.45๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

๐‘ฆ(๐‘ฅ, ๐‘ก) =2๐‘ƒO๐‘šยฉ๐ฟl๏ฟฝ

1๐œ”ยทX

sin๐‘›๐œ‹๐‘ฅ๐ฟ(1 โˆ’ cos๐œ”ยท ๐‘ก) ๏ฟฝsin

๐‘›๐œ‹๐‘ฅW๐ฟ +sin

๐‘›๐œ‹๐‘ฅX๐ฟ ๏ฟฝ๏ฟฝ

๐‘ฆ(๐‘ฅ, ๐‘ก) =โˆ’60000.5(90)

15.43X

(1 โˆ’ cos 5.45 ๐‘ก) sin๐œ‹๐‘ฅ90 #sin

๐œ‹6090 +sin

๐œ‹7590 ,

= โˆ’4.49(1 โˆ’ cos 5.45 ๐‘ก) sin 0.035๐‘ฅ(1.366) = โˆ’6.13 (1 โˆ’ cos 5.45 ๐‘ก) sin(0.035๐‘ฅ) At mid section:

sin(0.035 โˆ™ 45) = 1.0 ๐‘ฆ(45, ๐‘ก) = โˆ’6.13(1 โˆ’ cos 5.45 ๐‘ก)

17.10

๏ฟฝ๏ฟฝW(๐‘ก) + ๐œ”WX๐‘งW(๐‘ก) =๐นW(๐‘ก)๐‘€W

๐นW(๐‘ก) = รƒ ๐œ™W(๐‘ฅ)๐‘ƒ(๐‘ฅ, ๐‘ก)t

O๐‘‘๐‘ฅ

First mode:

๐œ”W = 5.45๐‘Ÿ๐‘Ž๐‘‘/ sec FromProblem17.9

๐‘‡W =2๐œ‹5.45

= 1.15๐‘ ๐‘’๐‘

๐‘€W = รƒ ๐‘šยฉt

O๐œ™WX(๐‘ฅ)๐‘‘๐‘ฅ,๐œ™W(๐‘ฅ) = sin

๐‘›๐œ‹๐ฟ

86

๐‘€W = 0.5รƒ(1 โˆ’ cos 2๐œ‹๐ฟ ๐‘ฅ)

2

eO

O๐‘‘๐‘ฅ =

0.52โˆ™ 90 = 22.5

๏ฟฝ๏ฟฝW(๐‘ก) + 5.45X๐‘งW(๐‘ก) =โˆ’300022.5

,๐‘ก โ‰ค 0.1๐‘ ๐‘’๐‘

๏ฟฝ๏ฟฝW(๐‘ก) + 5.45X๐‘งW(๐‘ก) = 0,๐‘ก > 0.1๐‘ ๐‘’๐‘

๐‘กยธ๐‘‡=00.11.15

= 0.086

Max. response from Fig. 4.4:

๐‘งW,๏ฟฝยฟร€ = 0.5๐‘งยฑ๏ฟฝ,๐‘งยฑ๏ฟฝ =3000

22.5 โˆ™ 5.45X= 4.5

๐‘งW,๏ฟฝยฟร€ = 0.5(4.5) = 2.25

๐‘ฆรพรฟ!,W(๐‘ฅ, ๐‘ก) = ๐œ™1(๐‘ฅ)๐‘ง๐‘š๐‘Ž๐‘ฅ,1 = 2.25 sin๐œ‹๐‘ฅ90

at ๐‘ฅ = 60" ๐‘ง๏ฟฝยฟร€,W(๐‘ฅ = 60") = 1.95๐‘–๐‘›.

at ๐‘ฅ = 75" ๐‘ง๏ฟฝยฟร€,W(๐‘ฅ = 75") = 1.125๐‘–๐‘›

87

17.11

๐‘šยฉ = 1๐‘™๐‘ โˆ™ secX

๐‘–๐‘›.(

๐ธ๐ผ = 30 โˆ™ 10Z๐‘™๐‘ โˆ™ ๐‘–๐‘›.X ๐ฟ = 180๐‘–๐‘›.

๐‘ƒ(๐‘ฅ, ๐‘ก) = 2000 sin 400๐‘ก

๐‘กยธ =๐œ‹400

๐‘ ๐‘’๐‘

Modal differential equation for first modes:

๏ฟฝ๏ฟฝW + ๐œ”WX๐‘งW =๐น(๐‘ก)๐‘€W

=โˆซ๐‘ƒ(๐‘ฅ, ๐‘ก)๐œ™W(๐‘ฅ)๐‘‘๐‘ฅ

โˆซ ๐‘šยฉtO ๐œ™WX(๐‘ฅ)๐‘‘๐‘ฅ

,๐‘ก โ‰ค ๐‘กยธ

๐œ”W = 22.37330๐ธ๐ผ๐‘šยฉ๐ฟ4

= 22.3733030 โˆ™ 10Z1(180)4

= 3.78๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

๏ฟฝ๏ฟฝW + 3.78X๐‘งW =๐‘ƒO๐ผW๐‘šยฉ

sin๐œ”ยฉ๐‘ก ,๐‘ก โ‰ค ๐‘กยธ,๐ผW = 0.8308(Table17.3) ๏ฟฝ๏ฟฝW + 3.78X๐‘งW = 0,๐‘ก > ๐‘กยธ

๏ฟฝ๏ฟฝW + 14.292๐‘งW =2000(0.8308)

1.0sin 400๐‘ก = 1662 sin 400๐‘ก

๐‘‡W =2๐œ‹3.78

= 1.66๐‘ ๐‘’๐‘

๐‘กยธ๐‘‡=

๐œ‹400 โˆ™ 1.66

= 0.0047

#๐‘ง๐‘งยฑ๏ฟฝ,๏ฟฝยฟร€,W

= 0.025(FromFig.5.3)

๐‘งยฑ๏ฟฝ =๐นO๐‘˜=166214.29

= 116.3

๐‘ง๏ฟฝยฟร€,W = 0.025(116.3) = 2.91

๐‘ฆ๏ฟฝยฟร€,W = ๐œ™W(๐‘ฅ)๐‘ง๏ฟฝยฟร€,W

๐œ™W(๐‘ฅ) = cosh ๐‘ŽW๐‘ฅ โˆ’ cos ๐‘ŽW๐‘ฅ โˆ’ ๐œŽ1(sinh ๐‘ŽW๐‘ฅ โˆ’ sin ๐‘ŽW๐‘ฅ)

๐œŽW =cosh๐‘Ž1๐ฟ + cos๐‘Ž1๐ฟsinh๐‘Ž1๐ฟ + sin๐‘Ž1๐ฟ

(๐‘ŽW๐ฟ)X = ๐ถW = 22.3733

88

๐‘ŽW๐ฟ = โˆš22.3733 = 4.72(๐ถWfromTable17.3)

๐œŽW = 0.983,๐‘Ž1๐ฟ2 = 90๐‘Ž1 =

4.272 = 2.36

๐œ™W(๐‘ฅ = 90ยฐ) = 1.586

๐‘ฆ๏ฟฝยฟร€,W = 1.586(2.91) = 4.61๐‘–๐‘›.

17.12 Solve for second mode:

๐œ”X = 61.67280๐ธ๐ผ๐‘šยฉ๐ฟ4

= 10.42๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

(๐‘ŽX๐ฟ)X = ๐ถX

๐‘ŽX๐ฟ = โˆš61.6728 = 7.85(๐ถXfromTable20.3)

๐‘ฆ๏ฟฝยฟร€,X = ๐œ™X(๐‘ฅ)๐‘ง๏ฟฝยฟร€,X

๐‘‡X =2๐œ‹10.42

= 0.30๐‘ ๐‘’๐‘

๐‘กยธ๐‘‡=

๐œ‹400 โˆ™ 0.3

= 0.026

๐‘ง๏ฟฝยฟร€,X = 0.1

๐œ™X(๐‘ฅ) = cosh ๐‘ŽX๐‘ฅ โˆ’ cos ๐‘ŽX๐‘ฅ โˆ’ ๐œŽ2(sinh ๐‘ŽX๐‘ฅ โˆ’ sin ๐‘ŽX๐‘ฅ)

๐œŽX =cosh๐‘Ž2๐ฟ + cos๐‘Ž2๐ฟsinh๐‘Ž2๐ฟ + sin๐‘Ž2๐ฟ

= 1.014

๐œ™X(๐‘ฅ = 90ยฐ) = โˆ’0.35

๐‘ฆ๏ฟฝยฟร€,X = 0.35(0.1) = 0.035๐‘–๐‘›.

๐‘ฆ๏ฟฝยฟร€ = r๐‘ฆ๏ฟฝยฟร€,WX + ๐‘ฆ๏ฟฝยฟร€,XX = }4.61X + 0.035X = 4.16๐‘–๐‘›.

89

19.1 Fourier series is given by Eq. 19.2

๐น(๐‘ก) = ๐‘ŽO +l(๐‘Žยท cos ๐‘›ฯ‰ยฉ๐‘ก + ๐‘ยท sin ๐‘›ฯ‰ยฉ๐‘ก);

ยท+W

๐‘‡2 =

1๐‘‡รƒ ๐น(๐‘ก)๐‘‘๐‘ก

ยก

O

๐น(๐‘ก) = 300 โ‰ค ๐‘ก โ‰ค๐‘‡2

๐น(๐‘ก) = โˆ’30๐‘‡2 โ‰ค ๐‘ก โ‰ค ๐‘‡

๐‘ŽO = 0 (area under ๐น(๐‘ก) between 0 and T=1 sec).

๐‘Žยท =2๐‘‡รƒ ๐น(๐‘ก) cos ๐‘›ฯ‰ยฉ๐‘ก ๐‘‘๐‘ก

ยก

O

๐‘Žยท = 2รƒ 30 cos ๐‘›ฯ‰ยฉ๐‘ก ๐‘‘๐‘กO.๏ฟฝ

O+ 2รƒ โˆ’30 cos ๐‘›ฯ‰ยฉ๐‘ก ๐‘‘๐‘ก

W.O

O.๏ฟฝ

๐‘Žยท =60๐‘›ฯ‰ยฉ ๏ฟฝsin

๐‘›ฯ‰ยฉ2 ๏ฟฝ โˆ’

60๐‘›ฯ‰ยฉ ๏ฟฝsin ๐‘›ฯ‰ยฉ โˆ’ sin

๐‘›ฯ‰ยฉ2 ๏ฟฝ

๐‘Žยท =60๐‘›ฯ‰ยฉ #2 sin

๐‘›ฯ‰ยฉ2 โˆ’ sin๐‘›ฯ‰ยฉ,,ฯ‰ยฉ =

2๐œ‹๐‘‡ = 2๐œ‹

๐‘Žยท =602๐œ‹๐‘›

(2 sin๐œ‹๐‘› โˆ’ sin 2๐œ‹๐‘›)

๐‘Žยท = 0๐‘“๐‘œ๐‘Ÿ๐‘Ž๐‘™๐‘™๐‘›.

๐‘ยท =2๐‘‡รƒ ๐น(๐‘ก) sin ๐‘›ฯ‰ยฉ๐‘ก ๐‘‘๐‘ก

ยก

O

๐‘ยท = 2รƒ 30 sin๐‘›ฯ‰ยฉ๐‘ก ๐‘‘๐‘กO.๏ฟฝ

O+ 2รƒ โˆ’30 sin๐‘›ฯ‰ยฉ๐‘ก ๐‘‘๐‘ก

W.O

O.๏ฟฝ

๐‘ยท =60๐‘›ฯ‰ยฉ ๏ฟฝ1 โˆ’ 2cos

๐‘›ฯ‰ยฉ2 ๏ฟฝ โˆ’

60๐‘›ฯ‰ยฉ ๏ฟฝcos

๐‘›ฯ‰ยฉ2 โˆ’ cos๐‘›ฯ‰ยฉ๏ฟฝ

๐‘ยท =60๐‘›ฯ‰ยฉ #1 โˆ’ 2cos

๐‘›ฯ‰ยฉ2 + cos๐‘›ฯ‰ยฉ,,ฯ‰ยฉ =

2๐œ‹๐‘‡ = 2๐œ‹

๐‘ยท =60๐œ‹๐‘›

(1 โˆ’ 2 cos ๐‘›๐œ‹ + cos 2๐‘›๐œ‹)

๐‘“๐‘œ๐‘Ÿ๐‘› = 1, 3, 5, 7. . ๐‘ยท =60๐œ‹๐‘›

(1 โˆ’ 2(โˆ’1) + 1), ๐‘ยท =240๐œ‹๐‘›

๐‘“๐‘œ๐‘Ÿ๐‘› = 2, 4, 6, 8. . ๐‘ยท =60๐œ‹๐‘›

(1 โˆ’ 2(1) + 1), ๐‘ยท = 0

โˆด ๐น(๐‘ก) =240ฯ‰ยฉ #

sinฯ‰ยฉ๐‘ก1 +

sin 3ฯ‰ยฉ๐‘ก3 +

sin 5ฯ‰ยฉ๐‘ก5 โ€ฆโ€ฆ . ,

๐‘œ๐‘Ÿ๐น(๐‘ก) =120๐œ‹ #

sin 2๐œ‹๐‘ก1 +

sin 6๐œ‹๐‘ก3 +

sin 10๐œ‹๐‘ก5 โ€ฆโ€ฆ . ,

90

19.2 From eq. 19.10, the steady-state response of a damped single degree-of-freedom system is:

๐‘ข(๐‘ก) =๐‘ŽO๐‘˜ +

1๐‘˜<ร

๐‘Žยท2๐‘Ÿยท๐œ‰ + ๐‘ยท(1 โˆ’ ๐‘ŸยทX)(1 โˆ’ ๐‘ŸยทX)X + (2๐‘Ÿยท๐œ‰)X

sin ๐‘›ฯ‰ยฉ๐‘ก +๐‘Žยท(1 โˆ’ ๐‘ŸยทX) โˆ’ ๐‘ยท2๐‘Ÿยท๐œ‰(1 โˆ’ ๐‘ŸยทX)X + (2๐‘Ÿยท๐œ‰)X

sin ๐‘›ฯ‰ยฉ๐‘กรŽ

;

ยท+W

where๐‘ŽO, ๐‘Žยท, ๐‘ยท are the Fourier series coefficients of the function ๐น(๐‘ก) In our case,

๐‘ŽO = 0,๐‘Žยท = 0

๐‘ยท =240๐‘›๐œ”ยฉ ,forn = 1, 3, 5. #๐‘ยท =

120๐‘›๐œ‹ ,

๐‘ยท = 0,forn = 2, 4, 6.

๐‘Ÿยท =๐‘›๐œ”ยฉ๐œ” ๐œ” = 0๐‘˜

๐‘š

Then,

๐‘ข(๐‘ก) =1๐‘˜<ร

๐‘ยท(1 โˆ’ ๐‘ŸยทX)(1 โˆ’ ๐‘ŸยทX)X + (2๐‘Ÿยท๐œ‰)X

sin ๐‘›ฯ‰ยฉ๐‘ก โˆ’๐‘ยท2๐‘Ÿยท๐œ‰

(1 โˆ’ ๐‘ŸยทX)X + (2๐‘Ÿยท๐œ‰)Xsin ๐‘›ฯ‰ยฉ๐‘กรŽ

;

ยท+W

๐œ” = 0120 โˆ™ 386128.66 = 18.9742

๐‘Ÿ๐‘Ž๐‘‘๐‘ ๐‘’๐‘ ,๐œ‰ = 0.10

๐œ”ยฉ = 2๐œ‹,๐‘Ÿยท =๐‘›๐œ”ยฉ๐œ” = 0.3311๐‘›

๐‘ข(๐‘ก) =1

120,000(42.6642 sin 2๐œ‹๐‘ก โˆ’ 3.1731 cos 2๐œ‹๐‘ก + 4.2892 sin 6๐œ‹๐‘ก

โˆ’ 63.8030 cos 6๐œ‹๐‘ก โˆ’ 4.2355 sin 10๐œ‹๐‘ก โˆ’ 0.8057 cos 10๐œ‹๐‘กโ€ฆ )

or in terms of

๐‘ŸW =๐œ”ยฉ๐œ” = 0.3311, ๐‘Ž๐‘›๐‘‘๐œ”ยฉ = 2๐œ‹.

๐‘ข(๐‘ก) =120

120,000๐œ‹

โŽฉโŽชโŽชโŽจ

โŽชโŽชโŽง

1(1 โˆ’ ๐‘ŸWX)X + 0.04(๐‘ŸW)X

((1 โˆ’ ๐‘ŸWX)sinฯ‰ยฉ๐‘ก โˆ’ 0.2๐‘ŸW cosฯ‰ยฉ๐‘ก) +

1

ยบ1 โˆ’ 9๐‘ŸWXยปX + 0.04(9๐‘ŸWX)

((1 โˆ’ 9๐‘ŸWX)sin 3ฯ‰ยฉ๐‘ก โˆ’ 0.2 โˆ™ 3๐‘ŸW cos 3ฯ‰ยฉ๐‘ก)

+1

ยบ1 โˆ’ 25๐‘ŸWXยปX+ 0.04(25๐‘ŸWX)

((1 โˆ’ 25๐‘ŸWX)sin 5ฯ‰ยฉ๐‘ก โˆ’ 0.2 โˆ™ 5๐‘ŸW cos 5ฯ‰ยฉ๐‘ก) +โ‹ฏโŽญโŽชโŽชโŽฌ

โŽชโŽชโŽซ

91

19.12 a) The Fourier coefficients for the load are found by applying eq. 19.3 with T = 2 sec.

๐‘ŽO =12รƒ ๐‘ƒO sin ๐œ‹๐‘ก ๐‘‘๐‘กW

O=๐‘ƒO๐œ‹

๐‘Žยท =22รƒ ๐‘ƒO sin ๐œ‹๐‘ก cos ๐œ‹๐‘ก ๐‘‘๐‘กW

O= D

0๐‘› = ๐‘œ๐‘‘๐‘‘๐‘ƒO๐œ‹

21 โˆ’ ๐œ‹X ๐‘› = ๐‘’๐‘ฃ๐‘’๐‘›

๐‘ยท =22รƒ ๐‘ƒO sin ๐œ‹๐‘ก sin ๐œ‹๐‘ก ๐‘‘๐‘กW

O= D

๐‘ƒO2๐‘› = 1

0๐‘› > 1

The substitution into eq. 19.1 leads to following expression for the Fourier series expansion of the

loading:

๐‘ƒ(๐‘ก) = ๐‘ƒO #1๐œ‹+12sinฯ‰ยฉ๐‘ก โˆ’

23๐œ‹

cos 2๐œ‹ฯ‰ยฉ๐‘ก โˆ’215๐œ‹

cos 4๐œ‹ฯ‰ยฉ๐‘ก โˆ’235๐œ‹

cos 6๐œ‹ฯ‰ยฉ๐‘ก โ€ฆโ€ฆ . ,

or

๐‘ƒ(๐‘ก) = ๐‘ƒO(0.3183 + 0.5 sinฯ‰ยฉ๐‘ก โˆ’ 0.2122 cos 2๐œ‹ฯ‰ยฉ๐‘ก โˆ’ 0.04244 cos 4๐œ‹ฯ‰ยฉ๐‘ก

โˆ’ 0.01819 cos 6๐œ‹ฯ‰ยฉ๐‘ก โ€ฆโ€ฆ . )๐‘˜๐‘–๐‘๐‘ 

where

๐œ”ยฉ =2๐œ‹๐‘‡= ๐œ‹(๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘)

b) The steady state response is found applying eq. 19.6.

๐‘ข(๐‘ก) =๐‘ƒO๐‘˜ #

1๐œ‹+87sinฯ‰ยฉ๐‘ก โˆ’

815๐œ‹

cos 2๐œ‹ฯ‰ยฉ๐‘ก โˆ’160๐œ‹

cos 4๐œ‹ฯ‰ยฉ๐‘ก +โ‹ฏโ€ฆ . , ๐‘–๐‘›.

or

๐‘ข(๐‘ก) = ๐‘ƒO(0.01814 + 0.06513 sinฯ‰ยฉ๐‘ก + 0.009675 cos 2๐œ‹ฯ‰ยฉ๐‘ก + 0.0000302 cos 4๐œ‹ฯ‰ยฉ๐‘ก +โ‹ฏโ€ฆ . )๐‘–๐‘›.

20.1

[๐พ] = ยผ 400 โˆ’200โˆ’200 200 ยฝ [๐‘€] = ยผ2 0

0 1ยฝ

[ฮฆ] = ยผ 0.5 0.50.7071 โˆ’0.7071ยฝ

92

๐œ”W = 7.65๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’c ๐œ”X = 18.48๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’c

๐ถยท = {๐œ™}ยทยก[๐‘€]l๐‘Žยฅ([๐‘€]๏ฟฝW[๐พ])ยฅยฅ

{๐œ™}ยท =l๐‘Žยฅ๐œ”ยทXยฅ๐‘€ยท = 2๐œ‰ยท๐œ”ยท๐‘€ยทยฅ

๏ฟฝ๐œ‰W๐œ‰X๏ฟฝ =

12ร‹๐œ”W ๐œ”W(

๐œ”X ๐œ”X(รŒ ยผ๐‘ŽW๐‘ŽXยฝ

ยผ0.20.1ยฝ =12๏ฟฝ 7.65 7.65(18.48 18.48(

๏ฟฝ ยผ๐‘ŽW๐‘ŽXยฝ

3.825๐‘ŽW + 223.849๐‘ŽX = 0.2 9.24๐‘ŽW + 3155.556๐‘ŽX = 0.1

๐‘ŽW = 0.0608627 ๐‘ŽX = โˆ’0.0001465

[๐‘€]๏ฟฝW =12ยผ1 00 2ยฝ

[๐‘€]๏ฟฝW[๐พ] =12ยผ1 00 2ยฝ ยผ

400 โˆ’200โˆ’200 200 ยฝ = ยผ 200 โˆ’100

โˆ’200 200 ยฝ

l๐‘Žยฅ([๐‘€]๏ฟฝW[๐พ])ยฅ = 0.0608627ยฅ

ยผ 200 โˆ’100โˆ’200 200 ยฝ โˆ’ 0.0001465 ยผ

200 โˆ’100โˆ’200 200 ยฝ

X

= ยผ 3.38254 โˆ’0.22627โˆ’0.45254 3.38254 ยฝ

[๐ถ] = ยผ2 00 1ยฝ ยผ

3.38254 โˆ’0.22627โˆ’0.45254 3.38254 ยฝ = ยผ 6.765 โˆ’0.453

โˆ’0.453 3.383 ยฝ

93

20.2

[๐พ] = ยผ 400 โˆ’200โˆ’200 200 ยฝ [๐‘€] = ยผ2 0

0 1ยฝ

[ฮฆ] = ยผ 0.5 0.50.7071 โˆ’0.7071ยฝ

[A] = [ฮฆ]ยก[๐ถ][ฮฆ] = รบ

2๐œ‰W๐œ”W๐‘€W 00 2๐œ‰X๐œ”W๐‘€W

0 โˆ’0 โˆ’

0 0โˆ’ โˆ’

2๐œ‰(๐œ”W๐‘€W โˆ’โˆ’ โˆ’

รป

[๐ถ] = [๐‘€]Fl2๐œ‰ยท๐œ”ยท๐‘€ยท

รช

ยท+W

{๐œ™}ยท{๐œ™}ยทยกG [๐‘€]

[๐ถ] = ๐ท๐‘Ž๐‘š๐‘๐‘–๐‘›๐‘”๐‘€๐‘Ž๐‘ก๐‘Ÿ๐‘–๐‘ฅ ๐‘€ยท = 1.0๐‘–๐‘“๐‘›๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘™๐‘–๐‘ง๐‘’๐‘‘

๐œ‰W = 20% = 0.2 ๐œ‰X = 10% = 0.10

For ๐‘› = 1

2๐œ‰ยท๐œ”ยท๐‘€ยท

=2(0.2)(7.65)

1= 3.06

2๐œ‰W๐œ”W๐‘€W

{๐œ™}W{๐œ™}Wยก = ยผ 0.50.707ยฝ[0.5 0.707](3.06) = ยผ 0.765 1.081863

10.081863 1.530 ยฝ

For ๐‘› = 2 2๐œ‰ยท๐œ”ยท๐‘€ยท

=2(0.1)(18.48)

1= 3.696

2๐œ‰X๐œ”X๐‘€X

{๐œ™}X{๐œ™}Xยก = ยผ 0.5โˆ’0.707ยฝ

[0.5 โˆ’0.707](3.696) = ยผ 0.924 โˆ’1.3067208โˆ’1.3067208 1.848 ยฝ

l = ยผ 0.765 1.08186310.081863 1.530 ยฝ + ยผ 0.924 โˆ’1.3067208

โˆ’1.3067208 1.848 ยฝ =รช

ยท+W

ยผ 1.689 โˆ’0.2248578โˆ’0.2248578 3.378 ยฝ

[๐ถ] = [๐‘€]Fl2๐œ‰ยท๐œ”ยท๐‘€ยท

รช

ยท+W

{๐œ™}ยท{๐œ™}ยทยกG [๐‘€] = ยผ2 00 1ยฝ ยผ

1.689 โˆ’0.2248578โˆ’0.2248578 3.378 ยฝ ยผ2 0

0 1ยฝ

= ยผ 3.378 โˆ’0.44972โˆ’0.2248578 3.378 ยฝ ยผ2 0

0 1ยฝ = ยผ 6.756 โˆ’0.450โˆ’0.450 3.378 ยฝ

94

20.3

[๐พ] = รฅ7000 โˆ’3000 0โˆ’3000 5000 โˆ’20000 โˆ’2000 2000

รฆ

[๐‘€] = รฅ15 0 00 10 00 0 5

รฆ

[ฮฆ] = รฅ0.1114 โˆ’0.1968 โˆ’0.12450.2117 โˆ’0.0277 0.23330.2703 0.2868 โˆ’0.2114

รฆ

๐œ”W = 9.31๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’c ๐œ”X = 20.94๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’c ๐œ”( = 29.00๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’c

๐œ‰W = 10% = 0.10

[๐ถ] = [๐‘€]Fl2๐œ‰ยท๐œ”ยท๐‘€ยท

รช

ยท+W

{๐œ™}ยท{๐œ™}ยทยกG [๐‘€]

For ๐‘› = 1

2๐œ‰ยท๐œ”ยท๐‘€ยท

=2(0.1)(9.31)

1= 1.862

2๐œ‰W๐œ”W๐‘€W

{๐œ™}W{๐œ™}Wยก = ร‹0.1140.21170.2703

รŒ [0.114 0.2117 0.2703](1.862) = รฅ0.023 0.043 0.0560.044 0.084 0.1070.056 0.107 0.136

รฆ

For ๐‘› = 2 2๐œ‰ยท๐œ”ยท๐‘€ยท

=2(0.1)(29.00)

1= 4.188

2๐œ‰X๐œ”X๐‘€X

{๐œ™}X{๐œ™}Xยก = ร‹โˆ’0.19680.02770.2868

รŒ [โˆ’0.1968 0.0277 0.2868](4.188) = รฅ0.162 0.022 โˆ’0.2360.023 0.003 โˆ’0.033โˆ’0.236 โˆ’0.033 0.3444

รฆ

For ๐‘› = 3

2๐œ‰ยท๐œ”ยท๐‘€ยท

=2(0.1)(29.00)

1= 5.8

2๐œ‰(๐œ”(๐‘€(

{๐œ™}({๐œ™}(ยก = ร‹โˆ’0.12450.2333โˆ’0.2114

รŒ [โˆ’0.1245 0.2333 โˆ’0.2114](5.8) = รฅโˆ’0.090 โˆ’0.168 0.153โˆ’0.168 0.316 โˆ’0.2860.153 โˆ’0.286 0.259

รฆ

l = รฅ0.275 โˆ’0.102 โˆ’0.028โˆ’0.102 0.402 โˆ’0.213โˆ’0.028 โˆ’0.213 0.740

รฆรช

ยท+W

[๐ถ] = [๐‘€]Fl2๐œ‰ยท๐œ”ยท๐‘€ยท

รช

ยท+W

{๐œ™}ยท{๐œ™}ยทยกG [๐‘€] = รฅ15 0 00 10 00 0 5

รฆ รฅ0.275 โˆ’0.102 โˆ’0.028โˆ’0.102 0.402 โˆ’0.213โˆ’0.028 โˆ’0.213 0.740

รฆ รฅ15 0 00 10 00 0 5

รฆ

= รฅ4.128 โˆ’1.017 โˆ’0.138โˆ’1.526 4.024 โˆ’1.064โˆ’0.415 โˆ’2.128 3.699

รฆ รฅ15 0 00 10 00 0 5

รฆ = รฅ61.92 โˆ’15.26 โˆ’2.080โˆ’15.26 40.24 โˆ’10.64โˆ’2.080 โˆ’10.64 18.50

รฆ

95

21.1

The figure shows the forces acting in the system for a displaced position of the generalized coordinates, ๐‘Œ(๐‘ก) Give virtual displacement ๐›ฟ๐‘Œ to generalized coord. ๐‘Œ(๐‘ก) and apply principle of virtual work:

โˆ’๐‘š โˆ™ ๏ฟฝ๏ฟฝ โˆ™ ๐›ฟ๐‘Œ โˆ’๐ผ โˆ™ ๏ฟฝ๏ฟฝ โˆ™ ๐›ฟ๐‘Œ24 โˆ™ 12

โˆ’32๐‘Œ โˆ™ ๐‘

32๐›ฟ๐‘Œ โˆ’ 3๐‘˜ โˆ™ ๐‘Œ โˆ™ 3๐›ฟ๐‘Œ โˆ’ 2500๐‘“(๐‘ก)

๐›ฟ๐‘Œ4= 0

Since ๐›ฟ๐‘Œ โ‰  0

๏ฟฝ๐ผ288

+๐‘š๏ฟฝ ๏ฟฝ๏ฟฝ โˆ’94๐‘๏ฟฝ๏ฟฝ โˆ’ 9๐‘˜๐‘Œ =

25004

๐‘“(๐‘ก) Generalized Parameters:

๐‘€โˆ— =๐ผ288

+๐‘š =1288

112800386

(60)X +800386

= 4.23๐‘™๐‘ โˆ™ ๐‘ ๐‘’๐‘2๐‘–๐‘›.

๐ถโˆ— =94๐‘ =

94100 = 225

๐‘™๐‘ โˆ™ ๐‘ ๐‘’๐‘๐‘–๐‘›.

๐พโˆ— = 9๐‘˜ = 9(5000) = 45000๐‘™๐‘/๐‘–๐‘›.

๐นโˆ—(๐‘ก) =25004

๐‘“(๐‘ก) = 625๐‘“(๐‘ก)๐‘™๐‘.

3๐‘˜ โˆ™ ๐‘Œ

๐ผ๏ฟฝ๏ฟฝ/24 ๐‘š๏ฟฝ๏ฟฝ

2500๐‘“(๐‘ก)

32๐‘Œ โˆ™ ๐‘

๐‘Œ(๐‘ก)

96

21.2 The figure shows the system in displaced position and corresponding forces:

Give virtual displacement ๐›ฟ๐‘Œ and apply principle of virtual work:

โˆ’๐‘š โˆ™ ๏ฟฝ๏ฟฝ โˆ™2

๐›ฟ๐‘Œ2โˆ’๐ผ โˆ™ ๏ฟฝ๏ฟฝ โˆ™ ๐›ฟ๐‘Œ๐ฟ โˆ™ ๐ฟ

โˆ’ ๏ฟฝ๏ฟฝ๐‘ โˆ™ ๐›ฟ๐‘Œ โˆ’ ๐‘˜ โˆ™ ๐‘Œ โˆ™ ๐›ฟ๐‘Œ โˆ’๐ผ| โˆ™ ๏ฟฝ๏ฟฝ โˆ™ ๐›ฟ๐‘Œ๐‘Ž โˆ™ ๐‘Ž

+๐‘€(๐‘ก)๐›ฟ๐‘Œ๐ฟ= 0

Since ๐›ฟ๐‘Œ โ‰  0

#๐‘š2+๐ผ๐ฟX+๐ผ|๐‘ŽX,

๏ฟฝ๏ฟฝ + ๐‘ โˆ™ ๐‘Œ + ๐‘˜ โˆ™ ๐‘Œ =๐‘€(๐‘ก)๐ฟ

Generalized parameters:

๐‘€โˆ— =๐‘š2+๐ผ๐ฟX+๐ผ|๐‘ŽX

=๐‘š2+1122๐‘š๐ฟX

๐ฟX+๐‘š๐‘ŽX

2๐‘ŽX=76๐‘š

๐ถโˆ— = ๐‘ ๐พโˆ— = ๐‘˜

๐นโˆ—(๐‘ก) =๐‘€(๐‘ก)๐ฟ

๐ผ| โˆ™ ๏ฟฝ๏ฟฝ/๐‘Ž

๐‘š โˆ™ ๏ฟฝ๏ฟฝ

๐ผ^๏ฟฝ๏ฟฝ/๐ฟ ๐‘€(๐‘ก)

๐‘Œ(๐‘ก)

๏ฟฝ๏ฟฝ๐‘ ๐‘˜๐‘Œ

97

21.3 The figure shows the system in displaced position for the generalized coordinate ๐œƒ(๐‘ก):

Give virtual displacement๐›ฟ๐œƒ and apply Principle of virtual work:

โˆ’2V๐‘šยฉ โˆ™ ๐ฟX โˆ™ ๏ฟฝ๏ฟฝ โˆ™

2๐›ฟ๐œƒ๐ฟ2Y โˆ’ 2ยบ๐ผ โˆ™ ๏ฟฝ๏ฟฝ โˆ™ ๐›ฟ๐œƒยป โˆ’ ๐‘๏ฟฝ๏ฟฝ โˆ™ ๐ฟ โˆ™ ๐ฟ โˆ™ ๐›ฟ๐œƒ โˆ’ ๐‘˜ โˆ™ ๐œƒ โˆ™ ๐ฟ๐›ฟ๐œƒ โˆ’

๐‘ƒO โˆ™ ๐ฟ โˆ™ ๐‘“(๐‘ก)2

โˆ™๐ฟ3๐›ฟ๐œƒ = 0

Since ๐›ฟ๐œƒ โ‰  0

V๐‘šยฉ โˆ™ ๐ฟX

2+๐ผ๐ฟY ๏ฟฝ๏ฟฝ + ๐‘ โˆ™ ๐ฟ โˆ™ ๏ฟฝ๏ฟฝ โˆ’ ๐‘˜ โˆ™ ๐ฟ โˆ™ ๐œƒ =

๐‘ƒO โˆ™ ๐ฟ โˆ™ ๐‘“(๐‘ก)6

Generalized parameters:

๐‘€โˆ— =๐‘šยฉ โˆ™ ๐ฟX

2+112๐‘šยฉ โˆ™ ๐ฟ โˆ™ ๐ฟX

๐ฟ=712๐‘šยฉ๐ฟX

๐ถโˆ— = ๐‘๐ฟ ๐พโˆ— = ๐‘˜๐ฟ

๐นโˆ—(๐‘ก) =๐‘ƒO โˆ™ ๐ฟ โˆ™ ๐‘“(๐‘ก)

6

๐‘๏ฟฝ๏ฟฝ โˆ™ ๐ฟ

๐‘šยฉ โˆ™ ๐ฟX โˆ™ ๏ฟฝ๏ฟฝ2

๐‘ƒO โˆ™ ๐ฟ โˆ™ ๐‘“(๐‘ก)2

๐ผ โˆ™ ๏ฟฝ๏ฟฝ

๐œƒ(๐‘ก)

๐‘šยฉ โˆ™ ๐ฟX

2๏ฟฝ๏ฟฝ

๐‘˜ โˆ™ ๐ฟ โˆ™ ๐œƒ

๐ผ โˆ™ ๏ฟฝ๏ฟฝ

๐ฟ3

๐œƒ(๐‘ก)

98

21.4 Generalized mass:

๐‘€โˆ— = ๐‘š +รƒ ๏ฟฝ๐‘š๐ฟ๏ฟฝ๐œ™

X(๐‘ฅ)t

O๐‘‘๐‘ฅ

๐‘€โˆ— = ๐‘š +๐‘š๐ฟ รƒ ๏ฟฝ1 โˆ’ cos

๐œ‹๐‘ฅ2๐ฟ๏ฟฝ

Xt

O๐‘‘๐‘ฅ

๐‘€โˆ— = ๐‘š +๐‘š๐ฟ รƒ ๏ฟฝ1 โˆ’ 2 cos

๐œ‹๐‘ฅ2๐ฟ + cos

X ๐œ‹๐‘ฅ2๐ฟ๏ฟฝ

t

O๐‘‘๐‘ฅ

๐‘€โˆ— = ๐‘š +๐‘š๐ฟ ๏ฟฝ๐‘ฅ โˆ’

4๐ฟ๐œ‹ sin

๐œ‹๐‘ฅ2๐ฟ +

๐‘ฅ2 +

๐ฟ2๐œ‹ sin

๐œ‹๐‘ฅ๐ฟ ๏ฟฝO

t

๐‘€โˆ— = ๐‘š +๐‘š๐ฟ #

32๐ฟ โˆ’

4๐ฟ๐œ‹ ,

๐‘€โˆ— =๐‘š2๐œ‹

(5๐œ‹ โˆ’ 8)

Generalized stiffness:

๐พโˆ— = รƒ ๐ธ๐ผ๐œ™"X(๐‘ฅ)t

O๐‘‘๐‘ฅ

๐œ™(๐‘ฅ) = 1 โˆ’ cos๐œ‹๐‘ฅ2๐ฟ ,๐œ™"

(๐‘ฅ) = ๏ฟฝ๐œ‹2๐ฟ๏ฟฝ

Xcos

๐œ‹๐‘ฅ2๐ฟ

๐พโˆ— = รƒ ๐ธ๐ผ ๏ฟฝ๐œ‹2๐ฟ๏ฟฝ

ยงcosX

๐œ‹๐‘ฅ2๐ฟ

t

O๐‘‘๐‘ฅ

๐พโˆ— = ๐ธ๐ผ๐œ‹ยง

16๐ฟยง ๏ฟฝ2๐ฟ๐œ‹ ๏ฟฝ

๐œ‹๐‘ฅ4๐ฟ๏ฟฝ +

2๐ฟ๐œ‹ ๏ฟฝ

๐œ‹๐‘ฅ4๐ฟ๏ฟฝ sin

๐œ‹๐‘ฅ๐ฟ ๏ฟฝO

t

=๐ธ๐ผ๐œ‹ยง

32๐ฟยง

Generalized force:

๐นโˆ—(๐‘ก) = รƒ ๐‘(๐‘ฅ, ๐‘ก)๐œ™(๐‘ฅ)๐ฟ

0๐‘‘๐‘ฅ

๐นโˆ—(๐‘ก) = ๐นO๐‘“(๐‘ก)๐œ™ #๐ฟ2,

๐นโˆ—(๐‘ก) = ๐นO ๏ฟฝ1 โˆ’ cos๐œ‹4๏ฟฝ ๐‘“(๐‘ก)

๐นโˆ—(๐‘ก) = 0.2929 โˆ™ ๐นO๐‘“(๐‘ก)

99

21.5 The generalized geometric stiffness:

๐พ.โˆ— = ๐‘รƒ #๐‘‘๐œ™๐‘‘๐‘ฅ,

Xt

O๐‘‘๐‘ฅ

๐œ™(๐‘ฅ) = 1 โˆ’ cos๐œ‹๐‘ฅ2๐ฟ ,

๐‘‘๐œ™๐‘‘๐‘ฅ =

๐œ‹2๐ฟ cos

๐œ‹๐‘ฅ2๐ฟ

๐พ.โˆ— = โˆ’๐‘รƒ ๏ฟฝ๐œ‹2๐ฟ๏ฟฝ

XsinX

๐œ‹๐‘ฅ2๐ฟ

t

O๐‘‘๐‘ฅ,(๐‘›๐‘’๐‘”๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’๐‘ ๐‘–๐‘”๐‘›๐‘๐‘’๐‘๐‘ข๐‘Ž๐‘ ๐‘’๐‘๐‘–๐‘ ๐‘ก๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘›)

๐พ.โˆ— = โˆ’๐‘ ๏ฟฝ๐œ‹2๐ฟ๏ฟฝ

X 2๐ฟ๐œ‹ ๏ฟฝ๏ฟฝ

๐œ‹๐‘ฅ4๐ฟ๏ฟฝ โˆ’

14 sin

๐œ‹๐‘ฅ๐ฟ ๏ฟฝO

t

= โˆ’๐‘ ๏ฟฝ๐œ‹2๐ฟ๏ฟฝ

๐œ‹4 = โˆ’

๐‘๐œ‹X

8๐ฟ

๐พaโˆ— = ๐พโˆ— โˆ’๐พ.โˆ—

๐พโˆ— =๐ธ๐ผ๐œ‹ยง

32๐ฟ( ๐‘“๐‘Ÿ๐‘œ๐‘š๐‘ƒ๐‘Ÿ๐‘œ๐‘๐‘™๐‘’๐‘š21.4

๐พaโˆ— =๐ธ๐ผ๐œ‹ยง

32๐ฟ( +๐‘๐œ‹X

8๐ฟ

100

21.6 The generalized mass:

๐‘€โˆ— = รƒ ๐‘š(๐‘ฅ)๐œ™X(๐‘ฅ)t

O๐‘‘๐‘ฅ

๐‘š(๐‘ฅ)๐‘‘๐‘ฅ = ๐ดร€๐›พ๐‘”๐‘‘๐‘ฅ =

๐›พ๐‘”๐œ‹๐‘‘X

4๐ฟX ๐‘ฅX๐‘‘๐‘ฅ

๐œ™(๐‘ฅ) = 1 โˆ’ cos๐œ‹๐‘ฅ2๐ฟ

๐‘€โˆ— =๐›พ๐‘”๐œ‹๐‘‘X

4๐ฟX รƒ ๐‘ฅX ๏ฟฝ1 โˆ’ cos๐œ‹๐‘ฅ2๐ฟ๏ฟฝ

Xt

O๐‘‘๐‘ฅ

๐‘€โˆ— =๐›พ๐‘”๐œ‹๐‘‘X

4๐ฟX ร‹๐ฟ(

3 โˆ’ 2#2๐ฟ๐œ‹ ,

(

#๏ฟฝ๐œ‹2๏ฟฝ

Xโˆ’ 2, + V

๐ฟ(

6 โˆ’๐ฟ(

๐œ‹XYรŒO

t

๐‘€โˆ— =๐›พ๐‘”๐œ‹๐‘‘4 #

12 โˆ’

4๐œ‹ +

32๐œ‹( โˆ’

1๐œ‹X, = 0.1237

๐›พ๐‘‘๐‘”

The generalized stiffness:

๐พโˆ— = รƒ ๐ธ๏ฟฝ๐ผ(๐‘ฅ)๐œ™"X(๐‘ฅ)t

O๐‘‘๐‘ฅ,๐ผ(๐‘ฅ) =

๐œ‹4๐‘‘X

16๐‘ฅยง

๐ฟยง

๐พโˆ— = ๐ธ๏ฟฝ๐œ‹๐‘‘X

64๐ฟX ๏ฟฝ๐œ‹2๐ฟ๏ฟฝ

Xรƒ ๐‘ฅยง cos

๐œ‹๐‘ฅ2๐ฟ

t

O๐‘‘๐‘ฅ,๐œ™"(๐‘ฅ) = ๏ฟฝ

๐œ‹2๐ฟ๏ฟฝ

Xcos

๐œ‹๐‘ฅ2๐ฟ

๐พโˆ— =๐ธ๏ฟฝ๐œ‹๐‘‘X

128๐ฟX

The generalized force is

๐นโˆ—(๐‘ก) = รƒ ๐‘(๐‘ฅ, ๐‘ก)๐œ™(๐‘ฅ)๐ฟ

0๐‘‘๐‘ฅ

๐นโˆ—(๐‘ก) = รƒ๐‘ฅ๐‘‘๐ฟ๐‘0(๐‘ก) ๏ฟฝ1 โˆ’ cos

๐œ‹๐‘ฅ2๐ฟ๏ฟฝ

๐ฟ

0๐‘‘๐‘ฅ

๐นโˆ—(๐‘ก) =๐‘‘๐ฟ๐‘0(๐‘ก) ร‹

๐ฟ2

2โˆ’4๐ฟ2

๐œ‹2๏ฟฝ๐œ‹2โˆ’ 1๏ฟฝรŒ =

๐‘0(๐‘ก)๐ฟ โˆ™ ๐‘‘2๐œ‹2๐ฟ

[9 โˆ’ 4๐œ‹] = โˆ’0.1807๐‘0(๐‘ก)๐ฟ โˆ™ ๐‘‘

101

21.7 The deflection occurred corresponding to the left half a simply supported beam with a concentrated load at its center is

๐‘ฆ =๐‘ฆO๐ฟ((3๐ฟX๐‘ฅ โˆ’ 4๐‘ฅ()

Where ๐‘ฆO is the deflection at the center. The maximum potential energy is calculated as

๐‘‰๏ฟฝยฟร€ =12๐น๐‘ฆO

๐‘‰๏ฟฝยฟร€ =24๐ธ๐ผ๐ฟ(

๐‘ฆOX,๐‘ ๐‘–๐‘›๐‘๐‘’๐‘ฆO =๐น๐ฟ(

48๐ธ๐ผ

and the maximum Kinetic Energy

๐‘‡๏ฟฝยฟร€ = 2รƒ12๏ฟฝ๐‘š๐‘

๐ฟ๐‘‘๐‘ฅ๏ฟฝ (๐œ”๐‘ฆ)2 +

12๐‘šยบ๐œ”๐‘ฆ0ยป

2๐ฟ/2

0

๐‘‡๏ฟฝยฟร€ =๐‘š๐‘

๐ฟยบ๐œ”๐‘ฆ0ยป

2

๐ฟ6รƒ (3๐ฟ2๐‘ฅ โˆ’ 4๐‘ฅ3)๐‘‘๐‘ฅ +

12๐‘šยบ๐œ”๐‘ฆ0ยป

2๐ฟ/2

0

๐‘‡๏ฟฝยฟร€ =๐‘š๐‘

๐ฟยบ๐œ”๐‘ฆ0ยป

2

๐ฟ6รฅ3๐ฟ4 #

๐ฟ2,3

+167#๐ฟ2,4

โˆ’24๐ฟ2

5#๐ฟ2,5

รฆ +12๐‘šยบ๐œ”๐‘ฆ0ยป

2

๐‘‡๏ฟฝยฟร€ =๐‘š๐‘ยบ๐œ”๐‘ฆ0ยป

2

7 โˆ™ 8 โˆ™ 5[105 + 5 โˆ’ 42] +

12๐‘šยบ๐œ”๐‘ฆ0ยป

2

๐‘‰๏ฟฝยฟร€ = ๐‘‡๏ฟฝยฟร€

24๐ธ๐ผ๐ฟ(

๐‘ฆOX = ยบ๐œ”๐‘ฆ0ยป2#๐‘š2+1770๐‘š๐‘,

๐œ” = 048๐ธ๐ผ

๐ฟ( ๏ฟฝ๐‘š + 1735๐‘š๐‘๏ฟฝ

102

21.8 The beam loaded as shown in Fig. (a), between supports is equivalent to beam shown in Fig. (b)

Moment a section ๐‘ฅ in Fig (b):

๐‘€ร€ =๐‘ƒ๐‘ฅ2 ;

๐‘‘X๐‘ฆ๐‘‘๐‘ฅX =

๐‘ƒ๐‘ฅ2๐ธ๐ผ ;

๐‘‘๐‘ฆ๐‘‘๐‘ฅ =

๐‘ƒ๐‘ฅX

2๐ธ๐ผ + ๐ถW

๐‘ฆ =๐‘ƒ๐‘ฅ(

12๐ธ๐ผ + ๐ถW๐‘ฅ + ๐ถX, ๐‘Ž๐‘ก๐‘ฅ = 0,๐‘ฆ = 0,๐ถX = 0

๐‘ฅ = ๐ฟ,๐‘ฆ = 0 =๐‘ƒ๐ฟ(

12๐ธ๐ผ + ๐ถW๐ฟ

๐ถW = โˆ’๐‘ƒ๐ฟX

12๐ธ๐ผ ,๐‘‘๐‘ฆ๐‘‘๐‘ฅรขร€+t

=๐‘ƒ๐ฟX

6๐ธ๐ผ

๐‘ฆ =๐‘ƒ๐‘ฅ(

12๐ธ๐ผ โˆ’๐‘ƒ๐ฟX

12๐ธ๐ผ ๐‘ฅ =๐‘ƒ

12๐ธ๐ผ[๐‘ฅ( โˆ’ ๐ฟX๐‘ฅ]

Deflection of overhang: ๐‘‘X๐‘ฆ๐‘‘๐‘ฅX =

๐‘ƒ๐ธ๐ผ #

๐ฟ2 โˆ’ ๐‘ฅ,

๐‘‘๐‘ฆ๐‘‘๐‘ฅ =

๐‘ƒ๐ธ๐ผ V

๐ฟ2๐‘ฅ โˆ’

๐‘ฅX

2 Y + ๐ถ(

๐‘ฆ =๐‘ƒ๐ธ๐ผ V

๐ฟ4๐‘ฅ

X โˆ’๐‘ฅ(

6 Y + ๐ถ(๐‘ฅ + ๐ถยง

at

๐‘ฅ = 0,๐‘‘๐‘ฆ๐‘‘๐‘ฅ =

๐‘ƒ๐ฟX

6๐ธ๐ผ = ๐ถ(,๐‘ฅ = 0,๐‘ฆ = 0, ๐ถยง = 0

๐‘ฆ =๐‘ƒ

12๐ธ๐ผ(3๐ฟ๐‘ฅX โˆ’ 2๐‘ฅ( + 2๐ฟX๐‘ฅ),๐‘–๐‘›๐‘œ๐‘ฃ๐‘’๐‘Ÿโ„Ž๐‘Ž๐‘›๐‘”

Max. potential:

๐‘‰๏ฟฝยฟร€ =๐‘ƒ๐‘ฆO2

๐‘ฆO =๐‘ƒ

12๐ธ๐ผ V3๐ฟ๐ฟX

4 โˆ’ 2๐ฟ8

(

+ 2๐ฟX๐ฟ2Y

๐‘‰๏ฟฝยฟร€ =๐‘ƒX๐ฟ(

16๐ธ๐ผ ,๐‘ฆO =๐‘ƒ๐ฟ(

8๐ธ๐ผ

Max. Kinetic Energy:

๐‘‡๏ฟฝยฟร€ =12๐‘šx๐œ”X

3๐ฟ2

รƒ๐‘ƒX

144(๐ธ๐ผ)X(๐‘ฅZ + ๐ฟยง๐‘ฅX โˆ’ 2๐ฟX๐‘ฅยง)๐‘‘๐‘ฅ +

12๐‘šx๐œ”X

3๐ฟ2

รƒ ๐‘ฆX๐‘‘๐‘ฅ =๐‘šx๐œ”X๐‘ƒX๐ฟร’

36 โˆ™ 144(๐ธ๐ผ)X [0.076 + 0.3615]t/X

O

t

O

๐‘‡๏ฟฝยฟร€ = ๐‘‰๏ฟฝยฟร€

3๐‘ƒ2

๐‘ƒ2

๐‘ƒ

๐‘€O =๐‘ƒ๐ฟ2

(๐‘Ž) (๐‘)

103

๐‘šx๐œ”X๐‘ƒX๐ฟร’

987(๐ธ๐ผ)X =๐‘ƒ๐ฟ(

8๐ธ๐ผ

๐œ” = 7.8540๐ธ๐ผ๐ฟยง๐‘š๐‘

104

21.9 The deflection at section x is:

๐‘ฆ = ๐‘Œsin๐œ‹๐‘ฅ๐ฟ sin๐œ”๐‘ก

Maximum velocity is: ๏ฟฝ๏ฟฝ๏ฟฝยฟร€ = ๐‘Œ๐œ”sin

๐œ‹๐‘ฅ๐ฟ

and Max kinetic Energy:

๐‘‡๏ฟฝยฟร€ =12๐‘š๐‘Œ

X๐œ”X +รƒ12๐‘šx

๐ฟ ๐‘ŒX๐œ”Xsin๐œ‹๐‘ฅ๐ฟ ๐‘‘๐‘ฅ =

12๐‘š๐‘Œ

X๐œ”X +12๐‘šx

๐ฟ ๐‘ŒX๐ฟ2

t/X

O=๐œ”X๐‘ŒX

4(2๐‘š +๐‘šx) = 5๐œ”X๐‘ŒX

Maximum Potential Energy:

๐‘‰๏ฟฝยฟร€ =๐ธ๐ผ2 รƒ V

๐‘‘X๐‘ฆ๐‘‘๐‘ฅXY

๏ฟฝยฟร€

Xt/X

O๐‘‘๐‘ฅ

๐‘‘๐‘ฆ๐‘‘๐‘ฅ = ๐‘Œ

๐œ‹๐ฟ cos

๐œ‹๐‘ฅ๐ฟ sin๐œ”๐‘ก,

๐‘‘X๐‘ฆ๐‘‘๐‘ฅX = โˆ’๐‘Œ

๐œ‹X

๐ฟX sin๐œ‹๐‘ฅ๐ฟ sin๐œ”๐‘ก

๐‘‰๏ฟฝยฟร€ =๐ธ๐ผ2 รƒ ๐‘ŒX

๐œ‹ยง

๐ฟยง sinX ๐œ‹๐‘ฅ๐ฟ

t/X

O๐‘‘๐‘ฅ =

๐ธ๐ผ2 ๐‘Œ

X ๐œ‹ยง

๐ฟยง๐ฟ2 =

109

4๐‘ŒX๐œ‹ยง

100( = 2435๐‘ŒX

๐‘‡๏ฟฝยฟร€ = ๐‘‰๏ฟฝยฟร€

5๐œ”X๐‘ŒX = 2435๐‘ŒX

๐œ”X = 487 ๐œ” = 22.07๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘

๐‘“ =22.072๐œ‹ = 3.51๐‘๐‘๐‘ 

105

21.10 Use Eq. 21.83:

๐œ” = 0๐‘”โˆ‘๐‘คยฅ๐‘ฆยฅโˆ‘๐‘คยฅ๐‘ฆยฅX

In this equation the deflection ๐‘ฆยฅ at the floor levels is due the static load W applied horizontally at each story. The shear force in the first story is:

๐‘‰W =12๐ธ๐ผ๐ฟ(

๐‘ฆW

And in the second story:

๐‘‰X =12๐ธ๐ผ๐ฟ(

(๐‘ฆX โˆ’ ๐‘ฆW) Since ๐‘‰W = 2๐‘Š and ๐‘‰X = ๐‘Š

๐‘ฆW = 2๐‘ค๐ฟ(

12๐ธ๐ผ

๐‘ฆX = 2๐‘ค๐ฟ(

12๐ธ๐ผ+๐‘ค๐ฟ(

12๐ธ๐ผ=3๐‘ค๐ฟ(

12๐ธ๐ผ

l๐‘คยฅ๐‘ฆยฅ = ๐‘ค ร‹2๐‘ค๐ฟ(

12๐ธ๐ผ+3๐‘ค๐ฟ(

12๐ธ๐ผรŒ =

5๐‘คX๐ฟ(

12๐ธ๐ผ

l๐‘คยฅ๐‘ฆยฅX = ๐‘ค ร‹4๐‘คX๐ฟZ

(12๐ธ๐ผ)X+9๐‘คX๐ฟZ

(12๐ธ๐ผ)XรŒ =

13๐‘ค(๐ฟZ

(12๐ธ๐ผ)X

๐œ”X =๐‘” 5๐‘ค

X๐ฟ(12๐ธ๐ผ

13๐‘ค(๐ฟZ(12๐ธ๐ผ)X

=๐‘”(12๐ธ๐ผ)513๐‘ค๐ฟ(

=4.62๐ธ๐ผ๐‘ค๐ฟ(

๐œ” = 2.150๐‘”๐ธ๐ผ๐‘ค๐ฟ(

106

21.11 As in problem 21.6 load the frame with horizontal force W at each story. For fixed column the shear force is

๐‘‰ =๐ด๐บโˆ†๐ฟ

Then

โˆ†=๐‘‰๐ฟ๐ด๐บ

For the first story: ๐‘‰ = 2๐‘Š,โˆ†= ๐‘ฆW

๐‘ฆW =2๐‘Š๐ฟ๐ด๐บ

๐‘ฆX = ๐‘ฆW +๐‘Š๐ฟ๐ด๐บ

=3๐‘Š๐ฟ๐ด๐บ

๐œ” = 0๐‘”โˆ‘๐‘คยฅ๐‘ฆยฅโˆ‘๐‘คยฅ๐‘ฆยฅX

l๐‘คยฅ๐‘ฆยฅ = ๐‘ค ๏ฟฝ2๐‘ค๐ฟ๐ด๐บ

+3๐‘ค๐ฟ๐ด๐บ

๏ฟฝ =5๐‘คX๐ฟ๐ด๐บ

l๐‘คยฅ๐‘ฆยฅX = ๐‘ค ร‹4๐‘คX๐ฟX

(๐ด๐บ)X+9๐‘คX๐ฟX

(๐ด๐บ)XรŒ =

13๐‘ค(๐ฟX

(๐ด๐บ)X

๐œ”X =๐‘” 5๐‘ค

X๐ฟ๐ด๐บ

13๐‘ค(๐ฟX(๐ด๐บ)X

=59๐‘”๐ด๐บ13๐‘ค๐ฟ

๐œ” = 0.620๐‘”๐ด๐บ๐‘ค๐ฟ

107

21.12 The deflection shape of a cantilever beam with a concentrated load at its end is:

๐‘ฆ(๐‘ฅ) =๐‘Œ๏ฟฝยฟร€2๐ฟ(

(3๐ฟ๐‘ฅX โˆ’ ๐‘ฅ()

where ๐‘Œ๏ฟฝยฟร€ is the maximum deflection at the free end

๐‘‘๐‘ฆ๐‘‘๐‘ฅ =

๐‘Œ๏ฟฝยฟร€2๐ฟ(

(6๐ฟ๐‘ฅ โˆ’ 3๐‘ฅX) ๐‘‘X๐‘ฆ๐‘‘๐‘ฅX =

๐‘Œ๏ฟฝยฟร€2๐ฟ(

(6๐ฟ โˆ’ 6๐‘ฅ) =3๐‘Œ๏ฟฝยฟร€๐ฟ(

(๐ฟ โˆ’ ๐‘ฅ) Maximum Potential Energy:

๐‘‰๏ฟฝยฟร€ =๐ธ๐ผ2 รƒ V

๐‘‘X๐‘ฆ๐‘‘๐‘ฅXY

Xt/X

O๐‘‘๐‘ฅ =

๐ธ๐ผ29๐‘Œ๏ฟฝยฟร€X

๐ฟZ รƒ (๐ฟX โˆ’ 2๐ฟ๐‘ฅ + ๐‘ฅX)t/X

O๐‘‘๐‘ฅ =

๐ธ๐ผ29๐‘Œ๏ฟฝยฟร€X

๐ฟZ #1 โˆ’ 1 +13, = 5581.65๐‘Œ๏ฟฝยฟร€X

Maximum Potential Energy:

๐‘‡๏ฟฝยฟร€ = รƒ12๐‘šยฉ๏ฟฝ๏ฟฝ

Xt

O๐‘‘๐‘ฅ +

๐‘š2 O๏ฟฝ๏ฟฝW

X + ๏ฟฝ๏ฟฝXX + ๏ฟฝ๏ฟฝ(XP

๐‘‡๏ฟฝยฟร€ =10๐œ”2๐‘Œ๏ฟฝยฟร€X

8๐ฟZ รƒ (9๐ฟX๐‘ฅยง โˆ’ 6๐ฟ๐‘ฅ๏ฟฝ + ๐‘ฅZ)t

O๐‘‘๐‘ฅ +

1000๐œ”2๐ฟ3

8๐ฟZ ๏ฟฝ827 +

2827 + 2๏ฟฝ๐‘Œ๏ฟฝยฟร€

X

๐‘‡๏ฟฝยฟร€ =10๐œ”2๐‘Œ๏ฟฝยฟร€X๐ฟ

8๐ฟZ ๏ฟฝ95 โˆ’

66 +

17๏ฟฝ +

1000๐œ”2๐ฟ3

8๐ฟZ 3.33๐‘Œ๏ฟฝยฟร€X

= 509.14๐œ”2๐‘Œ๏ฟฝยฟร€X + 41.67๐œ”2๐‘Œ๏ฟฝยฟร€X = 505.81๐œ”2๐‘Œ๏ฟฝยฟร€X

๐‘‡๏ฟฝยฟร€ = ๐‘‰๏ฟฝยฟร€

550.81๐œ”X๐‘Œ๏ฟฝยฟร€X = 5581.65๐‘Œ๏ฟฝยฟร€

X ๐œ”X = 10.13

๐œ” = 3.18๐‘Ÿ๐‘Ž๐‘‘/๐‘ ๐‘’๐‘ ๐‘“ = 0.507๐‘๐‘๐‘ 

108

21.3 The deflection shape of a cantilever beam with a concentrated load at its end is:

๐œ™(๐‘ฅ) =13V๐‘ฅยง

๐ฟยง โˆ’4๐ฟ( ๐‘ฅ

( +6๐ฟX ๐‘ฅ

XY

and the deflection at a section x by:

๐‘ฆ(๐‘ฅ) = ๐‘Œ๏ฟฝยฟร€๐œ™(๐‘ฅ) sin๐œ”๐‘ก ๐‘‘๐‘ฆ๐‘‘๐‘ฅ = ๐‘Œ๏ฟฝยฟร€

13V4๐‘ฅ(

๐ฟยง โˆ’12๐ฟ( ๐‘ฅ

X +12๐ฟX ๐‘ฅY sin๐œ”๐‘ก

๐‘‘X๐‘ฆ๐‘‘๐‘ฅX = ๐‘Œ๏ฟฝยฟร€

13V12๐‘ฅX

๐ฟยง โˆ’24๐ฟ( ๐‘ฅ +

12๐ฟXY sin๐œ”๐‘ก

Maximum Potential Energy:

๐‘‰๏ฟฝยฟร€ =๐ธ๐ผ2 รƒ V

๐‘‘X๐‘ฆ๐‘‘๐‘ฅXY

๏ฟฝยฟร€

Xt

O๐‘‘๐‘ฅ =

๐‘Œ๏ฟฝยฟร€X๐ธ๐ผ18 รƒ V

144๐‘ฅยง

๐ฟ9 +576๐ฟZ ๐‘ฅX +

144๐ฟยง โˆ’

576๐‘ฅ(

๐ฟร’ +288๐ฟZ ๐‘ฅX โˆ’

576๐‘ฅ๐ฟ๏ฟฝ Y

t

O๐‘‘๐‘ฅ

๐‘‰๏ฟฝยฟร€ =144๐‘Œ๏ฟฝยฟร€X๐ธ๐ผ

18 ๏ฟฝ15 +

43 + 1 โˆ’

44 +

23 โˆ’

42๏ฟฝ =

144๐ธ๐ผ๐‘Œ๏ฟฝยฟร€X

90 = 5953.74๐‘Œ๏ฟฝยฟร€X

๐ธ๐ผ๐ฟ( =

3 โˆ™ 10WW

(36 โˆ™ 12)( = 3721.1

Max. Kinetic Energy:

๐‘‡๏ฟฝยฟร€ = รƒ12๐‘šยฉ๏ฟฝ๏ฟฝ

Xt

O๐‘‘๐‘ฅ +

๐‘š2 O๏ฟฝ๏ฟฝW

X + ๏ฟฝ๏ฟฝXX + ๏ฟฝ๏ฟฝ(XP

๐‘‡๏ฟฝยฟร€ =10๐œ”2๐‘Œ๏ฟฝยฟร€X

18๐ฟZ รƒ V๐‘ฅ9

๐ฟ9 โˆ’16๐‘ฅZ

๐ฟZ +36๐‘ฅยง

๐ฟยง โˆ’8๐‘ฅร’

๐ฟร’ +12๐‘ฅZ

๐ฟZ โˆ’48๐‘ฅ๏ฟฝ

๐ฟ๏ฟฝ Yt

O๐‘‘๐‘ฅ +

100๐œ”218 12.803๐‘Œ๏ฟฝยฟร€X

๐‘‡๏ฟฝยฟร€ =10๐œ”2๐ฟ๐‘Œ๏ฟฝยฟร€X

18๐ฟZ ๏ฟฝ19 โˆ’

167 +

365 โˆ’

88 +

127 โˆ’

486 ๏ฟฝ + 71.13๐œ”

2๐‘Œ๏ฟฝยฟร€X

๐‘‡๏ฟฝยฟร€ = (240 + 71.13)๐œ”2๐‘Œ๏ฟฝยฟร€X

----------------------------------------------------------------------END-------------------------------------------------------------------------- Prepared by Mario Paz and Young Hoon Kim

http://www.springer.com/978-3-319-94742-6