soft sensors

70
Introduction Outlier detection Process monitoring Examples Soft Sensors for Monitoring Antanas Verikas Intelligent Systems Lab, Halmstad University, Box 823, 30118 Halmstad, Sweden [email protected] 2009 September Antanas Verikas  Soft Sensors for Monitoring

Upload: hieu-pham

Post on 02-Jun-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 1/70

IntroductionOutlier detection

Process monitoringExamples

Soft Sensors for Monitoring

Antanas Verikas †

†Intelligent Systems Lab, Halmstad University,Box 823, 30118 Halmstad, Sweden

[email protected]

2009 September

Antanas Verikas   Soft Sensors for Monitoring

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 2/70

IntroductionOutlier detection

Process monitoringExamples

Soft sensor definitionTechniques and tasks

Definitions

Soft sensor is a common name for software where severalmeasurements are processed together. There may be dozens

or even hundreds of measurements. The interaction of thesignals can be used for calculating new quantities that can notbe measured.

Soft sensors or inferential calculators are operators’ virtualeyes. Soft sensors create windows to a process where physical

equivalents are unrealistic or even impossible.

Sensor output can be a control signal, advisory information foroperators, predictions of product quality, information onprocess faults or outliers in data.

Antanas Verikas   Soft Sensors for Monitoring

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 3/70

IntroductionOutlier detection

Process monitoringExamples

Soft sensor definitionTechniques and tasks

Techniques

Neural networks (NN)

Neuro-fuzzy systems

Kernel methods (support vector machines)

Multivariate statistical analysis

Data fusion (Dempster-Shafer theory, for example)Image analysis

Antanas Verikas   Soft Sensors for Monitoring

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 4/70

IntroductionOutlier detection

Process monitoringExamples

Soft sensor definitionTechniques and tasks

Tasks

Outlier detection in process dataProcess and system monitoring

Fault diagnosisDefect detectionTrend detection

Monitoring uncertainty of predictions

Antanas Verikas   Soft Sensors for Monitoring

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 5/70

IntroductionOutlier detection

Process monitoringExamples

Basic informationDistance from the data centerResidual analysis, Influence measuresClassification techniques

Outliers, high leverage pointsThere are two types of outliers: in the  X-space, called leveragepoints, and in the  y-space. The goal is to eliminate bad leveragepoints and outliers in the  y-space. The most difficult problem is to

distinguish between good and bad leverage points.

 

Figure:  Data point 1 is outlier in  y -space, data points 2 and 3 areoutliers in  x -space. Data point 2 is a good leverage point and data point

3 is a bad leverage point.Antanas Verikas   Soft Sensors for Monitoring

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 6/70

IntroductionOutlier detection

Process monitoringExamples

Basic informationDistance from the data centerResidual analysis, Influence measuresClassification techniques

Robust statistics

Use robust statistics (scaling, PCA, covariance matrix) to increaseeffectiveness of outlier detection.

A robust estimate of scale can be obtained using the  medianabsolute deviation of the median (MADM) defined as

d  ≡   med |x  − med (x )|0.6745

  (1)

The divisor is a correction factor—if the number of samples is largethen  d   is approximately equal to the actual standard deviation of the true distribution of  x .

Antanas Verikas   Soft Sensors for Monitoring

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 7/70

IntroductionOutlier detection

Process monitoringExamples

Basic informationDistance from the data centerResidual analysis, Influence measuresClassification techniques

Robust sample estimates

It is very important to protect sample estimates from outliersinfluence. Below is the list of methods allowing to selectobservations, consistent with the majority.

1 Resampling by half means (RHM)

2 The smallest half volume (SHV)

3 The closest distance to the center (CDC)

4 Minimum volume ellipsoid (MVE)5 Minimum scatter determinant (MSD)

Sample estimates are then computed based on the selected data.These estimates are used for scaling and outlier detection.

Antanas Verikas   Soft Sensors for Monitoring

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 8/70

IntroductionOutlier detection

Process monitoringExamples

Basic informationDistance from the data centerResidual analysis, Influence measuresClassification techniques

Categorization of techniques (1)

Methods based on  distance from the data center:

PCA based techniquesTechniques analyzing the projection matrixH =  X(XT X)−1XT , where  X  is an  N  × K  data matrix with  K 

being the data dimensionality and  N  the number of observations.

Methods based on the   difference between the predictedand actual values of a dependent variable:

ResidualsInfluence measures

Antanas Verikas   Soft Sensors for Monitoring

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 9/70

IntroductionOutlier detection

Process monitoringExamples

Basic informationDistance from the data centerResidual analysis, Influence measuresClassification techniques

Categorization of techniques (2)

Classification techniques. A classifier separates data into

the  outlier  and  normal  classes.

Robust estimators are used instead of the common leastsquare estimator.

The least absolute deviation (LAD)

The least median of squares (LMS)  are representatives of the group .

Antanas Verikas   Soft Sensors for Monitoring

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 10/70

IntroductionOutlier detection

Process monitoringExamples

Basic informationDistance from the data centerResidual analysis, Influence measuresClassification techniques

PCA (1)The   i th transformed variable  z i , which is known as  PC  or score is

z i   = xpi    (2)

where  pi   is the   i th column of the loading matrix  P.Scores are normally distributed as long as the process does notdeviate from the normal operating conditions. Thus, the  T 2

statistic can be used to detect deviations from the normality. TheT 2 statistic, based on  M  components, for a data point   i   is:

T 2i    =M 

 j =1

z 2ij 

s 2 j (3)

where  s 2 j 

  stands for the variance of  z  j 

.

Antanas Verikas   Soft Sensors for Monitoring

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 11/70

IntroductionOutlier detection

Process monitoringExamples

Basic informationDistance from the data centerResidual analysis, Influence measuresClassification techniques

PCA (2)

The variable

T 2i N (N  − M )

M (N 2

− 1)

  (4)

is  F -distributed with  M   and  N  − M  degrees of freedom. Thethreshold for the  T 2 statistic is

T 2α  =  M (N 2 − 1)

N (N  − M )F α(M ,N 

 − M ) (5)

where  F α(M ,N  − M ) is the upper 100α% critical point of the Fdistribution with  M   and  N  − M  degrees of freedom.

Antanas Verikas   Soft Sensors for Monitoring

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 12/70

IntroductionOutlier detection

Process monitoringExamples

Basic informationDistance from the data centerResidual analysis, Influence measuresClassification techniques

PCA (3)

The portion of the input space corresponding to the  K  − M 

smallest eigenvalues can be monitored using the  Q   statistic (χ2)

Q  = eT e   (6)

wheree = (I − PPT )x   (7)

is the residual vector. The threshold  Q α  for the  Q  statistic can becomputed from the eigenvalues and the  normal  deviatecorresponding to the 1 − α  percentile.

Antanas Verikas   Soft Sensors for Monitoring

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 13/70

IntroductionOutlier detection

Process monitoringExamples

Basic informationDistance from the data centerResidual analysis, Influence measuresClassification techniques

H  matrixhi   = xi (XT X)−1xT i    the cut-off value is 2K /N 

The cut-off value for the Jackknife residual  t ∗i    (next slide) is givenby t 0.95(N-K-1)—the 95% quantile of the  Student  distribution.

0 0.2 0.4 0.6 0.8 1−5

0

5

   J  a  c   k   k  n   i   f  e 

  r  e  s   i   d  u  a   l  s

High leverage

Figure:  Outliers are denoted by ’o’ and normal data points with ’+’.Lines illustrate the cut-off values.

Antanas Verikas   Soft Sensors for Monitoring

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 14/70

IntroductionOutlier detection

Process monitoringExamples

Basic informationDistance from the data centerResidual analysis, Influence measuresClassification techniques

Residual analysis, Influence measures

Measure based on Formula Cut-off value

Residuals   t ∗i    = t i  

 (N −K −1)(N −K −t 2

i  )

  t (N  − K  − 1)

Conf. Ellipsoid Volume   h∗i   = hi  +  e 2i eT e

2(K −1)N 

Influence Function   WK i   = |t ∗i  | hi (1 − hi ) 2 K /N 

t i  =  e i 

σ

√ (1−hi )

e i   = y i  −

 y i 

Antanas Verikas   Soft Sensors for Monitoring

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 15/70

IntroductionOutlier detection

Process monitoringExamples

Basic informationDistance from the data centerResidual analysis, Influence measuresClassification techniques

Classification techniquesCan be supervised or unsupervised.  In the unsupervised case, thedetector is trained by finding a  hypersphere  of the minimum radiusr ∗  that contains most of the data points from a set  X t .

The function  f   (x) used to categorize  x   is:

f   (x) = Hκ(x, x) − 2N i =1

α∗i  κ(xi , x) + T 

  (8)

where  κ(x, x) is a kernel,  α∗i 

  and  T  are found by maximizing

W (α) =N i =1

αi κ(xi , xi ) −N i =1

N  j =1

αi α j κ(xi , x j ) (9)

subject to N 

i =1 αi  = 1 and 0 ≤ αi  ≤  1/ν N 

,  i 

 = 1,...,N 

.Antanas Verikas   Soft Sensors for Monitoring

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 16/70

IntroductionOutlier detection

Process monitoringExamples

Basic informationDistance from the data centerResidual analysis, Influence measuresClassification techniques

Combining different measuresProcess Data

Contradictory Data?

  CDC

Data Diagnostic Measures

Yes

Fuzzy Expert Neural Network

Inlier Outlier

AANNRA

x x

 y

Figure:  (Left): The flowchart of data processing (CDC=closest distanceto centre; RA=regression analysis; AANN=autoassociative neuralnetwork). (Right): The process model network and the AANN.

Antanas Verikas   Soft Sensors for Monitoring

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 17/70

IntroductionOutlier detection

Process monitoringExamples

PCA and PLS based monitoringKernel PCA-based monitoringMonitoring by AANNMonitoring the uncertainty of prediction

PCA based monitoringThe  T 2 statistic, based on  M  components and  SPEy  are givenby:

T 2M  =M 

 j =1

z 2 j 

s 2 j ;   SPEy  =

K i =M +1

(y i  − y i )2 (10)

where  s 2 j    is the variance of  z  j .

z  j  = pT j   y  is the   j th score , where  p j   is the   j th column of the

loading matrix  P, and  y   is the multivariate process output.An upper limit (UL) for the  T 2M   is:

T 2UL

 =  M (N  − 1)(N  + 1)

N (N 

 − M )

  F α(M ,N  − M ) (11)

Antanas Verikas   Soft Sensors for Monitoring

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 18/70

IntroductionOutlier detection

Process monitoringExamples

PCA and PLS based monitoringKernel PCA-based monitoringMonitoring by AANNMonitoring the uncertainty of prediction

PLS based monitoring

PLS extracts variables that explain the variation in  X  which ismost predictive of  Y.

PLS uses the sample covariance matrix (XT Y)(YT X).The first variable  z 1  = wT x  maximizes the covariancebetween z 1  and the  Y   space,  w1  is the first eigenvector of (XT Y)(YT X).

w2  is the first eigenvector of  XT 

2 YYT 

X2, whereX2  = X − z1pT 1   is the deflation of  X  with  p1  = Xz1/(zT 1 z1).

Variables  z i  (scores) can be used for monitoring (via scoreplots for example).

Antanas Verikas   Soft Sensors for Monitoring

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 19/70

IntroductionOutlier detection

Process monitoringExamples

PCA and PLS based monitoringKernel PCA-based monitoringMonitoring by AANNMonitoring the uncertainty of prediction

Kernel PCA-based monitoring (1)

The sample covariance matrix in the feature space

ΣΦ =   1N 

N i =1

Φ(xi )

Φ(xi )

  Φ(xi ) = Φ(xi ) − mΦ

mΦ  =   1N N 

i =1 Φ(xi )

Antanas Verikas   Soft Sensors for Monitoring

I d i PCA d PLS b d i i

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 20/70

IntroductionOutlier detection

Process monitoringExamples

PCA and PLS based monitoringKernel PCA-based monitoringMonitoring by AANNMonitoring the uncertainty of prediction

Kernel PCA-based monitoring (2)A Mahalanobis type distance in the feature space can be consideredas a dissimilarity between a point  x  and the training data

E Φ(x) = Φ(x)T (ΣΦ)−1

Φ(x)

The regularized covariance ΣΦ  is obtained by replacing all zero ornear-zero eigenvalues of  ΣΦ  by a constant  λc 

ΣΦ = VΛVT  + λc (I − VVT )

where  Λ   is the diagonal matrix of nonzero eigenvaluesλ1 ≤ · · · ≤ λp   of  ΣΦ  and  V  is the matrix of the correspondingeigenvectors v1, · · ·  , vp 

vk  =

N i =1 α

k i 

Φ(xi ),   1 ≤ k  ≤ p , where  αk 

i    are coefficients found

by solving the eigenvalue problem:   λα

= (1/N 

)Kα

.Antanas Verikas   Soft Sensors for Monitoring

I t d ti PCA d PLS b d it i

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 21/70

IntroductionOutlier detection

Process monitoringExamples

PCA and PLS based monitoringKernel PCA-based monitoringMonitoring by AANNMonitoring the uncertainty of prediction

Kernel PCA-based monitoring (3)

The  k th projection (score)  t k  of the centered value Φ(x) isobtained

t k  = vk , Φ(x) = N i =1 αk i  Φ(xi ), Φ(x)

Using ΣΦ,  E Φ(x) can be split into two terms:

E Φ(x) =

p k =1

1λk 

vk , Φ(x)2 +   1λc Φ(x)2 −

p k =1

vk , Φ(x)2=   tT Λ−1t + (λc )

−1(

K (x, x) − tT t)

Antanas Verikas   Soft Sensors for Monitoring

Introduction PCA and PLS based monitoring

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 22/70

IntroductionOutlier detection

Process monitoringExamples

PCA and PLS based monitoringKernel PCA-based monitoringMonitoring by AANNMonitoring the uncertainty of prediction

Kernel PCA-based monitoring (4)

E Φ(x) represents the estimated statistic for characterizing thelikelihood of  x. The first and the second terms of  E 

Φ(x) represent

the distance in the feature space and the distance from the featurespace, respectively.

Similar to the  T 2 and  SPE  statistics in the linear PCA, thecorresponding statistics  T 2

f  

  = tT Λ−1t  and  SPEf    = K (x, x) −

tT t

can be monitored to detect faults. It is assumed that training dataare multivariate normal in the feature space.

Antanas Verikas   Soft Sensors for Monitoring

Introduction PCA and PLS based monitoring

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 23/70

IntroductionOutlier detection

Process monitoringExamples

PCA and PLS based monitoringKernel PCA-based monitoringMonitoring by AANNMonitoring the uncertainty of prediction

AANN with orthogonal bottleneck layer outputs

Objective function  F 

F   = ηSSE + (1 − η)Φ

Φ =S 

i =1

S  j =i +1

s ij √ s i s  j 

s i ,  s  j  – variance of  u i   and  u  j 

s ij  – covariance of  u i   and  u  j 

For the   i th data point

SPEi  =

R  j =1(x ij  −

 x ij )

2

Antanas Verikas   Soft Sensors for Monitoring

Introduction PCA and PLS based monitoring

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 24/70

IntroductionOutlier detection

Process monitoringExamples

PCA and PLS based monitoringKernel PCA-based monitoringMonitoring by AANNMonitoring the uncertainty of prediction

Confidence limits (1)

Figure:  Non-linear scores obtained for the 102 nominal runs (+). Threefaulty runs () were projected on the model (Left : confidence limitsassuming normal distribution, 95 and 99%;  Right : confidence limits basedon the kernel density estimate f   (x ) =   1

Nh N i =1 K 

x −x i h , 95 and 99%).

Antanas Verikas   Soft Sensors for Monitoring

Introduction PCA and PLS based monitoring

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 25/70

IntroductionOutlier detection

Process monitoringExamples

PCA and PLS based monitoringKernel PCA-based monitoringMonitoring by AANNMonitoring the uncertainty of prediction

Confidence limits (2)

Figure:  Normal trending is observed in both the scores and SPE plots.

Antanas Verikas   Soft Sensors for Monitoring

Introduction PCA and PLS based monitoring

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 26/70

Outlier detectionProcess monitoring

Examples

gKernel PCA-based monitoringMonitoring by AANNMonitoring the uncertainty of prediction

Confidence limits (3)

Figure:  The failure of sensor 11 manifests itself as a different cluster in

the lower left scores plot. The SPE also indicates this event.Antanas Verikas   Soft Sensors for Monitoring

Introduction PCA and PLS based monitoring

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 27/70

Outlier detectionProcess monitoring

Examples

gKernel PCA-based monitoringMonitoring by AANNMonitoring the uncertainty of prediction

Confidence limits (4)

Figure:  An abnormal trending in the system.

Antanas Verikas   Soft Sensors for Monitoring

Introduction PCA and PLS based monitoring

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 28/70

Outlier detectionProcess monitoring

Examples

Kernel PCA-based monitoringMonitoring by AANNMonitoring the uncertainty of prediction

Detecting sensor faults and process upsets (1)At time  t  when the  SPElimit   is violated, one can go one step backin each sensor array and calculate the SPE againx1

− = [x 1(t 

 − 1), x 2(t ),..., x p (t )]   SPE1  =

 x1

− − x1

−2

x2− = [x 1(t ), x 2(t  − 1),..., x p (t )]   SPE2  = x2− − x2−2

.....................................

xp − = [x 1(t ), x 2(t ), ..., x p (t  − 1)]   SPEp  = xp − − 

xp −2

where  x j −   is a vector containing measurements for all sensors attime  t , but  t  − 1 sample for sensor   j , x j −  is the model estimate.

The sensor   j  = arg mini  SPEi  is the most probable candidate of being the fault sensor.

Antanas Verikas   Soft Sensors for Monitoring

Introduction PCA and PLS based monitoring

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 29/70

Outlier detectionProcess monitoring

Examples

Kernel PCA-based monitoringMonitoring by AANNMonitoring the uncertainty of prediction

Detecting sensor faults and process upsets (2)Different sensors are usually highly correlated

CC  =  cov (x i , x  j )

σx i σx  j (12)

where the vectors  xi   and  x j  are taken from a moving windowcontaining the current sample and a number of past samples.

CCs are compared with the ones obtained from the training

data.A failure in one sensor affects readings of only that sensor.

The unavailable sensor values can be reconstructed from theremaining sensors using the initial (calibration) model.

Antanas Verikas   Soft Sensors for Monitoring

IntroductionO li d i

PCA and PLS based monitoringK l PCA b d i i

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 30/70

Outlier detectionProcess monitoring

Examples

Kernel PCA-based monitoringMonitoring by AANNMonitoring the uncertainty of prediction

Bayesian approachTwo sources of errors: the noise on the target  σ2

t (x), and thevariance of the output due to weights (parameters) uncertaintyσ2w (x). These two terms are independent, thus:

σ2y (x) = σ

2w (x) + σ

2t (x) (13)

σ2t (x) is often assumed to be constant and approximated by

σ2t (x) = 2E D /(N  − γ ) (14)

where  E D   is the training set error and  γ  is the number of well-determined model parameters.

σ2w (x) = gT (x)H−1g(x) (15)

H  is the Hessian matrix and  g (x) = ∂ y (x)/∂ w   is the gradient of the model output.

Antanas Verikas   Soft Sensors for Monitoring

IntroductionO tli d t ti

PCA and PLS based monitoringK l PCA b d it i

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 31/70

Outlier detectionProcess monitoring

Examples

Kernel PCA-based monitoringMonitoring by AANNMonitoring the uncertainty of prediction

NN-based approach

For each  x, the local variance is estimated as t (x) − y (x)2 andused as the target for the second network.

σ2(x) is an approximation to the local expected variance.

Figure:  The predictive error network.Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Chemical industryForest industryTextile industry

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 32/70

Outlier detectionProcess monitoring

Examples

yMachineryElectronics industryPaper-making industryPrinting industry

Predicting online biomass concentration

Recurrent NN to capture dynamic information in the input-outputdata.   Inputs: feed rate, liquid volume, and dissolved oxygen.

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Chemical industryForest industryTextile industry

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 33/70

Outlier detectionProcess monitoring

Examples

MachineryElectronics industryPaper-making industryPrinting industry

Detecting sound and dead knots in wood

A potential defect area is determined by the statistical  t -test forequality of average  R  intensities of the area and a clear wood area.Classification is based on histograms of intensity variance.

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Chemical industryForest industryTextile industry

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 34/70

Outlier detectionProcess monitoring

Examples

MachineryElectronics industryPaper-making industryPrinting industry

SOM based detection of wood defects (1)

 

An image is divided into non-overlapping regions.Percentiles of R, G, and B intensity histograms of a region and differences of the percentiles are thefeatures fed into the self-organizing map (SOM).

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Chemical industryForest industryTextile industryM hi

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 35/70

Outlier detectionProcess monitoring

Examples

MachineryElectronics industryPaper-making industryPrinting industry

SOM based detection of wood defects (2)

Detection SOM: The dashed lines are manually drawn, pessimistic(upper) and optimistic (lower) approximations of the boundary

between sound-wood and defects.Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Chemical industryForest industryTextile industryMachiner

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 36/70

Process monitoringExamples

MachineryElectronics industryPaper-making industryPrinting industry

SOM based detection of wood defects (3)

Classification SOM: Defects with similar appearance are close toeach other.

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Chemical industryForest industryTextile industryMachinery

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 37/70

Process monitoringExamples

MachineryElectronics industryPaper-making industryPrinting industry

SOM based detection of wood defects (4)

b

c

Defects mapped onto 3 SOM nodes: a) dry knots; b) sound knots;

and c) shakes. Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Chemical industryForest industryTextile industryMachinery

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 38/70

Process monitoringExamples

MachineryElectronics industryPaper-making industryPrinting industry

MLP-based detection of textile defects

Each pixel is characterized by a feature vector—grey values fromthe neighbourhood. PCs are then calculated and presented to amultilayer perceptron.

 

(a) (d) (g) (j)

 (c) (f) (i) (m)

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

P i i

Chemical industryForest industryTextile industryMachinery

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 39/70

Process monitoringExamples

MachineryElectronics industryPaper-making industryPrinting industry

Gabor filtering-based detection of textile defects (1)

A 2-D Gabor function is an oriented complex sinusoidalgrating modulated by a 2-D Gaussian. The Gaussian

has an aspect ratio of  σx /σy . The sinusoid has aspatial frequency of   f  o  and an orientation  θ.

Usually the  X -axis of the Gaussian has the sameorientation θ  as the sinusoidal wave.

h(x , y ) =   12πσx σy 

exp− 12 x 2

σ2x 

+ y 2σ2y  exp{2π jf  o q (x , y )}

q (x , y ) = cos(θ)x  + sin(θ)y 

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

P it i

Chemical industryForest industryTextile industryMachinery

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 40/70

Process monitoringExamples

MachineryElectronics industryPaper-making industryPrinting industry

Gabor filtering-based detection of textile defects (2)

Four scales:   p  = 4 andorientations:   q  = 4;

Features—the meanvalue  R pq  and standarddeviation  σpq  of thefiltered image energy.

K (x , y ) = [K 12(x , y ) + K 23(x , y ) + K 34(x , y )]/3

K ij (x , y ) = [K i (x , y ) · K  j (x , y )];   K p (x , y ) = 

4q =1[S pq (x , y )]2

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Process monitoring

Chemical industryForest industryTextile industryMachinery

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 41/70

Process monitoringExamples

yElectronics industryPaper-making industryPrinting industry

Gabor filtering-based detection of textile defects (3)

Figure:  a) Ideal weaves, b) faulty weaves, c) fused images, d) segmented.

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Process monitoring

Chemical industryForest industryTextile industryMachinery

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 42/70

Process monitoringExamples

Electronics industryPaper-making industryPrinting industry

ICA-based detection of textile defects (1)

An image is divided into overlapping windows—x  vectors.x =  As, where  A  is the mixing matrix and  s  is the vector of independent components.

Having  A,  s  is obtained,  s = Wx, where  W  is the pseudo inverseof  A  obtained from defect-free images. The columns of thede-mixing matrix  W  are called independent component filters.

Each window is checked for being defective. The defect detectionfor a window   i  is based on computing the Euclidean distanced i   = ||sm − si ||2 and comparing it with a threshold, where  sm   isthe mean vector obtained from defect-free windows.

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Process monitoring

Chemical industryForest industryTextile industryMachinery

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 43/70

Process monitoringExamples

Electronics industryPaper-making industryPrinting industry

ICA-based detection of textile defects (2)

Figure:  The defect detection results for two classes of textures.Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Process monitoring

Chemical industryForest industryTextile industryMachineryEl i i d

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 44/70

Process monitoringExamples

Electronics industryPaper-making industryPrinting industry

SOM-based bearing degradation monitoring (1)

Features characterizing the vibration waveform are extracted andused to train the SOM.

 

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Process monitoring

Chemical industryForest industryTextile industryMachineryEl t i i d t

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 45/70

Process monitoringExamples

Electronics industryPaper-making industryPrinting industry

SOM-based bearing degradation monitoring (2)

SOM is trained using data from the normal operation. For a givenx  the  MQE is evaluated as  MQE = ||x − mBMU||, where  mBMU   is theweight vector of the best matching unit of the SOM.

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Process monitoring

Chemical industryForest industryTextile industryMachineryElectronics industry

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 46/70

gExamples

Electronics industryPaper-making industryPrinting industry

SOM-based bearing degradation monitoring (3)

SOM is trained using data from all the operation conditions. TheU-matrix (matrix of distances between weights of SOM nodes) isused to visualize the trajectory of the degradation process.

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Process monitoring

Chemical industryForest industryTextile industryMachineryElectronics industry

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 47/70

ExamplesElectronics industryPaper-making industryPrinting industry

Detecting defects on surface of ceramics capacitors (1)

Examples of images of defective surfaces

It is assumed that  p  quality characteristics are  normally  distributed.The procedure requires computing the mean of the characteristicsx  from a sample of size  n.

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Process monitoring

Chemical industryForest industryTextile industryMachineryElectronics industry

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 48/70

ExamplesElectronics industryPaper-making industryPrinting industry

Detecting defects on surface of ceramics capacitors (2)

An image is divided into blocks and the Hotelling  T 2 statistic isused to detect defects in each block.

T 2 = n(x − µ)T Σ−1(x − µ)

Since  µ  and  Σ  are unknown, they are estimated from  m  samplesof size  n. Therefore, each block is divided into  m  sub-blocks. Thestatistic  T 2 then is

T 2 = n(x − x)T S−1(x − x)

x  and  S  are estimated from defect free images.

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Process monitoringE l

Chemical industryForest industryTextile industryMachineryElectronics industry

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 49/70

ExamplesElectronics industryPaper-making industryPrinting industry

Detecting defects on surface of ceramics capacitors (3)

R component of RGB image

DR

AR

Feature extraction of image blocks

by wavelet transform

Approximated

characteristic

Detail

characteristic

Wavelet transformImage

synthesis

Wavelet

characteristics

One multivariate processing unit of size 4 x 4 pixels

Four wavelet processing units of equal size 2 x 2 pixels

: Mean matrix of texture features

: Covariance matrix of texture features

 X 

2 ' 1( ) ( )T n X X S X X  −

=   – –

0

X : 255

Y : 255

Z : T2

value

T2 distance diagram

Defect locations

(high energy)

Normal location

(low energy)

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Process monitoringE l

Chemical industryForest industryTextile industryMachineryElectronics industry

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 50/70

Examplesy

Paper-making industryPrinting industry

Detecting defects on surface of ceramics capacitors (4)

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Process monitoringExamples

Chemical industryForest industryTextile industryMachineryElectronics industry

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 51/70

Examplesy

Paper-making industryPrinting industry

The task

To develop soft sensors for on-line detection of abnormal paperformation variations in machine direction in various frequencyregions.

Forming

section

Press

section

Drying

section

Reel

section

HeadboxCalender 

Figure:  A schematic drawing of a paper machine.

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Process monitoringExamples

Chemical industryForest industryTextile industryMachineryElectronics industry

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 52/70

ExamplesPaper-making industryPrinting industry

Reflection sensor design and arrangement

Figure:  Reflection sensor design (left) and arrangement (right).

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Process monitoringExamples

Chemical industryForest industryTextile industryMachineryElectronics industry

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 53/70

ExamplesPaper-making industryPrinting industry

Processing flowchart

Subdivide into blocks of a given lengthSubdivide into blocks of a given length

On-Line Monitoring

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Process monitoringExamples

Chemical industryForest industryTextile industryMachineryElectronics industryP ki i d

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 54/70

ExamplesPaper-making industryPrinting industry

Multi-resolution time series representation

Compute the Fourier power spectrum of the time series  f   (x )

P (u ) = F (u )2 = R 2(u ) + I 2(u ) (16)

Divide the frequency axis into several frequency regions  R i   of 

different average frequency:

u  ∈ R i    if   iW  ≤ log2(u ) <  (i  + 1)W    (17)

whereW   =

 {log2[N /(2

√ 2)]

}/

{N r 

 − 1

}  (18)

Characterize the frequency content of the region  a  by afeature vector  xa ∈ Rk .

The partitioning implements the multi-resolution time seriesrepresentation.

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Process monitoringExamples

Chemical industryForest industryTextile industryMachineryElectronics industryP ki i d t

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 55/70

pPaper-making industryPrinting industry

Feature extraction

E i  =  1

N i 

u ∈R i 

P (u ) (19)

E mi  =   1E i 

maxu ∈R i 

P (u ) (20)

χi   = N 2i  u ∈R i    P i (u )

u ∈R i 

P i (u ) −   1

N i 2

(21)

M i  = −   1

log N i 

u ∈R i 

P ni  (u )log P ni  (u ) (22)

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Process monitoringExamples

Chemical industryForest industryTextile industryMachineryElectronics industryPaper making industry

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 56/70

pPaper-making industryPrinting industry

Novelty (abnormality) detection

The optimal values of the parameter vector  α∗  of the detectorare found by maximizing the following objective function

W (α

) =

i =1 αi κ(xa

i  ,xa

i  ) −

i =1

 j =1 αi α j κ(xa

i  ,xa

 j  ) (23)

subject toN 

i =1 αi  = 1 and 0 ≤ αi  ≤  1/ν N ,   i  = 1,...,N .

The function  f   (xa) used to categorize the data point  xa is:

f   (xa) = Hκ(xa, xa) − 2N i =1

α∗i  κ(xai  , xa) + T    (24)

where  α∗i   and  T  are found by maximizing (23) andH[y (xa)] = 1 if  y (xa) ≥ 0 and −1 otherwise.

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Process monitoringExamples

Chemical industry

Forest industryTextile industryMachineryElectronics industryPaper making industry

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 57/70

Paper-making industryPrinting industry

Data

Data sets  A and  C  have been recorded on production line andcorrespond to 920 and 70 km of newsprint divided intoM  = 9200 and 700 blocks, respectively.

The data set  A was randomly split into training, validation,and test subsets. Ten different random splits were used.

All data of the set  C  have been used for testing. In the 700data blocks there were

 ≈70% and 75% of outliers in the

lowest and highest frequency region, respectively.

The abnormalities screened were located in the region of 0.2 − 0.4  mm  and 1.6 − 3.2  m.

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Process monitoringExamples

Chemical industry

Forest industryTextile industryMachineryElectronics industryPaper-making industry

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 58/70

Paper making industryPrinting industry

Categorization results of the set  C   data

Table:  The expected amount of outliers is approximately 75% and 70%for the  highest  and the  lowest   frequency region, respectively.

Set\n 1 2 3 4 5 6 7 8 9 10

Highest frequency region

Test 73.1 74.0 73.4 74.4 73.5 74.7 75.6 75.3 74.9 72.6

Lowest frequency region

Test 66.3 68.9 69.9 68.9 67.3 68.3 69.7 69.2 68.9 67.2

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Process monitoringExamples

Chemical industry

Forest industryTextile industryMachineryElectronics industryPaper-making industry

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 59/70

Paper making industryPrinting industry

Abnormalities detection software

Figure:  The detection result in the highest frequency region.

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Process monitoringExamples

Chemical industry

Forest industryTextile industryMachineryElectronics industryPaper-making industry

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 60/70

p g yPrinting industry

Graphical process

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Process monitoringExamples

Chemical industry

Forest industryTextile industryMachineryElectronics industryPaper-making industry

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 61/70

p g yPrinting industry

Printing press

 

Paper path

Impression cylinder 

Blanket cylinder

Plate cylinder

Ink bathDampening

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Process monitoringExamples

Chemical industry

Forest industryTextile industryMachineryElectronics industryPaper-making industry

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 62/70

Printing industry

The problem 

Colour deviation and areas to measure the amount of colour.

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Process monitoringExamples

Chemical industry

Forest industryTextile industryMachineryElectronics industryPaper-making industry

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 63/70

Printing industry

Estimating the amount of ink by soft computing 

Neural NetNeural Net

RGB

CMYK 

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Process monitoringExamples

Chemical industry

Forest industryTextile industryMachineryElectronics industryPaper-making industryP i i i d

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 64/70

Printing industry

Measuring ink density

400 500 600 7000

0.2

0.4

0.6

0.8

1

Wavelength (nm)

D  = − lg

λ

 R (λ)S (λ)F (λ)

λ S (λ)F (λ)

  (25)

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Process monitoringExamples

Chemical industry

Forest industryTextile industryMachineryElectronics industryPaper-making industryP i ti g i d t

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 65/70

Printing industry

Measuring ink density by soft computing

400 450 500 550 600 650 700

−0.4

−0.2

0

0.2

0.4

0.6

Wavelength (nm)

A = projections of of spectra on eigenvectors   x = RGB tripletB∗  = (K + λIN )

−1A k =  κ(xi , x)κ(xi , x j ) = exp{−||xi  − x j ||2/σ}   a =  B∗T kSpectrum is reconstructed using  a  and eigenvs

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Process monitoringExamples

Chemical industry

Forest industryTextile industryMachineryElectronics industryPaper-making industryPrinting industry

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 66/70

Printing industry

Spectra from RGB values

— Original; — From RGB; ∆E   = 0.7

400 450 500 550 600 650 7000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Wavelength (nm)400 450 500 550 600 650 700

0.1

0.2

0.3

0.4

0.5

0.6

Wavelength (nm)

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Process monitoringExamples

Chemical industry

Forest industryTextile industryMachineryElectronics industryPaper-making industryPrinting industry

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 67/70

Printing industry

Print quality characterization

Print quality attributes

Missing dots (Q 1)

Dot deformation

Dot size deformation  Q 2)Dot shape deformation  Q 3)

Ink density variation  Q 4)

Noise level  Q 5)

Quality =

   f   (Q )g (•) (26)

where  g (•) is a measure

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Process monitoringExamples

Chemical industry

Forest industryTextile industryMachineryElectronics industryPaper-making industryPrinting industry

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 68/70

Printing industry

Print quality ranking by manSample   A   B C D E F G H

Ann 6 7 8 3 4 5 1 2

Anna R   6   7 8 3 4 5 2 1

Sofia   6   8 7 3 4 5 2 1

Peter   6   8 7 3 4 5 2 1

Frank   6   7 8 3 4 5 2 1

Stellan   6   8 7 3 4 5 2 1

Bernd   6   8 7 4 3 5 2 1

Dan   6   8 7 4 3 5 1 2

Mean   6.00   7,63 7,38 3,25 3,75 5 1,75 1,25

Cristofer   6   8 7 2 5 4 1 3

Magnus 6 7 8 3 4 5 2 1

Wolfgang 6 8 7 3 4 5 1 2

Kerstin 6 8 7 2 4 5 1 3

Maria 6 8 7 3 4 5 1 2

Marcus 6 8 7 3 4 5 2 1

Mean 6.00 7.71 7,28 3.0 3.93 4.93 1.57 1.57

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Process monitoringExamples

Chemical industry

Forest industryTextile industryMachineryElectronics industryPaper-making industryPrinting industry

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 69/70

Printing industry

Correlation between quality rankings by man and machine

When ranking prints by the machine, the usefulness of printingdots of different colours was assessed.

Ink\Correlation   R p 

Magenta 0.9524 0.0003Yellow 0.9524 0.0003

Cyan 0.9762 0.0000Black 0.9762 0.0000

Antanas Verikas   Soft Sensors for Monitoring

IntroductionOutlier detection

Process monitoringExamples

Chemical industry

Forest industryTextile industryMachineryElectronics industryPaper-making industryPrinting industry

8/10/2019 Soft Sensors

http://slidepdf.com/reader/full/soft-sensors 70/70

g y

Assessing banknote printing quality

Line width

Colour

Circle Diameter

Spherical shell clustering

Each cluster resembles a circle. Eachcircle prototype  λi  consists of:   r i   and

ci . The distance  d ij   from an edgepixel  x j   to a prototype  λi   is defined:

d ij  = (||x j  − ci ||2 − r 2i  )2 (27)

and used to minimize:

J (λ1,...,λK ) =K i =1

x j ∈λi 

d 2ij    (28)

Antanas Verikas   Soft Sensors for Monitoring