solucionario calculo de una variable - 9° ediciÓn - ron larson

1068
LIBROS UNIVERISTARIOS Y SOLUCIONARIOS DE MUCHOS DE ESTOS LIBROS GRATIS EN DESCARGA DIRECTA SIGUENOS EN: VISITANOS PARA DESCARGARLOS GRATIS.

Upload: carlos-ortiz

Post on 15-Aug-2015

990 views

Category:

Technology


37 download

TRANSCRIPT

  • LIBROS UNIVERISTARIOS Y SOLUCIONARIOS DE MUCHOS DE ESTOS LIBROS GRATIS EN

    DESCARGA DIRECTA

    SIGUENOS EN:

    VISITANOS PARA DESCARGARLOS GRATIS.

  • C H A P T E R 1Limits and Their Properties

    Section 1.1 A Preview of Calculus . . . . . . . . . . . . . . . . . . . 305

    Section 1.2 Finding Limits Graphically and Numerically . . . . . . . 305

    Section 1.3 Evaluating Limits Analytically . . . . . . . . . . . . . . . 309

    Section 1.4 Continuity and One-Sided Limits . . . . . . . . . . . . . 315

    Section 1.5 Infinite Limits . . . . . . . . . . . . . . . . . . . . . . . 320

    Review Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

    Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

  • 305

    C H A P T E R 1Limits and Their Properties

    Section 1.1 A Preview of CalculusSolutions to Even-Numbered Exercises

    2. Calculus: velocity is not constantDistance 20 ftsec15 seconds 300 feet

    4. Precalculus: rate of change slope 0.08

    6. Precalculus: 2

    Area 22 8. Precalculus: Volume 326 54

    10. (a)

    (b) You could improve the approximation by using more rectangles.

    Area 125 5

    1.5 52

    52.5

    53

    53.5

    54

    54.5 9.145

    Area 5 52 53

    54 10.417

    Section 1.2 Finding Limits Graphically and Numerically

    2.

    Actual limit is 14 .limx2

    x 2x2 4 0.25

    x 1.9 1.99 1.999 2.001 2.01 2.1

    0.2564 0.2506 0.2501 0.2499 0.2494 0.2439f x

    4.

    14 .Actual limit islim

    x3

    1 x 2x 3 0.25

    x 3.1 3.01 3.001 2.999 2.99 2.9

    0.25160.25020.25000.25000.24980.2485f x

    6.

    Actual limit is 125 .limx4

    xx 1 45x 4 0.04

    x 3.9 3.99 3.999 4.001 4.01 4.1

    0.0408 0.0401 0.0400 0.0400 0.0399 0.0392f x

    8.

    (Actual limit is 0.) (Make sure you use radian mode.)limx0

    cos x 1x

    0.0000

    x 0.1 0.01 0.001 0.001 0.01 0.1

    0.0500 0.0050 0.0005 0.0005 0.0050 0.0500f x

  • 10. limx1

    x2 2 3 12. limx1

    f x limx1

    x2 2 3

    14. does not exist since the

    function increases and decreaseswithout bound as x approaches 3.

    limx3

    1x 3 16. limx0 sec x 1 18. limx1 sinx 0

    20.

    (a)

    (b)

    (c)

    does not exist. The values of C jump from to at t 3.0.710.59limt3.5

    Ct

    limt3.5

    Ct 0.71

    00

    5

    1

    Ct 0.35 0.12t 1

    t 3 4

    0.710.710.710.710.710.710.59Ct

    3.73.63.53.43.3

    t 3 3 4

    0.710.710.710.590.590.590.47Ct

    3.53.12.92.5

    22. You need to find such that impliesThat is,

    So take

    Then implies

    Using the first series of equivalent inequalities, you obtain

    f x 3 x2 4 < 0.2.

    3.8 2 < x 2 < 4.2 2.

    4.2 2 < x 2 < 4.2 20 < x 2 <

    4.2 2 0.0494.

    0.2 0:limx4

    x 4 2 36.

    Given

    Hence, let

    Hence for you have

    f x L <

    x 3 0 <

    x 3 < 0 < x 3 < , .

    x 3 <

    x 3 0 <

    > 0:

    limx3

    x 3 0

    Section 1.2 Finding Limits Graphically and Numerically 307

  • 38.

    Given

    If we assume then

    Hence for you have

    f x L < x2 3x 0 <

    xx 3 < x 3 < 14 0:

    limx3

    x2 3x 0 40.

    The domain is all The graphing utility does notshow the hole at 3, 12.

    x 1, 3.

    limx3

    f x 123 5

    4

    4

    f x x 3x2 4x 3

    42.

    The domain is all The graphing utility does notshow the hole at 3, 16.

    x 3.

    limx3

    f x 169 3

    3

    3f x x 3x2 9 44. (a) No. The fact that has no bearing on the exis-tence of the limit of as x approaches 2.

    (b) No. The fact that has no bearing on thevalue of f at 2.

    limx2

    f x 4f x

    f 2 4

    46. Let be the atmospheric pressure in a plane ataltitude x (in feet).

    limx0

    px 14.7 lbin2

    px 48.

    Using the zoom and trace feature, That is, for

    x2 4x 2 4 < 0.001.0 < x 2 < 0.001, 0.001.

    1.998 2.0020

    (1.999, 0.001)(2.001, 0.001)

    0.002

    50. True 52. False; let

    and f 4 10 0limx4

    f x limx4

    x2 4x 0

    f x x2 4x,10,x 4x 4

    .

    54. limx4

    x2 x 12x 4 7

    n

    1 4.1 7.1

    2 4.01 7.01

    3 4.001 7.001

    4 4.0001 7.0001

    f 4 0.1n4 0.1n n1 3.9 6.9

    2 3.99 6.99

    3 3.999 6.999

    4 3.9999 6.9999

    f 4 0.1n4 0.1n

    308 Chapter 1 Limits and Their Properties

  • Section 1.3 Evaluating Limits Analytically

    56. Let be given. Take

    If then

    which shows that limxc

    mx b mc b.

    mx b mc b < mx mc < mx c <

    0 < x c < m,

    m. > 0f x mx b, m 0. 58. Let There exists such that implies

    That is,

    Hence for x in the interval

    gx > 12L > 0.

    c , c , x c,

    12L 0.

    2. (a)(b)

    gx 12x 3x 9

    limx0

    gx 4

    limx4

    gx 2.4

    0 10

    5

    10 4. (a)(b)

    f t tt 4

    limt1

    f t 5limt4

    f t 0

    5 10

    10

    10

    6. limx2

    x3 23 8 8. limx3

    3x 2 33 2 7

    10. limx1

    x2 1 12 1 0 12. limx1

    3x3 2x2 4 313 212 4 5

    18. limx3

    x 1x 4

    3 13 4 2 20. limx4

    3x 4 34 4 2

    22. limx0

    2x 13 20 13 1 24. (a)(b)(c) lim

    x3 g f x g4 16

    limx4

    gx 42 16

    limx3

    f x 3 7 4

    14. limx3

    2x 2

    23 2 2 16. limx3

    2x 3x 5

    23 33 5

    38

    26. (a)(b)(c) lim

    x4 g f x g21 3

    limx21

    gx 321 6 3

    limx4

    f x 242 34 1 21 28. limx

    tan x tan 0

    30. limx1

    sin x2 sin

    2 1 32. limx cos 3x cos 3 1

    34. limx53

    cos x cos 53

    12 36. limx7 sec

    x

    6 sec 76

    233

    Section 1.3 Evaluating Limits Analytically 309

  • 38. (a)

    (b)

    (c)

    (d) limxc

    f xgx

    limxc

    f xlimxc

    gx 3212 3

    limxc

    f xgx limxc f x limxc gx 32

    12

    34

    limxc

    f x gx limxc

    f x limxc

    gx 32 12 2

    limxc

    4f x 4 limxc

    f x 432 6 40. (a)(b)

    (c)

    (d) limxc

    f x23 limxc

    f x23 2723 9

    limxc

    f x2 limxc

    f x2 272 729

    limxc

    f x18

    limxc

    f xlimxc

    18 2718

    32

    limxc

    3f x 3limxc f x 327 3

    42. and agree except at

    (a)

    (b) limx0

    hx limx0

    f x 3

    limx2

    hx limx2

    f x 5

    x 0.hx x2 3x

    xf x x 3 44. and agree except at

    (a) does not exist.

    (b) limx0

    f x 1

    limx1

    f x

    x 0.f x xx2 x

    gx 1x 1

    46. and agree except at

    4

    8

    8

    4

    limx1

    f x limx1

    gx 5

    x 1.

    gx 2x 3f x 2x2 x 3x 1 48. and agree except at

    4 4

    1

    7

    limx1

    f x limx1

    gx 3

    x 1.

    gx x2 x 1f x x3 1

    x 1

    50.

    limx2

    1x 2

    14

    limx2

    2 xx2 4 limx2

    x 2x 2x 2 52.

    limx4

    x 1x 2

    36

    12

    limx4

    x2 5x 4x2 2x 8 limx4

    x 4x 1x 4x 2

    54.

    limx0

    2 x 22 x 2x limx0

    12 x 2

    1

    22

    24

    limx0

    2 x 2x

    limx0

    2 x 2x

    2 x 22 x 2

    56. limx3

    x 1 2x 3 limx3

    x 1 2x 3

    x 1 2x 1 2

    limx3

    x 3x 3x 1 2 limx3

    1x 1 2

    14

    58. limx0

    1x 4

    14

    x lim

    x0

    4 x 44x 4

    x lim

    x0

    14x 4

    116

    60. lim

    x0

    x x2 x2

    x

    lim

    x0

    x2 2xx x2 x2

    x lim

    x0

    x2x x

    x lim

    x02x x 2x

    310 Chapter 1 Limits and Their Properties

  • 62.

    lim

    x0

    x3x2 3xx x2

    x

    lim

    x0

    3x2 3xx x2 3x2

    lim

    x0

    x x3 x3

    x

    lim

    x0

    x3 3x2x 3xx2 x3 x3

    x

    64.

    Analytically,

    . limx16

    1x 4

    18

    limx16

    4 xx 16 limx16

    4 xx 4x 4

    f x 4 xx 16

    x 15.9 15.99 15.999 16 16.001 16.01 16.1

    .1252 .125 .125 ? .125 .125 .1248f xIt appears that the limit is 0.125.

    0 20

    1

    1

    66.

    Analytically,

    .

    (Hint: Use long division to factor )x5 32.

    limx2

    x4 2x3 4x2 8x 16 80

    limx2

    x5 32x 2 limx2

    x 2x4 2x3 4x2 8x 16x 2

    4 3

    25

    100limx2

    x5 32x 2 80

    x 1.9 1.99 1.999 1.9999 2.0 2.0001 2.001 2.01 2.1

    72.39 79.20 79.92 79.99 ? 80.01 80.08 80.80 88.41f x

    68. 30 0limx0

    31 cos xx

    limx0

    31 cos xx 70. lim0 cos tan

    lim

    0

    sin

    1

    72.

    10 0

    limx0

    tan2 xx

    limx0

    sin2 xx cos2 x

    limx0

    sin xx sin x

    cos2 x 74. lim sec 1

    76.

    2

    limx4

    sec x

    limx4

    1cos x

    limx4

    sin x cos xcos xsin x cos x

    limx4

    1 tan xsin x cos x limx4

    cos x sin xsin x cos x cos2 x

    78. 21131 23limx0

    sin 2xsin 3x limx0 2

    sin 2x2x

    13

    3xsin 3x

    Section 1.3 Evaluating Limits Analytically 311

  • 80.

    Analytically, .limh0

    1 cos 2h 1 cos0 1 1 2

    5 5

    4

    4f h 1 cos 2h

    h 0.1 0.01 0.001 0 0.001 0.01 0.1

    1.98 1.9998 2 ? 2 1.9998 1.98f h

    82.

    Analytically, .limx0

    sin x3x

    limx0

    3x2sin xx 01 0

    3 3

    2

    2f x sin x3x

    x 0.1 0.01 0.001 0 0.001 0.01 0.1

    0.215 0.0464 0.01 ? 0.01 0.0464 0.215f x

    The limit appear to equal 0.

    The limit appear to equal 2.

    84.

    limh0

    1x h x

    1

    2x lim

    h0

    x h xhx h x

    limh0

    x h xh

    x h xx h x

    limh0

    f x h f xh limh0

    x h xh

    86.

    limh0

    h2x h 4h limh0 2x h 4 2x 4

    limh0

    f x h f xh limh0

    x h2 4x h x2 4xh limh0

    x2 2xh h2 4x 4h x2 4xh

    88.

    Therefore, limxa

    f x b. b lim

    xa f x b

    limxa

    b x a limxa

    f x limxa

    b x a 90.

    limx0

    x sin x 0

    2

    2 2

    6

    f x x sin x

    92.

    limx0

    x cos x 0

    6

    2 2

    6

    f x x cos x 94.

    limx0

    x cos 1x 0

    0.5 0.5

    0.5

    0.5

    hx x cos 1x

    312 Chapter 1 Limits and Their Properties

  • 96. and agree at all points

    except x 1.

    gx x 1f x x2 1

    x 1 98. If a function f is squeezed between two functions h and g,and h and g have the same limit L as

    then exists and equals L.limxc

    f xx c,hx f x gx,

    100.

    3 3

    2

    g

    hf

    2

    hx sin2 x

    xgx sin2 x,f x x,

    When you are close to 0 the magnitude of g is smallerthan the magnitude of f and the magnitude of g isapproaching zero faster than the magnitude of f.Thus, when x is close to 0g f 0

    102. when seconds

    limt5102

    16t 5102 8010 ftsec 253 ftsec

    limt5102

    16t2 1252

    510

    2 t

    limt5102

    16t 5102 t 510

    2

    t 5102

    limt5102

    s5102 st510

    2 t

    limt5102

    0 16t2 1000510

    2 t

    t 100016 5102st 16t2 1000 0

    104. when seconds.

    The velocity at time is

    Hence, if the velocity is 9.8150049 54.2 msec.a 150049,

    limta

    4.9a t 2a4.9 9.8a msec.

    limta

    sa sta t

    limta

    4.9a2 150 4.9t2 150a t

    limta

    4.9a ta ta t

    t a

    t 1504.9 150049 5.534.9t2 150 0

    106. Suppose, on the contrary, that exists. Then, since exists, so would which is acontradiction. Hence, does not exist.lim

    xc gx

    limxc

    f x gx,limxc

    f xlimxc

    gx

    108. Given n is a positive integer, then

    cclimxc

    xx n3 . . . c n.

    c limxc

    xx n2 climxc

    xlimxc

    x n2

    limxc

    x n limxc

    xx n1 lim xc

    xlimxc

    x n1f x x n,

    110. Given

    For every there exists such that whenever

    Now for < Therefore, limxc

    f x 0..x c f x 0 < f x 0 f x 0 < x c < . f x 0 < > 0 > 0,

    limxc

    f x 0:

    Section 1.3 Evaluating Limits Analytically 313

  • 112. (a) If then

    Therefore,

    (b) Given For every there exists such that whenever Since for then lim

    xc f x L.x c < ,< f x L f x L

    0 < x c < . f x L < > 0 > 0,limxc

    f x L:limxc

    f x 0. 0 lim

    xc f x 0

    limxc

    f x limxc

    f x limxc

    f x f x f x f x

    limxc

    f x 0.limxc

    f x 0,

    114. True. limx0

    x3 03 0 116. False. Let

    Then but f 1 1.limx1

    f x 1

    f x x 3 x 1x 1 , c 1

    118. False. Let and Then for all But lim

    x0 f x lim

    x0 gx 0.x 0.

    f x < gxgx x2.f x 12 x2 120.

    10 0

    limx0

    sin xx limx0

    sin x1 cos x

    limx0

    sin xx

    sin x

    1 cos x

    limx0

    1 cos2 xx1 cos x limx 0

    sin2 xx1 cos x

    limx0

    1 cos xx

    limx0

    1 cos xx

    1 cos x1 cos x

    122.

    (a) The domain of f is all (b)

    The domain is not obvious. The hole at is notapparent.

    x 0

    2

    23

    23

    2

    2 n.x 0,

    f x sec x 1x2

    (c)

    (d)

    Hence,

    1112 12.

    limx0

    sec x 1x2

    limx0

    1cos2 x

    sin2 xx2

    1sec x 1

    tan2 x

    x2sec x 1 1

    cos2 xsin2 x

    x2

    1

    sec x 1

    sec x 1x2

    sec x 1

    x2

    sec x 1sec x 1

    sec2 x 1x2sec x 1

    limx0

    f x 12

    124. The calculator was set in degree mode, instead of radian mode.

    314 Chapter 1 Limits and Their Properties

  • Section 1.4 Continuity and One-Sided Limits

    2. (a)

    (b)

    (c)

    The function is continuous atx 2.

    limx2

    f x 2

    limx2

    f x 2

    limx2

    f x 2 4. (a)

    (b)

    (c)

    The function is NOT continuous atx 2.

    limx2

    f x 2

    limx2

    f x 2

    limx2

    f x 2 6. (a)

    (b)

    (c) does not exist.

    The function is NOT continuous atx 1.

    limx1

    f x

    limx1

    f x 2

    limx1

    f x 0

    8. limx2

    2 xx2 4 limx2

    1x 2

    14

    10.

    limx4

    1x 2

    14

    limx4

    x 4x 4x 2

    limx4

    x 2x 4 limx4

    x 2x 4

    x 2x 2

    12. limx2

    x 2x 2 limx2

    x 2x 2 1

    14.

    2x 0 1 2x 1

    limx0

    2x x 1

    limx0

    2xx x2 xx

    limx0

    x x2 x x x2 xx

    limx0

    x2 2xx x2 x x x2 xx

    16.

    limx2

    f x 2

    limx2

    f x limx2

    x2 4x 6 2

    limx2

    f x limx2

    x2 4x 2 2 18. limx1

    f x limx1

    1 x 0

    20. does not exist since

    and do not exist.limx2

    sec xlimx2

    sec x

    limx2

    sec x 22. limx2

    2x x 22 2 2

    24. limx1

    1 x2 1 1 2 26.has a discontinuity at since is not defined.f 1x 1

    f x x2 1

    x 1

    28. has discontinuity at since f 1 2 limx1

    f x 1.x 1f x x,2,2x 1,x < 1x 1x > 1

    30. is continuous on 3, 3.f t 3 9 t2 32. is not defined. g is continuous on 1, 2.g2

    Section 1.4 Continuity and One-Sided Limits 315

  • 34. is continuous for all real x.f x 1x2 1 36. is continuous for all real x.f x cos

    x

    2

    38. has nonremovable discontinuities at and since and do not exist.limx1

    f xlimx1

    f xx 1x 1f x xx2 1

    40. has a nonremovable discontinuity at since does not exist, and has a removable discontinuity

    at since

    .limx3

    f x limx3

    1x 3

    16

    x 3

    limx3

    f xx 3f x x 3x2 9

    42.

    has a nonremovable discontinuity at sincedoes not exist, and has a removable discontinu-

    ity at since

    limx1

    f x limx1

    1x 2

    13.

    x 1lim

    x2 f x

    x 2

    f x x 1x 2x 1 44.has a nonremovable discontinuity at since does not exist.

    limx3

    f xx 3f x x 3

    x 3

    46.

    has a possible discontinuity at .

    1.

    2.

    3.

    f is continuous at therefore, f is continuous for all real x.x 1,

    f 1 limx1

    f x

    limx1

    f x 1limx1 f x limx1 2x 3 1lim

    x1f x lim

    x1x2 1

    f 1 12 1x 1

    f x 2x 3,x2, x < 1x 1

    48. has a possible discontinuity at

    1.

    2. does not exist.

    Therefore, f has a nonremovable discontinuity at x 2.

    limx2

    f xlimx2

    f x limx2

    2x 4lim

    x2f x lim

    x2x2 4x 1 3

    f 2 22 4

    x 2.f x 2x,x2 4x 1, x 2x > 2

    50. has possible discontinuities at

    1.

    2.

    3.

    f is continuous at and therefore, is continuous for all real x.fx 5,x 1

    f 5 limx5

    f xf 1 limx1

    f x

    limx5

    f x 2limx1

    f x 2

    f 5 csc 56 2f 1 csc

    6 2

    x 5.x 1, csc x6 ,

    2,1 x 5x < 1 or x > 5

    f x csc x6

    ,

    2,x 3 2x 3 > 2

    316 Chapter 1 Limits and Their Properties

  • 52. has nonremovable discontinuities at each

    k is an integer.2k 1,

    f x tan x254. has nonremovable discontinuities at each

    integer k.f x 3 x

    56.

    f is not continuous at x 4

    limx0

    fx 08 8

    10

    20limx0

    f x 0 58.

    Let a 4.

    limx0

    gx limx0

    a 2x a

    limx0

    g(x limx0

    4 sin xx

    4

    60.

    Find a such that 2a 8 a 4.

    limxa

    x a 2a

    limxa

    gx limxa

    x2 a2

    x a

    62.

    Nonremovable discontinuity at Continuous for all .Because is not defined for it is better to say that is discontinuous from the right at x 1.f gx < 1,f g

    x > 1x 1.

    f gx 1x 1

    64.

    Continuous for all real x

    f gx sin x2 66.

    Nonremovable discontinuity at and

    3 4

    2

    2

    x 2.x 1

    hx 1x 1x 2

    68.

    Therefore, and f is continuous on the entire real line. ( was the only possible discontinuity.)x 0limx0

    f x 0 f 0lim

    x0 f x lim

    x0 5x 0

    limx0

    f x limx0

    cos x 1x

    0

    f 0 50 0 7

    3

    2

    3

    f x cos x 1

    x,

    5x,

    x < 0

    x 0

    70.

    Continuous on 3,

    f x xx 3 72.

    Continuous on 0,

    f x x 1x

    Section 1.4 Continuity and One-Sided Limits 317

  • 74.

    The graph appears to be continuous on the intervalSince is not defined, we know that f has

    a discontinuity at This discontinuity is removableso it does not show up on the graph.

    x 2.f 24, 4.

    4 40

    14

    f x x3 8

    x 2 76. is continuous on

    and

    By the Intermediate Value Theorem, for at leastone value of c between 0 and 1.

    f x 0f 1 2f 0 2

    0, 1.f x x3 3x 2

    78. is continuous on

    and

    By the Intermediate Value Theorem, for at leastone value of c between 1 and 3.

    f 1 0

    f 3 43 tan 38 > 0.f 1 4 tan

    8 < 0

    1, 3.f x 4x

    tan x

    8 80.

    is continuous on

    and

    By the Intermediate Value Theorem, for at leastone value of c between 0 and 1. Using a graphing utility,we find that x 0.5961.

    f x 0f 1 2f 0 2

    0, 1.f xf x x3 3x 2

    82.

    h is continuous on

    and

    By the Intermediate Value Theorem, for at leastone value between 0 and 1. Using a graphing utility, wefind that 0.4503.

    h 0

    h1 2.67 < 0.h0 1 > 0

    0, 1.

    h 1 3 tan 84.

    f is continuous on and

    The Intermediate Value Theorem applies.

    ( is not in the interval.)Thus, f 2 0.

    x 4c 2

    x 2 or x 4

    x 2x 4 0

    x2 6x 8 0

    1 < 0 < 8

    f 3 1f 0 80, 3.

    f x x2 6x 8

    86.

    f is continuous on The nonremovable discontinuity,lies outside the interval.

    and

    356 < 6 <

    203

    f 4 203f 52

    356

    x 1,52 , 4.

    f x x2 x

    x 1 The Intermediate Value Theorem applies.

    ( is not in the interval.)Thus, f 3 6.

    x 2c 3

    x 2 or x 3

    x 2x 3 0

    x2 5x 6 0

    x2 x 6x 6

    x2 x

    x 1 6

    318 Chapter 1 Limits and Their Properties

  • 88. A discontinuity at is removable if you can define(or redefine) the function at in such a way that thenew function is continuous at Answers will vary.

    (a)

    (b) f x sinx 2x 2

    f x x 2x 2

    x c.x c

    x c

    (c)

    1 2 313 21

    2

    3

    1

    3

    2

    y

    x

    f x 1,0,1,0,

    if x 2if 2 < x < 2if x 2if x < 2

    90. If f and g are continuous for all real x, then so is (Theorem 1.11, part 2). However, might not be continuous if For example, let and Then and are continuous for all real x, but is not continuous at x 1.fggfgx x2 1.f x x

    gx 0.fgf g

    92.

    Nonremovable discontinuity at each integer greater than 2.

    C 1.04,1.04 0.36t 1,1.04 0.36t 2,0 < t 2t > 2, t is not an integert > 2, t is an integer

    You can also write C as

    .

    t1 2 3 4

    1

    2

    3

    4

    C

    C 1.04,1.04 0.362 t, 0 < t 2t > 2

    94. Let be the position function for the run up to the campsite. ( corresponds to 8:00 A.M., (distanceto campsite)). Let be the position function for the run back down the mountain: Let When (8:00 A.M.), .When (8:10 A.M.), .Since and then there must be a value t in the interval such that If then

    which gives us Therefore, at some time t, where 0 t 10, the position functions for therun up and the run down are equal.

    st rt. 0,st rtf t 0,f t 0.0, 10f 10 > 0,f 0 < 0

    f 10 s10 r10 > 0t 10f 0 s0 r0 0 k < 0t 0

    f t st rt.r10 0.r0 k,rts20 kt 0s0 0st

    96. Suppose there exists in such that > 0 and there exists in such that Then by the IntermediateValue Theorem, must equal zero for some value of x in (or ). Thus, f would have a zero in ,which is a contradiction. Therefore, > 0 for all x in or for all x in .a, bf x < 0a, bf x

    a, bx2, x1 if x2 < x1x1, x2f xf x2 < 0.a, bx2f x1a, bx1

    98. If then and . Hence, f iscontinuous at

    If then for x rational, whereasfor x irrational. Hence, f is not

    continuous for all x 0.limt x

    f t limt x

    kt kx 0limtx

    f t 0x 0,x 0.

    limx0

    f x 0f 0 0x 0, 100. True1. is defined.

    2. exists.

    3.

    All of the conditions for continuity are met.

    f c limxc

    f x

    limxc

    f x Lf c L

    Section 1.4 Continuity and One-Sided Limits 319

  • Section 1.5 Infinite Limits

    102. False; a rational function can be written as where P and Q are polynomials of degree m and n,respectively. It can have, at most, n discontinuities.

    PxQx 104. (a)

    (b) There appears to be a limiting speed and a possiblecause is air resistance.

    t

    20

    30

    10

    40

    50

    60

    105 15 20 25 30

    S

    106. Let y be a real number. If then If then let such that (this is possiblesince the tangent function increases without bound on ). By the Intermediate Value Theorem, iscontinuous on and , which implies that there exists x between 0 and such that The argumentis similar if y < 0.

    tan x y.x00 < y < M0, x0f x tan x0, 2

    M tan x0 > y0 < x0 < 2y > 0,x 0.y 0,

    108. 1. is defined.

    2. exists.

    3.

    Therefore, f is continuous at x c.limxc

    f x f c.Let x c x. As x c, x0

    limxc

    f x limx0

    f c x f cf c

    110. Define Since and are continuous on so is f.and

    By the Intermediate Value Theorem, there exists c in such that

    f c f2c f1c 0 f1c f2cf c 0.a, b

    f b f2b f1b < 0.f a f2a f1a > 0a, b,f2f1f x f2x f1x.

    2.

    limx2

    1x 2

    limx2

    1x 2 4.

    limx2

    sec x

    4

    limx2

    sec x

    4

    6.

    limx3

    f x

    limx3

    f x

    f x xx2 9

    x

    499.9 49.92 4.915 0.9091500.150.085.0821.077f x2.52.92.992.9993.0013.013.13.5

    320 Chapter 1 Limits and Their Properties

  • 8.

    limx3

    f x

    limx3

    f x

    f x sec x6

    x

    191.0 19.11 3.86419101910191.019.113.864f x2.52.92.992.9993.0013.013.13.5

    10.

    Therefore, is a vertical asymptote.x 2

    limx2

    4x 23

    limx2

    4x 23

    12.

    Therefore, is a vertical asymptote.

    Therefore, is a vertical asymptote.x 1

    limx1

    2 xx21 x

    limx1

    2 xx21 x

    x 0

    limx0

    2 xx21 x

    limx0

    2 xx21 x

    14. No vertical asymptote since the denominator is never zero. 16. and

    Therefore, is a vertical asymptote.

    and

    Therefore, is a vertical asymptote.s 5

    lims5

    hs .lims5

    hs

    s 5

    lims5

    hs .lims5

    hs

    18. has vertical asymptotes at

    n any integer.x 2n 12 ,

    f x sec x 1cos x

    20.

    No vertical asymptotes. The graph has holes at and x 4.

    x 2

    x 2, 4

    16 x,

    gx 12x3 x2 4x

    3x2 6x 24 16

    xx2 2x 8x2 2x 8

    22.

    Vertical asymptotes at and The graph has holes at and x 2.x 3x 3.x 0

    f x 4x2 x 6

    xx3 2x2 9x 18 4x 3x 2xx 2x2 9

    4xx 3, x 3, 2

    24.

    has no vertical asymptote since

    limx2

    hx limx2

    x 2x2 1

    45.

    hx x2 4

    x3 2x2 x 2 x 2x 2x 2x2 1 26.

    Vertical asymptote at The graph has a hole att 2.

    t 2.

    ht tt 2t 2t 2t2 4 t

    t 2t2 4, t 2

    Section 1.5 Infinite Limits 321

  • 28. has vertical asymptotes at

    n any integer.

    There is no vertical asymptote at since

    lim0

    tan

    1.

    0

    2n 1

    2

    2 n,

    g tan

    sin

    cos 30.

    Removable discontinuity at x 1

    3 3

    12

    2

    limx1

    x2 6x 7x 1 limx1 x 7 8

    32.

    Removable discontinuity atx 1

    3 3

    2

    2limx1

    sinx 1x 1 1 34. limx1

    2 x1 x

    36. limx4

    x2

    x2 16 12 38. limx12

    6x2 x 14x2 4x 3 limx12

    3x 12x 3

    58

    40. limx3

    x 2x2

    19 42. limx0 x2

    1x

    44. 2cos x

    limx2

    46. limx0

    x 2cot x

    limx0

    x 2tan x 0

    48. and

    Therefore, does not exist.limx12

    x2 tan x

    limx12

    x2 tan x .limx12

    x2 tan x 50.

    8 8

    4

    4

    limx1

    f x limx1

    x 1 0

    f x x3 1

    x2 x 1

    52.

    9 9

    6

    6

    limx3

    f x

    f x sec x6 54. The line is a vertical asymptote if the graph of fapproaches as x approaches c.

    x c

    56. No. For example, has no

    vertical asymptote.

    f x 1x2 1 58.

    (In this case we know that k > 0.)limV0

    kV k

    P kV

    322 Chapter 1 Limits and Their Properties

  • 60. (a)

    (b)

    (c) lim2

    50 sec2

    r 50 sec2 3 200 ftsec

    r 50 sec2 6 200

    3 ftsec62.

    limvc

    m limvc

    m0

    1 v2c2

    m m0

    1 v2c2

    64. (a)

    Domain: x > 25

    25xx 25 y

    50x 2yx 25

    50x 2xy 50y

    50y 50x 2xy

    50 2xyy x

    50 2ddx dy

    Average speed Total distanceTotal time(b)

    (c)

    As gets close to 25 mph, becomes larger and larger.yx

    limx25

    25xx 25

    x 30 40 50 60

    y 150 66.667 50 42.857

    66. (a)

    Domain:

    (c)

    00

    1.5

    100

    0, 2 50 tan 50

    A 12bh 12r

    2 121010 tan

    1210

    2 (b)

    (d) lim2

    A

    0.3 0.6 0.9 1.2 1.5

    0.47 4.21 18.0 68.6 630.1f

    68. False; for instance, let

    The graph of f has a hole at not a verticalasymptote.

    1, 2,

    f x x2 1

    x 1 .

    70. True

    72. Let and and

    and but

    limx0

    1x2 1x4 limx0

    x2 1x4 0.

    limx0

    1x4

    , limx0

    1x2

    c 0.gx 1x4

    ,f x 1x2

    74. Given then

    by Theorem 1.15.

    limx c

    gxfx 0limx c f x , let g x 1.

    Section 1.5 Infinite Limits 323

  • Review Exercises for Chapter 1

    2. Precalculus. L 9 12 3 12 8.25

    4.

    limx0

    f x 0.2

    1

    0.5

    1

    0.5x 0.1 0.01 0.001 0.001 0.01 0.1

    0.358 0.354 0.354 0.354 0.353 0.349f x

    6. (a) does not exist.limx2

    gxgx 3xx 2

    (b) limx0

    gx 0

    8.

    Let be given. We need

    x 9 < x 3 x 3 < x 3x 3 < x 3

    > 0

    limx9

    x 9 3. Assuming you can choose

    Hence, for you have

    f x L < x 3 <

    x 9 < 5 < x 30 < x 9 < 5,

    5.4 < x < 16,

    10. Let be given. can be any positive

    number. Hence, for you have

    f x L < 9 9 <

    0 < x 5 < , > 0lim

    x5 9 9. 12. lim

    y4 3y 1 34 1 9

    14. limt3

    t 2 9t 3 limt3 t 3 6 16.

    limx0

    14 x 2

    14

    limx0

    4 x 2x

    limx0

    4 x 2x

    4 x 24 x 2

    18.

    lims0

    11 s 1s11 s 1 lims0

    11 s11 s 1

    12

    lims0

    11 s 1s

    lims0

    11 s 1s 11 s 111 s 1

    20.

    4

    12 13

    limx2

    x 2x2 2x 4

    limx2

    x2 4x3 8 limx2

    x 2x 2x 2x2 2x 4

    22. limx4

    4xtan x

    44

    1

    324 Chapter 1 Limits and Their Properties

  • 24.

    0 01 0

    limx0

    cos x 1x limx0 sin sin x

    x

    limx0

    cos x 1x

    limx0

    cos cos x sin sin x 1x

    26. limxc

    f x 2gx 34 223 712

    28.

    (a)

    Actual limit is

    (c)

    13

    limx1

    11 3x 3x2

    limx1

    1 xx 11 3x 3x2

    limx1

    1 3xx 1 limx1

    1 3xx 1

    1 3x 3x21 3x 3x2

    13 .limx1

    1 3xx 1 0.333

    f x 1 3x

    x 1

    (b)

    3

    3

    3

    2x 1.1 1.01 1.001 1.0001

    0.33330.33320.33220.3228f x

    30.

    When the velocity is approximately

    limt6.39

    4.96.39 6.39 62.6 msec.

    limta

    sa sta t

    limta

    4.9a t

    t 6.39,

    st 0 4.9t2 200 0 t2 40.816 t 6.39 sec

    32. does not exist. The graph jumps from 2 to 3at x 4.

    limx4

    x 1 34. limx1

    gx 1 1 2.

    36. lims2

    f s 2 38.

    Removable discontinuity at Continuous on , 1 1,

    x 1

    limx1

    3x 2 5 0

    limx1

    f x limx1

    3x2 x 2x 1

    f x 3x2 x 2

    x 1,

    0,

    x 1

    x 1

    Review Exercises for Chapter 1 325

  • 40.

    Nonremovable discontinuity at Continuous on , 2 2,

    x 2

    limx2

    2x 3 1

    limx2

    5 x 3

    f x 5 x,2x 3, x 2x > 2 42.

    Domain:

    Nonremovable discontinuity at Continuous on , 1 0,

    x 0

    , 1, 0,

    limx0

    1 1x

    f x x 1x 1 1x

    44.

    Removable discontinuity at Continuous on , 1 1,

    x 1

    limx1

    x 12x 1

    12

    f x x 12x 2 46.Nonremovable discontinuities when

    Continuous on

    for all integers n.

    2n 14 , 2n 1

    4

    x 2n 1

    4

    f x tan 2x

    48.

    Find b and c so that and

    Consequently we get

    Solving simultaneously, b 3 and c 4.

    1 b c 2 and 9 3b c 4.

    limx3

    x2 bx c 4.limx1

    x2 bx c 2

    limx3

    x 1 4

    limx1

    x 1 2

    50.

    C has a nonremovable discontinuity at each integer.

    00

    5

    30

    9.80 2.50x 1

    C 9.80 2.50x 1, x > 0

    54.

    Vertical asymptotes at and x 2x 2

    hx 4x4 x2 56.

    Vertical asymptote at every integer k

    f x csc x

    58. limx12

    x

    2x 1 60. limx1 x 1x4 1 limx1

    1x2 1x 1

    14

    62. limx1

    x2 2x 1x 1

    64. limx2

    13x2 4

    52.

    (a) Domain:(b)

    (c) limx1

    f x 0

    limx0

    f x 0, 0 1,

    f x x 1x

    68. limx0

    cos2 x

    x 66. lim

    x0

    sec x

    x

    326 Chapter 1 Limits and Their Properties

  • Problem Solving for Chapter 1

    2. (a)

    (b)

    (c) limx0

    ax limx0

    x 0

    ax Area PBOArea PAO x22x2 x

    Area PBO 12bh 121y

    y2

    x2

    2

    Area PAO 12bh 121x

    x

    2

    x 4 2 1 0.1 0.01

    Area 2 1

    Area 8 2

    4 2 1 1100110ax

    120,000120012PBO

    120012012PAO

    70.

    (a)

    (b) Yes, define

    .

    Now is continuous at x 0.f x

    f x tan 2xx ,2,x 0

    x 0

    limx0

    tan 2xx

    2

    f x tan 2xx

    x 0.1 0.01 0.001 0.001 0.01 0.1

    2.0271 2.0003 2.0000 2.0000 2.0003 2.0271f x

    4. (a)

    (b) Tangent line:

    (c) Let

    (d)

    This is the slope of the tangent line at P.

    limx3

    3 x25 x2 4

    6

    4 4 34

    limx3

    3 x3 xx 325 x2 4

    limx3

    25 x2 16x 325 x2 4

    limx3

    mx limx3

    25 x2 4x 3

    25 x2 425 x2 4

    mx 25 x2 4

    x 3

    Q x, y x, 25 x2

    y 34x

    254

    y 4 34x 3Slope 34

    Slope 4 03 0 43

    6.

    Letting simplifies the numerator.

    Thus,

    Setting you obtain

    Thus, and b 6.a 3

    b 6.b3 3

    3,

    limx0

    b3 bx 3

    .

    limx0

    3 bx 3x

    limx0

    bxx3 bx 3

    a 3

    a bx 3

    xa bx 3

    a bx 3x

    a bx 3

    xa bx 3a bx 3

    8.

    Thus,

    a 1, 2

    a 2a 1 0

    a2 a 2 0

    a2 2 a

    because limx0

    tan xx

    1limx0

    f x limx0

    ax

    tan x a

    limx0

    f x limx0

    a2 2 a2 2

    Problem Solving for Chapter 1 327

  • 12. (a)

    Let

    (b)

    Let

    (c)

    Let

    Since this is smaller than the escape velocity for earth,the mass is less.

    v0 6.99 2.64 misec.

    limv0

    r 10,600

    6.99 v02

    r 10,600

    v2 v02 6.99

    v0 2.17 misec 1.47 misec.

    limv0

    r 1920

    2.17 v02

    r 1920

    v2 v02 2.17

    1920r

    v2 v02 2.17

    v2 1920

    r v0

    2 2.17

    v0 48 43 feetsec.

    limv0

    r 192,00048 v02

    r 192,000

    v v02 48

    192,000r

    v2 v02 48

    v2 192,000

    r v0

    2 48

    10.

    11

    1

    2

    3

    2

    1

    y

    x

    (a)

    f 1 1 1 f 3 13 0

    f 14 4 4 (b)

    limx0

    f x limx0

    f x limx1

    f x 0 limx1

    f x 1 (c) f is continuous for all real numbers except

    x 0, 1, 12, 13, . . .

    14. Let and let be given. There exists such that if then Let Then for you have

    As a counterexample, let

    Then

    but limx0

    f ax limx0

    f 0 2.limx0

    f x 1 L,

    f x 12 x 0 x 0. f ax L < .

    ax < 1

    x < 1a

    0 < x 0 < 1a, 1a. f x L < .0 < x 0 < ,

    1 > 0 > 0a 0

    328 Chapter 1 Limits and Their Properties

  • C H A P T E R 1Limits and Their Properties

    Section 1.1 A Preview of Calculus . . . . . . . . . . . . . . . . . . . . 27

    Section 1.2 Finding Limits Graphically and Numerically . . . . . . . . 27

    Section 1.3 Evaluating Limits Analytically . . . . . . . . . . . . . . . 31

    Section 1.4 Continuity and One-Sided Limits . . . . . . . . . . . . . . 37

    Section 1.5 Infinite Limits . . . . . . . . . . . . . . . . . . . . . . . . 42

    Review Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

    Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

  • 27

    C H A P T E R 1Limits and Their Properties

    Section 1.1 A Preview of CalculusSolutions to Odd-Numbered Exercises

    1. Precalculus: 20 ftsec15 seconds 300 feet 3. Calculus required: slope of tangent line at is rate ofchange, and equals about 0.16.

    x 2

    5. Precalculus: sq. unitsArea 12 bh 12 53

    152 7. Precalculus: cubic unitsVolume 243 24

    9. (a)

    (b) The graphs of are approximations to the tangent line to at (c) The slope is approximately 2. For a better approximation make the list numbers smaller:

    0.2, 0.1, 0.01, 0.001

    x 1.y1y2

    8

    2

    4

    6

    (1, 3)

    11. (a)(b)

    (c) Increase the number of line segments. 2.693 1.302 1.083 1.031 6.11

    D2 1 522 1 52 532 1 53 542 1 54 12D1 5 12 1 52 16 16 5.66

    Section 1.2 Finding Limits Graphically and Numerically

    1.

    Actual limit is 13 .limx2

    x 2x2 x 2 0.3333

    x 1.9 1.99 1.999 2.001 2.01 2.1

    0.3448 0.3344 0.3334 0.3332 0.3322 0.3226f x

    3.

    Actual limit is 123.limx0

    x 3 3x

    0.2887

    x 0.1 0.01 0.001 0.001 0.01 0.1

    0.2911 0.2889 0.2887 0.2887 0.2884 0.2863f x

  • 5.

    Actual limit is 116 .limx3

    1x 1 14x 3 0.0625

    x 2.9 2.99 2.999 3.001 3.01 3.1

    0.06100.06230.06250.06250.06270.0641f x

    7.

    (Actual limit is 1.) (Make sure you use radian mode.)limx0

    sin xx

    1.0000

    x 0.1 0.01 0.001 0.001 0.01 0.1

    0.9983 0.99998 1.0000 1.0000 0.99998 0.9983f x

    9. limx3

    4 x 1 11. limx2

    f x limx2

    4 x 2

    15. tan x does not exist since the function increases and

    decreases without bound as x approaches 2.

    limx2

    17. does not exist since the function oscillates

    between and 1 as x approaches 0.1

    limx0

    cos1x

    (b)

    (c)

    does not exist. The values of C jump from 1.75 to 2.25 at t 3.limt3

    Ct

    limt3.5

    Ct 2.25

    t 2 2.5 2.9 3 3.1 3.5 4

    C 1.25 1.75 1.75 1.75 2.25 2.25 2.25

    19.

    (a)

    00

    5

    3

    Ct 0.75 0.50t 1 t 3 3.3 3.4 3.5 3.6 3.7 4

    C 1.75 2.25 2.25 2.25 2.25 2.25 2.25

    21. You need to find such that implies

    That is,

    19 > x 1 >

    111.

    109 1 > x 1 >

    1011 1

    109 > x >

    1011

    910 <

    1x

    0

    0 <

    3 3 <

    > 0:

    limx6

    3 3 33.

    Given

    Hence, let

    Hence for you have

    f x L < 3x 0 <

    3x < x < 3

    0 < x 0 < 3, 3.

    x < 3

    3x <

    3x 0 < > 0:

    limx0

    3x 0

    Section 1.2 Finding Limits Graphically and Numerically 29

  • 35.

    Given

    Hence,

    Hence for you have

    (because ) f x L <

    x 20

    x 2 4 < x 2 4 <

    x 2 < x 2 <

    0 < x 2 < , .

    x 2 x 2 x 2 < x 2 < 0 x 2 4 <

    x 2 4 < > 0:

    limx2

    x 2 2 2 4 37.Given

    If we assume then

    Hence for you have

    f x 2 < x2 1 2 <

    x2 1 < x 1 < 13 0:

    limx1

    x2 1 2

    39.

    The domain is The graphing utility does not show the hole at 4, 16.

    5, 4 4, .

    limx4

    f x 16 6 60.1667

    0.5

    f x x 5 3x 4 41.

    The domain is all except The graphingutility does not show the hole at 9, 6.

    x 9.x 0

    limx9

    f x 6

    00

    10

    10f x x 9x 3

    43. means that the values of f approach 25 as x gets closer and closer to 8.limx8

    f x 25

    45. (i) The values of f approach differentnumbers as x approaches c fromdifferent sides of c:

    x1

    1

    34

    2

    1

    34

    2 134 2 3 4

    y

    47.

    x2 3 4 5

    2

    3

    7

    1123

    1

    1

    (0, 2.7183)

    y

    limx0

    1 x1x e 2.71828

    f x 1 x1x x2.8679722.7319992.7196422.7184182.7182952.7182830.000001

    0.000010.00010.0010.010.1

    f x x0.1 2.5937420.01 2.7048140.001 2.7169420.0001 2.7181460.00001 2.7182680.000001 2.718280

    f x

    (ii) The values of f increase with-out bound as x approaches c:

    3 2 1

    21

    1234

    56

    2 3 4 5x

    y

    (iii) The values of f oscillatebetween two fixed numbers asx approaches c:

    x

    34

    34

    4 3 2 2 3 4

    y

    30 Chapter 1 Limits and Their Properties

  • Section 1.3 Evaluating Limits Analytically

    49. False; isundefined when From Exercise 7, we have

    limx0

    sin xx

    1.

    x 0.f x sin xx 51. False; let

    limx4

    f x limx4

    x2 4x 0 10

    f 4 10

    f x x2 4x,10, x 4x 4.53. Answers will vary.

    55. If and then for every there exists and such that and

    Let equal the smaller of and Then for we have

    Therefore, Since is arbitrary, it follows that L1 L2. > 0L1 L2 < 2.L1 L2 L1 f x f x L2 L1 f x f x L2 < .

    x c < ,2.1x c < 2 f x L2 < . f x L1 < x c < 1 2 > 01 > 0 > 0,L2,lim

    xc f x L1lim

    xc f x

    57. means that for every there exists such that if

    then

    This means the same as when

    Thus, limxc

    f x L.0 < x c < .

    f x L < f x L 0 < .

    0 < x c < , > 0 > 0lim

    xc f x L 0

    1. (a)

    (b)

    hx x2 5x

    limx1

    hx 6

    limx5

    hx 0

    13

    7

    8

    7 3. (a)(b)

    f x x cos x

    6

    lim

    x3 f x 0.524

    limx0

    f x 0

    4

    4

    5. limx2

    x4 24 16 7. limx0

    2x 1 20 1 1

    9. limx3

    x2 3x 32 33 9 9 0

    11. limx3

    2x2 4x 1 232 43 1 18 12 1 7

    13. limx2

    1x

    12 15. limx1

    x 3x2 4

    1 312 4

    25

    25

    17. limx7

    5xx 2

    57

    7 2

    359

    353

    19. limx3

    x 1 3 1 2

    Section 1.3 Evaluating Limits Analytically 31

  • 21. limx4

    x 32 4 32 1 23. (a)(b)(c) lim

    x1 g f x g f 1 g4 64

    limx4

    gx 43 64

    limx1

    f x 5 1 4

    25. (a)(b)(c) lim

    x1 g f x g3 2

    limx3

    gx 3 1 2

    limx1

    f x 4 1 3 27. limx2

    sin x sin 2 1

    29. limx2

    cos x

    3 cos 23

    12

    31. limx0

    sec 2x sec 0 1

    33. limx56

    sin x sin 56 12 35. limx3 tan

    x

    4 tan 34 1

    37. (a)

    (b)

    (c)

    (d) limxc

    f xgx

    limxc

    f xlimxc

    gx 23

    limxc

    f xgx limxc f xlimxc gx 23 6

    limxc

    f x gx limxc

    f x limxc

    gx 2 3 5

    limxc

    5gx 5 limxc

    gx 53 15 39. (a)

    (b)

    (c)

    (d) limxc

    f x32 limxc

    f x32 432 8

    limxc

    3 f x 3 limxc

    f x 34 12

    limxc

    f x limxc f x 4 2

    limxc

    f x3 limxc

    f x3 43 64

    41. and agree except at

    (a)

    (b) limx1

    gx limx1

    f x 3

    limx0

    gx limx0

    f x 1x 0.

    gx 2x2 x

    xf x 2x 1 43. and agree except at

    (a)

    (b) limx1

    gx limx1

    f x 0

    limx1

    gx limx1

    f x 2

    x 1.gx x3 x

    x 1f x xx 1

    45. and agree except at

    3

    4

    3

    4

    limx1

    f x limx1

    gx 2

    x 1.gx x 1f x x2 1

    x 1 47. and agree except at

    90

    9

    12

    limx2

    f x limx2

    gx 12

    x 2.

    gx x2 2x 4f x x3 8

    x 2

    49.

    limx5

    1x 5

    110

    limx5

    x 5x2 25 limx5

    x 5x 5x 5 51.

    limx3

    x 2x 3

    56

    56

    limx3

    x2 x 6x2 9 limx3

    x 3x 2x 3x 3

    32 Chapter 1 Limits and Their Properties

  • 53.

    lim x0

    x 5 5xx 5 5 limx0

    1x 5 5

    1

    25

    510

    limx0

    x 5 5x

    limx0

    x 5 5x

    x 5 5x 5 5

    55.

    limx4

    x 5 9x 4x 5 3 limx4

    1x 5 3

    1

    9 3

    16

    limx4

    x 5 3x 4 limx4

    x 5 3x 4

    x 5 3x 5 3

    57. limx0

    12 x

    12

    x lim

    x0

    2 2 x22 x

    x lim

    x0

    122 x

    14

    59. lim

    x0

    2x x 2x

    x

    lim

    x0

    2x 2x 2x

    x lim

    x0 2 2

    61.

    lim

    x0

    2x x 2 2x 2

    lim

    x0

    x x2 2x x 1 x2 2x 1

    x

    lim

    x0

    x2 2xx x2 2x 2x 1 x2 2x 1

    x

    63.

    Analytically,

    limx0

    x 2 2xx 2 2 limx0

    1x 2 2

    1

    22

    24 0.354

    limx0

    x 2 2x

    limx0

    x 2 2x

    x 2 2x 2 2

    2

    3 3

    2

    limx0

    x 2 2x

    0.354

    x 0.1 0.01 0.001 0 0.001 0.01 0.1

    0.358 0.354 0.345 ? 0.354 0.353 0.349f x

    65.

    Analytically, .limx0

    12 x

    12

    x lim

    x0

    2 2 x22 x

    1x

    limx0

    x

    22 x 1x

    limx0

    122 x

    14

    5 1

    2

    3

    limx0

    12 x

    12

    x

    14

    x 0.1 0.01 0.001 0 0.001 0.01 0.1

    0.263 0.251 0.250 ? 0.250 0.249 0.238f x

    Section 1.3 Evaluating Limits Analytically 33

  • 67. 115 15limx0

    sin x5x limx0

    sin xx

    15 69.

    1210 0

    limx0

    sin x1 cos x2x2 limx0

    12

    sin xx

    1 cos x

    x

    71. 1 sin 0 0limx0

    sin2 xx

    limx0

    sin xx sin x 73. 00 0

    limh0

    1 cos h2h limh0

    1 cos hh 1 cos h

    75. limx2

    cos x

    cot x lim

    x2 sin x 1 77. lim

    t0

    sin 3t2t limt0

    sin 3t3t

    32 1

    32

    32

    79.

    Analytically, .limt0

    sin 3tt

    limt0

    3sin 3t3t 31 3

    1

    4

    22

    f t sin 3tt

    t 0.1 0.01 0.001 0 0.001 0.01 0.1

    2.96 2.9996 3 ? 3 2.9996 2.96f t

    The limit appear to equal 3.

    81.

    Analytically, .limx0

    sin x2x

    limx0

    xsin x2

    x2 01 0

    2 2

    1

    1

    f x sin x2

    x

    x 0 0.001 0.01 0.1

    ? 0.001 0.01 0.0999980.0010.010.099998f x0.0010.010.1

    83. limh0

    2hh 2 limh0

    2x 2h 3 2x 3hlimh0

    f x h f xh limh0

    2x h 3 2x 3h

    85. limh0

    4x hx

    4x2

    limh0

    4x 4x hx hxhlimh0

    f x h f xh limh0

    4x h

    4x

    h

    87.

    Therefore, limx0

    f x 4. 4 lim

    x0 f x 4

    limx0

    4 x2 limx0

    f x limx0

    4 x2 89.

    limx0

    x cos x 0

    4

    4

    32

    32

    f x x cos x

    34 Chapter 1 Limits and Their Properties

  • 91.

    limx0

    x sin x 0

    2 2

    6

    6

    f x x sin x 93.

    limx0

    x sin 1x 0

    0.5

    0.5

    0.5

    0.5

    f x x sin 1x

    95. We say that two functions f and g agree at all but onepoint (on an open interval) if for all x in theinterval except for where c is in the interval.x c,

    f x gx97. An indeterminant form is obtained when evaluating a limit

    using direct substitution produces a meaningless fractionalexpression such as That is,

    for which limxc

    f x limxc

    gx 0

    limxc

    f xgx

    00.

    99.

    3

    3

    5 5

    fg h

    hx sin xx

    gx sin x,f x x,

    When you are close to 0 the magnitude of f isapproximately equal to the magnitude of g.Thus, when x is close to 0.g f 1

    101.

    Speed 160 ftsec

    limt5

    s5 st5 t limt5

    600 16t2 10005 t limt5

    16t 5t 5t 5 limt5 16t 5 160 ftsec.

    st 16t2 1000

    103.

    limx3

    4.93 t3 t3 t limx3 4.93 t 29.4 msec

    limt3

    s3 st3 t limt3

    4.932 150 4.9t2 1503 t limt3

    4.99 t23 t

    st 4.9t2 150

    105. Let and and do not exist.

    limx0

    f x gx limx0

    1x 1x limx0 0 0

    limx0

    gxlimx0

    f xgx 1x.f x 1x

    107. Given show that for every there exists a such that whenever . Sincefor any then any value of will work. > 0 > 0, f x b b b 0 <

    x c < f x b < > 0 > 0f x b,

    109. If then the property is true because both sides are equal to 0. If let be given. Since

    there exists such that whenever . Hence, wherever

    we have

    or

    which implies that limxc

    bf x bL.bf x bL < b f x L <

    0 < x c < ,0 < x c < f x L < b > 0limxc

    f x L, > 0b 0,b 0,

    Section 1.3 Evaluating Limits Analytically 35

  • 111.

    Therefore, limx c

    f xgx 0. 0 lim

    xc f xgx 0

    M0 limxc

    f xgx M0limxc

    M f x limxc

    f xgx limxc

    M f x M f x f xgx M f x 113. False. As x approaches 0 from the left,

    3

    2

    3

    2

    xx

    1.

    115. True. 117. False. The limit does not exist.

    6

    2

    3

    4

    119. Let

    does not exist since for and for f x 4.x 0,f x 4x < 0,limx0

    f x

    limx0

    f x limx0

    4 4.

    f x 4,4, if x 0if x < 0

    121.

    does not exist.

    No matter how close to 0 x is, there are still an infinite number of rational and irrational numbers so that does notexist.

    When x is close to 0, both parts of the function are close to 0.

    limx0

    gx 0.

    f xlimx0

    limx0

    f x

    g x 0,x, if x is rational if x is irrational

    f x 0,1, if x is rational if x is irrational

    123. (a)

    112 12

    limx0

    sin2 xx2

    1

    1 cos x

    limx0

    1 cos2 xx21 cos x

    limx0

    1 cos xx2

    limx0

    1 cos xx2

    1 cos x1 cos x (b) Thus,

    for

    (c)

    (d) which agrees with part (c).cos0.1 0.9950,

    cos0.1 1 120.12 0.995

    x 0. cos x 1 12x2

    1 cos xx2

    12 1 cos x

    12x

    2

    36 Chapter 1 Limits and Their Properties

  • Section 1.4 Continuity and One-Sided Limits

    1. (a)

    (b)

    (c)

    The function is continuous atx 3.

    limx3

    f x 1

    limx3

    f x 1

    limx3

    f x 1 3. (a)

    (b)

    (c)

    The function is NOT continuous atx 3.

    limx3

    f x 0

    limx3

    f x 0

    limx3

    f x 0 5. (a)(b)(c) does not existThe function is NOT continuousat x 4.

    limx4

    f xlim

    x4 f x 2

    limx4

    f x 2

    7. limx5

    x 5x2 25 limx5

    1x 5

    110 9. does not exist because grows

    without bound as x3.

    x

    x2 9lim

    x3

    x

    x2 9

    11. limx0

    xx

    limx0

    x

    x 1.

    13.

    1x2

    1

    xx 0

    limx0

    1xx x

    limx0

    1x x

    1x

    x lim

    x0

    x x xxx x

    1x

    limx0

    x

    xx x 1

    x

    15. limx3

    f x limx3

    x 22

    52 17.

    limx1

    f x 2

    limx1

    f x limx1

    x3 1 2

    limx1

    f x limx1

    x 1 2

    19. does not exist since

    and do not exist.limx

    cot xlimx

    cot x

    limx

    cot x 21.x 3 for 3 < x < 4lim

    x4 3x 5 33 5 4

    23. does not exist

    because

    and

    limx3

    2 x 2 4 6.

    limx3

    2 x 2 3 5

    limx3

    2 x 25.

    has discontinuities at andsince and are not

    defined.f 2f 2x 2

    x 2

    f x 1x2 4 27.

    has discontinuities at each integerk since lim

    xk f x lim

    xk f x.

    f x x2 x

    29. is continuouson 5, 5.gx 25 x2 31.

    f is continuous on 1, 4.lim

    x0 f x 3 lim

    x0 f x. 33. is continuous

    for all real x.f x x2 2x 1

    Section 1.4 Continuity and One-Sided Limits 37

  • 35. is continuous for all real x.f x 3x cos x 37. is not continuous at Since

    for is a removable

    discontinuity, whereas is a nonremovablediscontinuity.

    x 1

    x 0, x 0xx2 x

    1

    x 1

    x 0, 1.f x xx2 x

    39. is continuous for all real x.f x xx2 1 41.

    has a nonremovable discontinuity at since does not exist, and has a removable discontinuity at

    since

    limx2

    f x limx2

    1x 5

    17.

    x 2

    limx5

    f xx 5

    f x x 2x 2x 5

    43. has a nonremovable discontinuity at since does not exist.limx2

    f xx 2f x x 2x 2

    45.

    has a possible discontinuity at .

    1.

    2.

    3.

    f is continuous at therefore, f is continuous for all real x.x 1,

    f 1 limx1

    f x

    limx1

    f x 1limx1 f x limx1 x 1lim

    x1f x lim

    x1x2 1

    f 1 1x 1

    f x x,x2, x 1x > 1

    49. has possible discontinuities at

    1.

    2.

    3.

    f is continuous at therefore, is continuous for all real x.fx 1,

    f 1 limx1

    f xf 1 limx1

    f x

    limx1

    f x 1limx1

    f x 1f 1 1f 1 1

    x 1.x 1, tan x4

    ,

    x,

    1 < x < 1x 1 or x 1f x tan

    x4 ,

    x,

    x < 1x 1

    47. has a possible discontinuity at

    1.

    2.

    Therefore, f has a nonremovable discontinuity at x 2.

    limx2

    f x limx2

    3 x 1

    limx2

    f x limx2

    x2 1 2f 2 22 1 2

    x 2.f x x

    2 1,3 x,

    x 2

    x > 2

    does not exist.limx2 f x

    38 Chapter 1 Limits and Their Properties

  • 51. has nonremovable discontinuities at integermultiples of 2.f x csc 2x 53. has nonremovable discontinuities at each

    integer k.f x x 1

    55.

    f is not continuous at x 2.

    limx0

    f x 08 8

    10

    50limx0

    f x 0 57.

    Find a so that a 822 2.limx2 ax2 8

    f 2 8

    59. Find a and b such that and

    b 2 1 1

    a 1

    4a 4

    3a b 2

    a b 2

    limx3

    ax b 3a b 2.limx1

    ax b a b 2

    f x 2,x 1,2,

    x 11 < x < 3x 3

    61.

    Continuous for all real x.

    f gx x 12 63.

    Nonremovable discontinuities at x 1

    f gx 1x2 5 6 1

    x2 1

    65.

    Nonremovable discontinuity at each integer

    3 3

    0.5

    1.5

    y x x 67.

    Nonremovable discontinuity at

    5

    5

    5

    7

    x 3

    f x 2x 4,x2 2x, x 3x > 3

    69.

    Continuous on ,

    f x xx2 1 71.

    Continuous on:. . . , 6, 2, 2, 2, 2, 6, 6, 10, . . .

    f x sec x4

    73.

    The graph appears to be continuous on the intervalSince is not defined, we know that f has

    a discontinuity at This discontinuity is removableso it does not show up on the graph.

    x 0.f 04, 4.

    4 4

    2

    3

    f x sin xx

    75. is continuous on

    and By the Intermediate ValueTheorem, for at least one value of c between1 and 2.

    f c 0f 2 4.f 1 3316

    1, 2.f x 116x4 x3 3

    Section 1.4 Continuity and One-Sided Limits 39

  • 77. is continuous on

    and By the IntermediateValue Theorem, for the least one value of cbetween 0 and .

    f c 0f 2 1 > 0.f 0 3

    0, .f x x2 2 cos x 79.is continuous on

    and

    By the Intermediate Value Theorem, for at leastone value of c between 0 and 1. Using a graphing utility,we find that x 0.6823.

    f x 0f 1 1f 0 1

    0, 1.f xf x x3 x 1

    81.

    is continuous on

    and

    By the Intermediate Value Theorem, for at leastone value c between 0 and 1. Using a graphing utility, wefind that t 0.5636.

    gt 0

    g1 1.9 < 0.g0 2 > 0

    0, 1.g

    gt 2 cos t 3t 83.

    f is continuous on and

    The Intermediate Value Theorem applies.

    ( is not in the interval.)Thus, f 3 11.

    x 4c 3

    x 4 or x 3

    x 4x 3 0

    x2 x 12 0

    x2 x 1 11

    1 < 11 < 29

    f 5 29f 0 10, 5.

    f x x2 x 1

    85.

    f is continuous on and

    The Intermediate Value Theorem applies.

    ( has no real solution.)

    Thus, f 2 4. c 2

    x2 x 3

    x 2

    x 2x2 x 3 0

    x3 x2 x 6 0

    x3 x2 x 2 4

    2 < 4 < 19

    f 3 19f 0 20, 3.

    f x x3 x2 x 2 87. (a) The limit does not exist at (b) The function is not defined at (c) The limit exists at but it is not equal to the

    value of the function at

    (d) The limit does not exist at x c.

    x c.x c,

    x c.

    x c.

    89.

    The function is not continuous at because.f x 1 0 lim

    x3 f xlim

    x3

    x 3

    x

    12 1 3 4 5 6 7

    23

    12345

    y 91. The functions agree for integer values of x:

    However, for non-integer values of x, the functionsdiffer by 1.

    For example, f 12 3 0 3, g12 3 1 4.f x 3 x gx 1 2 x.

    gx 3 x 3 x 3 xf x 3 x 3 x for x an integer

    40 Chapter 1 Limits and Their Properties

  • t2 4 6 8 10 12

    10

    20

    30

    40

    50

    N

    Time (in months)

    Num

    ber o

    f uni

    ts

    93.

    Discontinuous at every positive even integer.The company replenishes its inventory every two months.

    Nt 252t 22 t

    95. Let be the volume of a sphere of radius r.

    Since 4.19 < 275 < 523.6, the Intermediate Value Theorem implies that there is at least one value r between 1 and 5 suchthat (In fact, .)r 4.0341Vr 275.

    V5 43 53 523.6

    V1 43 4.19

    V 43 r3

    97. Let c be any real number. Then does not exist since there are both rational and

    irrational numbers arbitrarily close to c. Therefore, f is not continuous at c.limxc

    f x

    99.

    (a)

    (b)

    (c) does not exist.limx0

    sgnx

    limx0

    sgnx 1

    limx0

    sgnx 1

    sgnx 1,0,1,if x < 0if x 0if x > 0

    x1

    2

    34

    2

    1

    34

    2 134 2 3 4

    y

    t 0 1 1.8 2 3 3.8

    50 25 5 50 25 5Nt

    101. True; if then andat least one of these limits (if they exist) does not equalthe corresponding function at x c.

    limxc

    f x limxc

    gxx c,f x gx, 103. False; is not defined and does not exist.limx1

    f xf 1

    105. (a)

    NOT continuous at x b.

    x2b

    2b

    b

    b

    y

    0 b 0 x < bb < x 2bf x (b)

    Continuous on 0, 2b.

    x2b

    2b

    b

    b

    y

    x

    2

    b x 2

    0 x b

    b < x 2bgx

    Section 1.4 Continuity and One-Sided Limits 41

  • Section 1.5 Infinite Limits

    107.

    Domain: and

    Define to make f continuous at x 0.f 0 12c

    limx0

    x c2 c2

    xx c2 c limx0 1

    x c2 c

    12c

    limx0

    x c2 cx

    limx0

    x c2 cx

    x c2 c

    x c2 c

    c2, 0 0, x 0,x c2 0 x c2

    f x x c2 c

    x, c > 0

    109.

    h has nonremovable discontinuities at x 1, 2, 3, . . . .

    3

    3

    3

    15hx xx

    1.

    limx2

    2 xx2 4 lim

    x2 2 xx2 4 3.

    limx2

    tan x

    4

    limx2

    tan x

    4

    5.

    limx3

    f x

    limx3

    f x

    f x 1x2 9

    x

    0.308 1.639 16.64 0.3641.69516.69166.7166.6f x2.52.92.992.9993.0013.013.13.5

    7.

    limx3

    f x

    limx3

    f x

    f x x2

    x2 9

    x

    3.769 15.75 150.8 2.27314.25149.314991501f x2.52.92.992.9993.0013.013.13.5

    42 Chapter 1 Limits and Their Properties

  • 9.

    Therefore, is a vertical asymptote.x 0

    limx0

    1x2

    limx0

    1x2

    11.

    Therefore, is a vertical asymptote.

    Therefore, is a vertical asymptote.x 1

    limx1

    x2 2x 2x 1

    limx1

    x2 2x 2x 1

    x 2

    limx2

    x2 2x 2x 1

    limx2

    x2 2x 2x 1

    13. and

    Therefore, is a vertical asymptote.

    and

    Therefore, is a vertical asymptote.x 2

    limx2

    x2

    x2 4 limx2 x2

    x2 4

    x 2

    limx2

    x2

    x2 4 limx2 x2

    x2 4 15. No vertical asymptote since the denominator is never zero.

    17. has vertical asymptotes at

    n any integer.x 2n 14

    4 n

    2 ,

    f x tan 2x sin 2xcos 2x 19.

    Therefore, is a vertical asymptote.t 0

    limt0

    1 4t 2 limt0 1 4t 2

    21.

    Therefore, is a vertical asymptote.

    Therefore, is a vertical asymptote.x 1

    limx1

    x

    x 2x 1

    limx1

    x

    x 2x 1

    x 2

    limx2

    x

    x 2x 1

    limx2

    x

    x 2x 1 23.

    has no vertical asymptote since

    limx1

    f x limx1

    x2 x 1 3

    f x x3 1

    x 1 x 1x2 x 1

    x 1

    25.

    No vertical asymptotes. The graph has a hole at x 5.

    f x x 5x 3x 5x2 1 x 3x2 1, x 5 27. has vertical asymptotes at n

    a nonzero integer. There is no vertical asymptote at since

    limt0

    tsin t 1.

    t 0

    t n,st tsin t

    Section 1.5 Infinite Limits 43

  • 29.

    Removable discontinuity at x 1

    3 3

    5

    2

    limx1

    x2 1x 1 limx1 x 1 2 31.

    Vertical asymptote atx 1

    limx1

    x2 1x 1

    3 3

    8

    8limx1

    x2 1x 1

    33. limx2

    x 3x 2 35. limx3

    x2

    x 3x 3

    37. limx3

    x2 2x 3x2 x 6 limx3

    x 1x 2

    45 39. limx1

    x2 x

    x2 1x 1 limx1 x

    x2 1 12

    41. limx0

    1 1x 43. limx0 2

    sin x

    45. limx

    xcsc x

    limx

    x sin x 0 47. and Therefore, does not exist.lim

    x12 x secx

    limx12

    x secx .limx12

    x secx

    49.

    5

    3

    4

    3

    limx1

    f x limx1

    1x 1

    f x x2 x 1x3 1 51.

    8 8

    0.3

    0.3

    limx5

    f x

    f x 1x2 25

    53. A limit in which increases or decreases withoutbound as x approaches c is called an infinite limit. isnot a number. Rather, the symbol

    says how the limit fails to exist.

    limxc

    f x

    f x 55. One answer is f x x 3x 6x 2

    x 3x2 4x 12.

    57. y

    x1 3 1 2

    1

    2

    2

    1

    3

    59. Assume

    (or if )k < 0limr1

    S limr1

    k1 r

    k 0.0 < r < 1.S k1 r,

    44 Chapter 1 Limits and Their Properties

  • (d)

    For n 3, limx0

    x sin xxn

    .

    limx0

    x sin xx4

    1.5

    1.5

    1.5

    1.5

    61.

    (a) million(b) million(c) million

    (d) Thus, it is not possible.limx100

    528100 x

    C75 $1584C50 $528C25 $176

    0 x < 100C 528x100 x, 63. (a)

    (b)

    (c) limx25

    2x625 x2

    r 215

    625 225

    32 ftsec

    r 27

    625 49

    712 ftsec

    x 1

    1667.0166.716.671.66580.83170.32920.1585f x0.00010.0010.010.10.20.5

    65. (a)

    limx0

    x sin xx

    0

    1.5

    0.25

    1.5

    0.5

    x 1

    0000.00170.00670.04110.1585f x0.00010.0010.010.10.20.5

    (b)

    limx0

    x sin xx2

    01.5

    0.25

    1.5

    0.25

    x 1

    000.00170.01670.03330.08230.1585f x0.00010.0010.010.10.20.5

    (c)

    limx0

    x sin xx3

    0.1167 161.5

    0.25

    1.5

    0.25

    x 1

    0.16670.16670.16670.16660.16630.16460.1585f x0.00010.0010.010.10.20.5

    Section 1.5 Infinite Limits 45

  • 67. (a) Because the circumference of the motor is half that of the saw arbor, the saw makes

    revolutions per minute.

    (c) straight sections.The angle subtended in each circle is

    Thus, the length of the belt around the pulleys is

    Total length

    Domain: 0, 2 60 cot 30 2

    20 2 10 2 30 2.

    2 22 2.

    220 cot 210 cot :

    17002 850

    (b) The direction of rotation is reversed.(d)

    (e)

    (f)

    (All the belts are around pulleys.)(g) lim

    0 L

    lim2

    L 60 188.5

    00

    450

    2

    0.3 0.6 0.9 1.2 1.5

    L 306.2 217.9 195.9 189.6 188.5

    69. False; for instance, let

    or

    .gx xx2 1

    f x x2 1

    x 1

    71. False; let

    The graph of f has a vertical asymptote at butf 0 3.

    x 0,

    f x 1x

    ,

    3,x 0x 0.

    73. Given and

    (2) Product:If L > 0, then for there exists such that whenever Thus,

    Since then for M > 0, there exists such that wheneverLet be the smaller of and Then for we have

    Therefore The proof is similar for L < 0.

    (3) Quotient: Let be given.There exists such that whenever and there exists such that

    whenever This inequality gives us Let be the smaller of and Thenfor we have

    Therefore, limxc

    gxf x 0.

    gxf x < 3L23L2 .0 < x c < ,

    2.1L2 < gx < 3L2.0 < x c < 2.L2

    gx L 00 < x c < 1f x > 3L21 > 0

    > 0

    limxc

    f xgx .f xgx > M2LL2 M.0 < x c < ,2.1x c < 2.

    f x > M2L2 > 0limxc

    f x L2 < gx < 3L2.0 < x c < 1.gx L < L21 > 0 L2 > 0

    limxc

    gx L:limxc

    f x

    75. Given

    Suppose exists and equals L. Then,

    This is not possible. Thus, does not exist.limxc

    f x

    limxc

    1f x

    limxc

    1

    limxc

    f x 1L 0.

    limxc

    f x

    limxc

    1f x 0.

    46 Chapter 1 Limits and Their Properties

  • Review Exercises for Chapter 1

    1. Calculus required. Using a graphing utility, you can estimate the length to be 8.3.Or, the length is slightly longer than the distance between the two points, 8.25.

    3.

    limx0

    f x 0.25

    1 1

    1

    1x 0.001 0.01 0.1

    0.240.2490.24990.2500.250.26f x0.0010.010.1

    5. (a)

    (b) limx1

    hx 3

    limx0

    hx 2hx x2 2x

    x7.

    Let be given. Choose Then for

    you have

    f x L < 3 x 2 <

    1 x < x 1 <

    0 < x 1 < , . > 0

    limx1

    3 x 3 1 2

    9.

    Let be given. We need

    Assuming, you can choose Hence, for you have

    f x L < x2 3 1 <

    x2 4 < x 2x 2 <

    x 2 < 5 0limx2

    x2 3 1

    11. limt4

    t 2 4 2 6 2.45 13. limt2

    t 2t2 4 limt2

    1t 2

    14

    15.

    limx4

    1x 2

    1

    4 2

    14

    limx4

    x 2x 4

    limx4

    x 2x 2x 2 17.

    limx0

    1x 1 1

    limx0

    1x 1 1x

    limx0

    1 x 1xx 1

    19.

    75

    limx5

    x2 5x 25

    limx5

    x3 125x 5 limx5

    x 5x2 5x 25x 5 21. limx0

    1 cos xsin x limx0

    x

    sin x

    1 cos x

    x 10 0

    Review Exercises for Chapter 1 47

  • 23.

    0 32 1

    32

    limx0

    12

    cos x 1x

    limx0

    32

    sin xx

    limx0

    sin6 x 12x

    limx0

    sin6 cos x cos6 sin x 12x

    25. limxc

    f x gx 3423 12

    27.

    (a)

    Actual limit is

    (c)

    2

    23

    13

    33

    limx1

    22x 1 3

    limx1

    2x 1 3x 12x 1 3

    limx1

    2x 1 3x 1 limx1

    2x 1 3x 1

    2x 1 32x 1 3

    33.limx1

    2x 1 3x 1 0.577

    f x 2x 1 3x 1

    (b)

    20

    1

    2x 1.1 1.01 1.001 1.0001

    0.5680 0.5764 0.5773 0.5773f x

    29.

    limt4

    4.9t 4 39.2 msec

    limt4

    4.9t 4t 44 t

    limta

    sa sta t

    limt4

    4.942 200 4.9t2 2004 t 31. limx3

    x 3x 3 limx3

    x 3x 3 1

    33. limx2

    f x 0 35. does not exist because andlim

    t1 ht 121 1 1.

    limt1

    ht 1 1 2limt1

    ht

    37.where k is an integer.

    where k is an integer.

    Nonremovable discontinuity at each integer kContinuous on for all integers kk, k 1

    limxk

    x 3 k 2

    limxk

    x 3 k 3f x x 3 39.

    Removable discontinuity at Continuous on , 1 1,

    x 1

    limx1

    f x limx1

    3x 2 5

    f x 3x2 x 2x 1

    3x 2x 1x 1

    41.

    Nonremovable discontinuity at Continuous on , 2 2,

    x 2

    limx2

    1x 22

    f x 1x 22 43.

    Nonremovable discontinuity at Continuous on , 1 1,

    x 1

    limx1

    f x

    lim

    x1 f x

    f x 3x 1

    48 Chapter 1 Limits and Their Properties

  • 69.

    (a) $14,117.65 (b) $80.000

    (c) $720,000 (d) limp100

    80,000p100 p C90

    C50 C15

    C 80,000p100 p, 0 0 < 100

    45.

    Nonremovable discontinuities at each even integer.Continuous on

    for all integers k.

    2k, 2k 2

    f x csc x2 47.Find c so that

    c 12

    2c 1

    c2 6 5

    limx2

    cx 6 5.

    f 2 5

    49. f is continuous on andTherefore by the Intermediate Value

    Theorem, there is at least one value c in suchthat 2c3 3 0.

    1, 2f 2 13 > 0.

    f 1 1 < 01, 2.

    53.

    Vertical asymptote at x 0

    gx 1 2x

    55.

    Vertical asymptote at x 10

    f x 8x 102

    57. limx2

    2x2 x 1x 2

    59. limx1

    x 1x3 1 limx1

    1x2 x 1

    13

    61. limx1

    x2 2x 1x 1 63. limx0 x

    1x3

    65. limx0

    sin 4x5x limx0

    45

    sin 4x4x

    45 67. limx0

    csc 2xx

    limx 0

    1x sin 2x

    51.

    (a)

    (b)

    (c) does not exist.limx2

    f x

    limx2

    f x 4

    limx2

    f x 4

    f x x2 4

    x 2 x 2x 2

    x 2

    Problem Solving for Chapter 1

    1. (a)

    (c) limx0

    rx 1 0 11 0 1 22 1

    x 12 x4 x2 x4 1

    Perimeter PBO x 12 y2 x2 y2 1

    x2 x2 12 x2 x4 1

    Perimeter PAO x2 y 12 x2 y2 1

    x 4 2 1 0.1 0.01

    Perimeter 33.02 9.08 3.41 2.10 2.01

    Perimeter 33.77 9.60 3.41 2.00 2.00

    0.98 0.95 1 1.05 1.005rx

    PBO

    PAO

    (b) rx x2 x2 12 x2 x4 1

    x 12 x4 x2 x4 1

    Problem Solving for Chapter 1 49

  • 5. (a)

    (b) Slope of tangent line is

    Tangent line

    (c)

    (d)

    This is the same slope as part (b).

    10

    12 12 5

    12

    limx5

    x 512 169 x2

    limx5

    x2 25x 512 169 x2

    limx5

    144 169 x2x 512 169 x2

    limx5

    mx limx5

    12 169 x2x 5

    12 169 x212 169 x2

    mx 169 x2 12

    x 5

    Q x, y x, 169 x2

    y 5

    12x 16912

    y 12 512x 5

    512.

    Slope 1253. (a) There are 6 triangles, each with a central angle of

    Hence,

    Error:

    (b) There are n triangles, each with central angle ofHence,

    (c)

    (d) As n gets larger and larger, approaches 0.Letting

    which approaches 1 .

    An sin2n2n sin2n

    2n sin x

    x

    x 2n,

    2n

    An n12bh n121 sin

    2n

    n sin 2n2 .

    2n.

    33

    2 0.5435.

    1

    h = sin

    60

    1

    h = sin 60

    33

    2 2.598.

    Area hexagon 612bh 6121 sin

    3

    60 3.

    n 6 12 24 48 96

    An 2.598 3 3.106 3.133 3.139

    (d)

    1

    1 1 12 2 1

    12

    limx1

    1x23 x13 13 x13 2

    limx1

    x13 1x13 1x23 x13 13 x13 2

    limx1

    3 x13 4x 13 x13 2

    limx1

    f x limx1

    3 x13 2x 1

    3 x13 23 x13 2

    7. (a)

    Domain: x 27, x 1

    x 27

    x13 3

    3 x13 0 (b)

    12

    0.1

    30

    0.5 (c)

    2

    28 1

    14 0.0714

    limx27

    f x 3 2713 2

    27 1

    9. (a)(b) f continuous at 2:(c) lim

    x2 f x 3: g1, g3, g4

    g1

    limx2

    f x 3: g1, g4

    50 Chapter 1 Limits and Their Properties

  • 11.

    (a)

    (b)

    (c) f is continuous for all real numbers exceptx 0, 1, 2, 3, . . .

    limx12

    f x 1 limx1

    f x 1 limx1

    f x 1 f 2.7 3 2 1

    f 12 0 1 1 f 0 0 f 1 1 1 1 1 0

    x1

    2

    34

    2

    1

    34

    2 134 2 3 4

    y 13. (a)

    (b) (i)(ii)(iii)(iv)

    (c) is continuous for all positive real numbersexcept

    (d) The area under the graph of u,and above the x-axis, is 1.

    x a, b.Pa, b

    limxb

    Pa, bx 1

    limxb

    Pa, bx 0

    limxa

    Pa, bx 0

    limxa

    Pa, bx 1

    xb

    2

    a

    1

    y

    Problem Solving for Chapter 1 51

  • C H A P T E R 2Differentiation

    Section 2.1 The Derivative and the Tangent Line Problem . . . 53

    Section 2.2 Basic Differentiation Rules and Rates of Change . 60

    Section 2.3 The Product and Quotient Rules andHigher-Order Derivatives . . . . . . . . . . . . . . 67

    Section 2.4 The Chain Rule . . . . . . . . . . . . . . . . . . . 73

    Section 2.5 Implicit Differentiation . . . . . . . . . . . . . . . 79

    Section 2.6 Related Rates . . . . . . . . . . . . . . . . . . . . 85

    Review Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 92

    Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . 98

  • 53

    C H A P T E R 2Differentiation

    Section 2.1 The Derivative and the Tangent Line ProblemSolutions to Odd-Numbered Exercises

    1. (a)(b) m 3

    m 0 3. (a), (b) (c)

    x 1

    1x 1 2

    33 x 1 2

    6

    5

    4

    3

    2

    654321

    1

    y

    x

    1)1f ) x

    )1 3f ))f )4

    11)f )

    1 )x))f 4

    4y

    4) , )5

    2)21) ,

    f ))1

    f ) )4 5

    )

    y f 4 f 1

    4 1 x 1 f 1)

    5. is a line. Slope 2f x 3 2x 7. Slope at

    limx0

    2 2x 2

    limx0

    1 2x x2 1x

    limx0

    1 x2 4 3x

    1, 3 limx0

    g1 x g1x

    9. Slope at

    limt0

    3 t 3

    limt0

    3t t2 0t

    0, 0 limt0

    f 0 t f 0t

    11.

    limx0

    0 0

    limx0

    3 3x

    f x limx0

    f x x f xx

    f x 3

    13.

    limx0

    5 5

    limx0

    5x x 5xx

    fx limx0

    f x x f xx

    f x 5x 15.

    lims0

    23s

    s

    23

    lims0

    3 23s s 3 23s

    s

    hs lims0

    hs s hss

    hs 3 23 s

  • 54 Chapter 2 Differentiation

    17.

    limx0

    4xx 2x2 xx

    limx0

    4x 2x 1 4x 1

    limx0

    2x2 4xx 2x2 x x 1 2x2 x 1x

    limx0

    2x x2 x x 1 2x2 x 1x

    fx limx0

    f x x f xx

    f x 2x2 x 1

    19.

    limx0

    3x2 3xx x2 12 3x2 12

    limx0

    3x2x 3xx2 x3 12xx

    limx0

    x3 3x2x 3xx2 x3 12x 12x x3 12xx

    limx0

    x x3 12x x x3 12xx

    fx limx0

    f x x f xx

    f x x3 12x

    21.

    1

    x 12

    limx0

    1x x 1x 1

    limx0

    x

    xx x 1x 1

    limx0

    x 1 x x 1xx x 1x 1

    limx0

    1x x 1

    1x 1

    x

    fx limx0

    f x x f xx

    f x 1x 1

    23.

    1

    x 1 x 1

    12x 1

    limx0

    1x x 1 x 1

    limx0

    x x 1 x 1xx x 1 x 1

    limx0

    x x 1 x 1x

    x x 1 x 1x x 1 x 1

    fx limx0

    f x x f xx

    f x x 1

  • 25. (a)

    At the slope of the tangent line isThe equation of the tangent line is

    y 4x 3.

    y 5 4x 8

    y 5 4x 2

    m 22 4.2, 5,

    limx0

    2x x 2x

    limx0

    2xx x2

    x

    limx0

    x x2 1 x2 1x

    fx limx0

    f x x f x

    x

    f x x2 1 17. (b)(2, 5)

    5 5

    2

    8

    27. (a)

    At the slope of the tangent is The equation of the tangent line is

    y 12x 16.

    y 8 12x 2

    m 322 12.2, 8,

    limx0

    3x2 3xx x2 3x2

    limx0

    3x2x 3xx2 x3x

    limx0

    x x3 x3

    x

    fx limx0

    f x x f xx

    f x x3 18. (b)

    5 5

    4

    (2, 8)10

    29. (a)

    At the slope of the tangent line is

    The equation of the tangent line is

    y 12 x

    12.

    y 1 12 x 1

    m 1

    21 12.

    1, 1,

    limx0

    1x x x

    1

    2x

    limx0

    x x xxx x x

    limx0

    x x xx

    x x xx x x

    fx limx0

    f x x f xx

    f x x 18. (b)

    5

    1

    1

    3

    (1, 1)

    Section 2.1 The Derivative and the Tangent Line Problem 55

  • 56 Chapter 2 Differentiation

    31. (a)

    At the slope of the tangent line is

    The equation of the tangent line is

    y 34x 2

    y 5 34x 4

    m 1 416 34

    4, 5,

    x2 4

    x2 1 4

    x2

    limx0

    x2 xx4xx x

    limx0

    x2x xx2 4xxxx x

    limx0

    x3 2x2x xx2 x3 x2x 4xxxx x

    limx0

    xx xx x 4x x2x x 4x xxxx x

    limx0

    x x 4x x

    x 4xx

    fx limx0

    f x x f xx

    f x 4x

    (b)

    12

    6

    12

    10

    (4, 5)

    33. From Exercise 27 we know that Since theslope of the given line is 3, we have

    Therefore, at the points and the tangentlines are parallel to These lines haveequations

    and

    y 3x 2. y 3x 2

    y 1 3x 1y 1 3x 1

    3x y 1 0.1, 11, 1

    x 1.

    3x2 3

    fx 3x2. 35. Using the limit definition of derivative,

    Since the slope of the given line is , we have

    Therefore, at the point the tangent line is parallel toThe equation of this line is

    y 12x

    32.

    y 1 12x 12

    y 1 12x 1

    x 2y 6 0.1, 1

    x 1.

    1

    2xx 12

    12

    fx 12xx.

    37. because the tangent line passes through

    g5 2 05 9 2

    4 12

    5, 2g5 2 39. f x x fx 1 b

  • Section 2.1 The Derivative and the Tangent Line Problem 57

    41. matches (a) decreasing slope as x

    f x x fx 43.

    Answers will vary.

    Sample answer: y x

    x1

    1

    2

    34

    2

    1

    34

    2 134 2 3 4

    y

    45. (a) If and is odd, then (b) If and is even, then fc f c 3ffc 3

    fc fc 3ffc 3

    47. Let be a point of tangency on the graph of f. By the limit definition for the derivative, The slope of theline through and equals the derivative of f at

    Therefore, the points of tangency are and and the corresponding slopes are 2 and . The equations of the tangentlines are

    y 2x 1 y 2x 9

    y 5 2x 2 y 5 2x 2

    23, 3,1, 3

    0 x0 1x0 3 x0 1, 3

    0 x02 4x0 3

    5 4x0 x02 8 8x0 2x02 5 y0 2 x04 2x0

    5 y02 x0

    4 2x0

    x1 2 3 62

    2

    43

    5

    7

    6

    1

    (1, 3)(3, 3)

    (2, 5)

    yx0:x0, y02, 5fx 4 2x.x0, y0

    49. (a)(b)(c) Because g is decreasing (falling) at (d) Because g is increasing (rising) at (e) Because and are both positive, is greater than , and (f) No, it is not possible. All you can say is that g is decreasing (falling) at x 2.

    g6 g4 > 0.g4g6g6g4

    x 4.g4 73 ,

    x 1.g1 83 ,

    g3 0

    g0 3

    51.

    By the limit definition of the derivative we have fx 34 x2.2

    2

    2

    2

    f x 14 x3

    x 0 0.5 1 1.5 2

    0 2

    3 0 3271634

    316

    316

    34

    2716fx

    2732

    14

    132

    132

    14

    27322f x

    0.511.52

  • 58 Chapter 2 Differentiation

    53.

    The graph of is approximately the graph of fx.gx

    3

    1

    2 4

    g

    f

    2x 0.01 x 0.012 2x x2 100

    gx f x 0.01 f x0.0155.

    Exact: f2 0f2 3.99 42.1 2 0.1

    f 2.1 2.14 2.1 3.99f 2 24 2 4,

    57. and

    As is nearly horizontal and thus f 0.x, f5

    5

    2 5

    f

    f

    fx 12x32 .f x 1x

    59.

    (a)

    (b) As the line approaches the tangent line to at 2, 3.fx0,

    x 0.1: Sx 1910x 2 3 1910 x

    45

    x 0.5: Sx 32x 2 3 32 x

    5

    1

    2 7

    f

    S0.1

    S1

    S0.5

    x 1: Sx x 2 3 x 1

    4 2 x 32 3

    xx 2 3 1 x 1

    2

    xx 2 3 x 2x 2 3

    Sx x f 2 x f 2

    xx 2 f 2

    f x 4 x 32

    61.

    f2 limx2

    f x f 2x 2 limx2

    x2 1 3x 2 limx 2

    x 2x 2x 2 limx2 x 2 4

    f x x2 1, c 2

    63.

    f2 limx2

    f x f 2x 2 limx 2

    x2x 2x 2 limx2

    x3 2x2 1 1x 2 limx2 x

    2 4

    f x x3 2x2 1, c 2

    65.

    Does not exist.

    As

    As x 0, x

    x

    1x

    x 0, x

    x

    1x

    g0 limx0

    gx g0x 0 limx0

    xx

    .

    gx x, c 0 67.

    Does not exist.

    limx6

    1x 613

    limx6

    x 623 0x 6

    f6 limx6

    f x f 6x 6

    f x x 623, c 6

  • Section 2.1 The Derivative and the Tangent Line Problem 59

    69.

    Does not exist.

    limx5

    x 5x 5

    limx5

    x 5 0x 5

    h5 limx5

    hx h5x 5

    h x x 5, c 5

    73. is differentiable everywhere except at (Discontinuity)

    x 1.f x 75. is differentiable everywhere except at (Sharp turn in the graph)

    x 3.f x

    77. is differentiable on the interval (At the tangent line is vertical)x 1

    1, .f x 79. is differentiable everywhere except at (Discontinuity)

    x 0.f x

    81.

    The derivative from the left is

    The derivative from the right is

    The one-sided limits are not equal. Therefore, f is not differentiable at x 1.

    limx1

    f x f 1x 1 limx1

    x 1 0x 1 1.

    limx1

    f x f 1x 1 limx1

    x 1 0x 1 1.

    f x x 1 83.

    The derivative from the left is

    The derivative from the right is

    These one-sided limits are equal. Therefore, f is differentiable at x 1. f1 0

    limx1

    x 1 0.

    limx1

    f x f 1x 1 limx1

    x 12 0x 1

    limx1

    x 12 0.

    limx1

    f x f 1x 1 limx1

    x 13 0x 1

    f x x 13,x 12, x 1x > 1

    85. Note that f is continuous at

    The derivative from the left is

    The derivative from the right is

    The one-sided limits are equal. Therefore, f is differentiable at x 2. f2 4

    limx2

    f x f 2x 2 limx2

    4x 3 5x 2 limx2 4 4.

    limx2

    f x f 2x 2 limx2

    x2 1 5x 2 limx2 x 2 4.

    f x x2 1,4x 3, x 2x > 2x 2.

    71. is differentiable everywhere except at (Sharp turn in the graph.)

    x 3.f x

    87. (a) The distance from to the line is

    .

    (b)

    The function d is not differentiable at This corresponds to the linewhich passes through the point 3, 1.y x 4,

    m 1.

    5

    1

    4 4

    m3 11 4

    m2 1 3m 3m2 1

    d Ax1 By1 CA2 B2

    x

    2

    3

    1 2 3 4

    1

    ymx y 4 03, 1

  • 60 Chapter 2 Differentiation

    Section 2.2 Basic Differentiation Rules and Rates of Change

    89. False. the slope is limx0

    f 2 x f 2x

    .

    93.

    Using the Squeeze Theorem, we have Thus, and f is continuous atUsing the alternative form of the derivative we have

    Since this limit does not exist (it oscillates between and 1), the function is not differentiable at

    Using the Squeeze Theorem again we have Thus, and f is continu-ous at Using the alternative form of the derivative again we have

    Therefore, g is differentiable at x 0, g0 0.

    limx0

    f x f 0x 0 limx0

    x2 sin1x 0x 0 limx0 x sin

    1x

    0.

    x 0.limx0

    x2 sin1x 0 f 0x2 x2 sin1x x2, x 0.

    gx x2 sin1x,0, x 0x 0x 0.1

    limx0

    f x f 0x 0 limx0

    x sin1x 0x 0 limx0 sin

    1x.

    x 0.limx0

    x sin1x 0 f 0x x sin1x x, x 0.

    f x x sin1x,0, x 0x 0

    91. False. If the derivative from the left of a point does not equal the derivative from the right of a point, then the derivative doesnot exist at that point. For example, if then the derivative from the left at is and the derivative from theright at is At the derivative does not exist.x 0,1.x 0

    1x 0f x x,

    1. (a) (b)

    y1 32

    y 32 x12 y x32

    y1 12

    y 12 x12 y x12 (c) (d)

    y1 3

    y 3x2 y x3

    y1 2

    y 2x

    y x2

    3.

    y 0

    y 8 5.

    y 6x5y x6 7.

    y 7x8 7x8

    y 1x7

    x7 9.

    y 15x

    45 1

    5x45

    y 5x x15

    11.

    fx 1 f x x 1 13.

    fx 4t 3 f t 2t2 3t 6 15.

    gx 2x 12x2gx x2 4x3 17.

    st 3t2 2

    st t3 2t 4

    19.

    y

    2 cos sin

    y

    2 sin cos 21.

    y 2x 12 sin x

    y x2 12 cos x 23.

    y 1x2

    3 cos x

    y 1x

    3 sin x

  • 31.

    f1 6

    fx 6x3 6x3

    f x 3x2

    3x2, 1, 3 33.

    f0 0

    fx 215 x2

    f x 12 75x

    3, 0, 12 35.

    y0 4

    y 8x 4

    4x2 4x 1

    y 2x 12, 0, 1

    37.

    f0 41 1 3f 4 cos 1 f 4 sin , 0, 0 39.

    fx 2x 6x3 2x 6x3

    f x x2 5 3x2 41.

    gt 2t 12t4 2t 12t4

    gt t2 4t3

    t2 4t3

    43.

    fx 1 8x3

    x3 8

    x3

    f x x3 3x2 4

    x2 x 3 4x2 45.

    y 3x2 1

    y xx2 1 x3 x

    47.

    fx 12x12 2x23 1

    2x

    2x23

    f x x 6 3x x12 6x13 49.

    h(s 45s45

    23s

    13 4

    5s15 2

    3s13

    hs s45 s23

    51.

    fx 3x12 5 sin x 3x

    5 sin x

    f x 6x 5 cos x 6x12 5 cos x

    53. (a)

    At .

    Tangent line:

    (b) 3

    1

    2 2(1, 0)

    2x y 2 0

    y 0 2x 1

    y 413 61 21, 0:

    y 4x3 6x

    y x4 3x2 2

    Function Rewrite Derivative Simplify25. y 5

    x 3y 5x3y 52x

    2y 5

    2x2

    27. y 98x4y 98 x

    4y 38x

    3y 3

    2x3

    29. y 12x32y 12x

    32y x12y xx

    55. (a)

    At

    Tangent line:

    (b)

    7

    1

    2

    5

    (1, 2)

    3x 2y 7 0

    y 32x

    72

    y 2 32x 1

    f1 321, 2,

    fx 32 x74

    32x74

    f x 24x3 2x34

    Section 2.2 Basic Differentiation Rules and Rates of Change 61

  • 62 Chapter 2 Differentiation

    57.

    Horizontal tangents: , 2, 142, 140, 2,

    y 0 x 0, 2

    4xx 2x 2

    4xx2 4

    y 4x3 16x

    y x4 8x2 2 59.

    cannot equal zero.

    Therefore, there are no horizontal tangents.

    y 2x3 2x3

    y 1x2

    x2

    61.

    At .

    Horizontal tang