solitons from canal water waves to molecular lasers hieu d. nguyen rowan university ieee night...

39
SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

Post on 20-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

SOLITONSFrom Canal Water Waves to Molecular Lasers

Hieu D. NguyenRowan University

IEEE Night5-20-03

Page 2: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

from SIAM News, Volume 31, Number 2, 1998

Making Waves: Solitons and Their Practical Applications

"A Bright Idea“ Economist (11/27/99) Vol. 353, No. 8147, P. 84 Solitons, waves that move at a constant shape and speed, can be used for fiber-optic-based data transmissions…

Number 588, May 9, 2002 Bright Solitons in a Bose-Einstein Condensate

Solitons may be the wave of the future Scientists in two labs coax very cold atoms to move in trains 05/20/2002 The Dallas Morning News

From the Academy

Mathematical frontiers in optical solitonsProceedings NAS, November 6, 2001

Page 3: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

One entry found for soliton.

Main Entry: sol·i·ton   Pronunciation: 'sä-l&-"tänFunction: nounEtymology: solitary + 2-onDate: 1965: a solitary wave (as in a gaseous plasma) that propagates with little loss of energy and retains its shape and speed after colliding with another such wave

http://www.m-w.com/cgi-bin/dictionary

Definition of ‘Soliton’

Page 4: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

John Scott Russell (1808-1882)

Union Canal at Hermiston, Scotland

Solitary Waves

http://www.ma.hw.ac.uk/~chris/scott_russell.html

- Scottish engineer at Edinburgh- Committee on Waves: BAAC

Page 5: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

“I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of horses, when the boat suddenly stopped - not so the mass of water in the channel which it had put in motion; it accumulated round the prow of the vessel in a state of violent agitation, then suddenly leaving it behind,rolled forward with great velocity, assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which continued its course along the channel apparently without change of form or diminution of speed…”

- J. Scott Russell

Great Wave of Translation

Page 6: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03
Page 7: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

“…I followed it on horseback, and overtook it still rolling on at a rate of some eight or nine miles an hour, preserving its original figure some thirty feet long and a foot to a foot and a half in height. Its height gradually diminished, and after a chase of one or two miles I lost it in the windings of the channel. Such, in the month of August 1834, was my first chance interview with that singular and beautiful phenomenon which I have called the Wave of Translation.”

“Report on Waves” - Report of the fourteenth meeting of the British Associationfor the Advancement of Science, York, September 1844 (London 1845), pp 311-390, Plates XLVII-LVII.

Page 8: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

Copperplate etching by J. Scott Russell depicting the 30-foot tank he built in his back garden in 1834

Page 9: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

Controversy Over Russell’s Work1

George Airy:

1http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Russell_Scott.html

- Unconvinced of the Great Wave of Translation- Consequence of linear wave theory

G. G. Stokes:

- Doubted that the solitary wave could propagate without change in form

Boussinesq (1871) and Rayleigh (1876);

- Gave a correct nonlinear approximation theory

Page 10: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

Model of Long Shallow Water Waves

D.J. Korteweg and G. de Vries (1895)

22

2

3 1 2 1

2 2 3 3

g

t l x x

- surface elevation above equilibrium- depth of water- surface tension- density of water- force due to gravity- small arbitrary constant

lTg

31

3

Tll

g

Page 11: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

6 0t x xxxu uu u

Nonlinear Term Dispersion Term6 0t xu uu 0t xxxu u

Korteweg-de Vries (KdV) Equation

3 2, , 2

2 3

g xt t x u

l

Rescaling:

KdV Equation:

(Steepen) (Flatten)

t

x

uu

tu

ux

Page 12: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

Stable Solutions

Steepen + Flatten = Stable

- Unchanging in shape- Bounded- Localized

Profile of solution curve:

Do such solutions exist?

Page 13: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

Solitary Wave Solutions

1. Assume traveling wave of the form:

( , ) ( ),u x t U z z x ct

3

36 0

dU dU d Uc U

dz dz dz

2. KdV reduces to an integrable equation:

3. Cnoidal waves (periodic):

2( ) cn ,U z a bz k

Page 14: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

2 2 2 2( , ) 2 sech ( 4 ) ) , 4u x t k k x k t c k

4. Solitary waves (one-solitons):

2( ) sech2 2

c cU z z

- Assume wavelength approaches infinity

x

- u

x

- u

x

- u

x

- u

x

- u

Page 15: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

Other Soliton Equations

Sine-Gordon Equation:

sinxx ttu u u

- Superconductors (Josephson tunneling effect) - Relativistic field theories

Nonlinear Schroedinger (NLS) Equation:

20t xxiu u u u

- Fiber optic transmission systems- Lasers

Page 16: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

N-Solitons

- Partitions of energy modes in crystal lattices- Solitary waves pass through each other- Coined the term ‘soliton’ (particle-like behavior)

Zabusky and Kruskal (1965):

Two-soliton collision:

Page 17: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

Inverse Scattering

“Nonlinear” Fourier Transform:

Space-time domain Frequency domain

Fourier Series:

01

( ) cos sinn nn

n x n xf x a a b

L L

http://mathworld.wolfram.com/FourierSeriesSquareWave.html

4 1 1( ) sin sin 3 sin 5 ...

3 5f x x x x

Page 18: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

2 (0, ) ( , ) 0,

( ,0) ( )t xx

u t u L tu c u

u x f x

1. Heat equation:

2

1

0

( , ) sin

2( )sin

cnt

Ln

n

L

n

n xu x t a e

L

n xa f x dx

L L

4. Solution:

3. Determine modes:2

( ) sin , ( ) , 1, 2,3,...cn

tL

n

nx x v t e n

L

Solving Linear PDEs by Fourier Series

2. Separate variables: xx tk v ckv

Page 19: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

6 0, ( ,0) is

reflectionlesst x xxxu uu u u x 1. KdV equation:

2

1

( , ) 4 ( , ),N

n n n nn

u x t k x t k

4. Solution by inverse scattering:

3. Determine spectrum: { , }n n

Solving Nonlinear PDEs by Inverse Scattering

2. Linearize KdV: ( , ) 0xx u x t

(discrete)

Page 20: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

2

2

KdV: 6 0

Miura transformation:

mKdV: 6 0 (Burger type)

Cole-Hopf transformation:

Schroedinger's equation: ( , ) 0 (linear

t x xxx

x

t x xxx

x

xx

u uu u

u v v

v v v v

v

u x t

)

2. Linearize KdV

Page 21: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

[ ( ,0) ] 0xx u x

Potential(t=0)

Eigenvalue(mode)

Eigenfunction

Schroedinger’s Equation(time-independent)

- Given a potential , determine the spectrum { , }.u

Scattering Problem:

- Given a spectrum { , }, determine the potential .u

Inverse Scattering Problem:

Page 22: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

3. Determine Spectrum

1 2{0 ... }N (eigenvalues)

(eigenfunctions)1 2{ , ,..., }N

(a) Solve the scattering problem at t = 0 to obtainreflection-less spectrum:

(b) Use the fact that the KdV equation is isospectral to obtain spectrum for all t

1 2{ , ,..., }Nc c c (normalizing constants)

- Lax pair {L, A}: [ , ]

0

LL A

tt

At

Page 23: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

(b) N-Solitons ([GGKM], [WT], 1970):

2

2( , ) 2 log det( )u x t I A

x

(a) Solve GLM integral equation (1955):

( ) 0 ( , ) 2 ( , , )xx u u x t K x x tx

4. Solution by Inverse Scattering

382( , ) n nk t k xnB x t c e

( , , ) ( , ) ( , ) ( , , ) 0x

K x y t B x y t B x z t K z y t dz

Page 24: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

One-soliton (N=1):

1 1

2221

21

2 21 1 1

( , ) 2 log 12

2 sech

kcu x t e

x k

k k

Two-solitons (N=2):

1 1 2 2

1 1 2 2

2 222 21 2

21 2

2 2 22 21 2 1 2

1 2 1 2

( , ) 2 log 12 2

4

k k

k k

c cu x t e e

x k k

k k c ce

k k k k

Soliton matrix:

2, 4 (moving frame)m m n nk km nn n

m n

c cA e x k t

k k

Page 25: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

Unique Properties of Solitons

Infinitely many conservation laws

Signature phase-shift due to collision

1

( , ) 4 nn

u x t dx k

(conservation of mass)

Page 26: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

Other Methods of Solution

Hirota bilinear method

Backlund transformations

Wronskian technique

Zakharov-Shabat dressing method

Page 27: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

Decay of Solitons

Solitons as particles:

- Do solitons pass through or bounce off each other?

Linear collision: Nonlinear collision:

- Each particle decays upon collision- Exchange of particle identities- Creation of ghost particle pair

Page 28: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

Applications of Solitons

Optical Communications:

Lasers:

- Temporal solitons (optical pulses)

- Spatial solitons (coherent beams of light)- BEC solitons (coherent beams of atoms)

Page 29: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

Optical Phenomena

Hieu Nguyen:

Temporal solitons involve weak nonlinearity whereas spatial solitons involve strong nonlinearity

Hieu Nguyen:

Temporal solitons involve weak nonlinearity whereas spatial solitons involve strong nonlinearity Refraction Diffraction

Coherent Light

Page 30: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

20t xxi

NLS Equation

2 2[ ( ) / 2 ( / 4) ]( , ) 2 sech[ ( )] i x t tx t x t e

Envelope

Oscillation

One-solitons:

Nonlinear termDispersion/diffraction term

Page 31: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

Temporal Solitons (1980)

Chromatic dispersion:

Before After

- Pulse broadening effect

Self-phase modulation

- Pulse narrowing effect

Before After

Page 32: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

Spatial Solitons

Diffraction

- Beam broadening effect:

Self-focusing intensive refraction (Kerr effect)

- Beam narrowing effect

Page 33: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

BEC (1995)Cold atoms

http://cua.mit.edu/ketterle_group/

- Coherent matter waves- Dilute alkali gases

Page 34: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

Atom Lasers

21

2t xxi

Gross-Pitaevskii equation:

Atom-atom interaction External potential

- Quantum field theory

Atom beam:

Page 35: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

Molecular Lasers

2 2 *

2 2 2

1

21

( )4 2

t xx a am

t xx m am

i

i

(atoms)

(molecules)

Cold molecules

- Bound states between two atoms (Feshbach resonance)

Molecular laser equations:

Joint work with Hong Y. Ling (Rowan University)

Page 36: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

Many Faces of Solitons

Quantum Field Theory

General Relativity

- Quantum solitons- Monopoles- Instantons

- Bartnik-McKinnon solitons (black holes)

Biochemistry

- Davydov solitons (protein energy transport)

Page 37: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

Future of Solitons

"Anywhere you find waves you find solitons."

-Randall Hulet, Rice University, on creating solitons in Bose-Einstein condensates, Dallas Morning News, May 20, 2002

Page 38: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

Recreation of the Wave of Translation (1995)

Scott Russell Aqueduct on the Union Canal near Heriot-Watt University, 12 July 1995

Page 39: SOLITONS From Canal Water Waves to Molecular Lasers Hieu D. Nguyen Rowan University IEEE Night 5-20-03

C. Gardner, J. Greene, M. Kruskal, R. Miura, Korteweg-de Vries equation and generalizations. VI. Methods for exact solution, Comm. Pure and Appl. Math. 27 (1974), pp. 97-133

R. Miura, The Korteweg-de Vries equation: a survey of results, SIAM Review 18 (1976), No. 3, 412-459.

A. Snyder and F.Ladouceur, Light Guiding Light, Optics and Photonics News, February, 1999, p. 35

P. D. Drummond, K. V. Kheruntsyan and H. He, Coherent Molecular Solitons in Bose-Einstein Condensates, Physical Review Letters 81 (1998), No. 15, 3055-3058

B. Seaman and H. Y. Ling, Feshbach Resonance and Coherent Molecular Beam Generation in a Matter Waveguide, preprint (2003).

H. D. Nguyen, Decay of KdV Solitons, SIAM J. Applied Math. 63 (2003), No. 3, 874-888.

M. Wadati and M. Toda, The exact N-soliton solution of the Korteweg-de Vriesequation, J. Phys. Soc. Japan 32 (1972), no. 5, 1403-1411.

Solitons Home Page: http://www.ma.hw.ac.uk/solitons/ Light Bullet Home Page: http://people.deas.harvard.edu/~jones/solitons/solitons.html Alkali Gases @ Mit Home page: http://cua.mit.edu/ketterle_group/

References

www.rowan.edu/math/nguyen/soliton/