slides7-18

17
7/21/2019 slides7-18 http://slidepdf.com/reader/full/slides7-18 1/17 Span, Linear Independence, Dimension Math 240 Spanning sets Linear independence Bases and Dimension  Span, Linear Independence, and Dimension Math 240 — Calculus III Summer 2013, Session II Thursday, July 18, 2013

Upload: maruthi-ram

Post on 04-Mar-2016

6 views

Category:

Documents


0 download

DESCRIPTION

slides

TRANSCRIPT

Page 1: slides7-18

7/21/2019 slides7-18

http://slidepdf.com/reader/full/slides7-18 1/17

Span, Linear

Independence,

Dimension

Math 240

Spanning sets

Linear

independence

Bases andDimension

  Span, Linear Independence, and Dimension

Math 240 — Calculus III

Summer 2013, Session II

Thursday, July 18, 2013

Page 2: slides7-18

7/21/2019 slides7-18

http://slidepdf.com/reader/full/slides7-18 2/17

Span, Linear

Independence,

Dimension

Math 240

Spanning sets

Linear

independence

Bases andDimension

Agenda

1.  Spanning sets

2.  Linear independence

3.  Bases and Dimension

Page 3: slides7-18

7/21/2019 slides7-18

http://slidepdf.com/reader/full/slides7-18 3/17

Span, Linear

Independence,

Dimension

Math 240

Spanning sets

Linear

independence

Bases andDimension

Recap of span

Yesterday, we saw how to construct a subspace of a vectorspace as the span of a collection of vectors.

QuestionWhat’s the span of  v1 = (1, 1)  and  v2 = (2,−1)   in  R

2?

Answer:   R2.

Today we ask, when is this subspace equal to the whole vector

space?

Page 4: slides7-18

7/21/2019 slides7-18

http://slidepdf.com/reader/full/slides7-18 4/17

Span, Linear

Independence,

Dimension

Math 240

Spanning sets

Linear

independence

Bases andDimension

Definition

DefinitionLet  V   be a vector space and  v1, . . . , vn ∈ V  . The set{v1, . . . , vn}  is a   spanning set for V    if 

span{v1, . . . , vn} =  V.

We also say that  V    is  generated  or  spanned  by  v1, . . . , vn.

TheoremLet  v1, . . . , vn  be vectors in  R

n. Then  {v1, . . . , vn}  spans  Rn

if and only if, for the matrix  A =v1   v2   · · ·   vn

, the 

linear system  Ax =  v  is consistent for every  v ∈ Rn.

Page 5: slides7-18

7/21/2019 slides7-18

http://slidepdf.com/reader/full/slides7-18 5/17

Span, Linear

Independence,

Dimension

Math 240

Spanning sets

Linear

independence

Bases andDimension

Example

Determine whether the vectors  v1 = (1,−1, 4),

v2 = (−2, 1, 3), and  v3 = (4,−3, 5)  span  R3.

Our aim is to solve the linear system  Ax =  v, where

A =

1   −2 4

−1 1   −34 3 5

  and x

 =

c1

c2c3

,

for an arbitrary  v ∈ R3. If  v = (x,y,z), reduce the augmented

matrix to

  1   −2 4   x

0 1   −1   −x − y

0 0 0 7x + 11y + z

.

This has a solution only when  7x + 11y + z = 0. Thus, thespan of these three vectors is a plane; they do not span  R

3.

Page 6: slides7-18

7/21/2019 slides7-18

http://slidepdf.com/reader/full/slides7-18 6/17

Page 7: slides7-18

7/21/2019 slides7-18

http://slidepdf.com/reader/full/slides7-18 7/17

Span, Linear

Independence,

Dimension

Math 240

Spanning sets

Linear

independence

Bases andDimension

Definition

Definition

A set of vectors  {v1, . . . , vn} is said to be  linearly dependentif there are scalars  c1, . . . , cn,  not all zero , such that

c1v1 + c2v2 + · · · + cnvn  =  0.

Such a linear combination is called a   linear dependence

relation or a  linear dependency. The set of vectors is   linearlyindependent if the  only  linear combination producing  0   is thetrivial one with  c1 = · · · =  cn  = 0.

Example

Consider a set consisting of a single vector  v.   If  v =  0  then  {v}   is linearly dependent because, for

example,  1v =  0.

  If  v =  0  then the only scalar  c  such that  cv =  0   is  c = 0.

Hence,  {v

}   is linearly independent.

Page 8: slides7-18

7/21/2019 slides7-18

http://slidepdf.com/reader/full/slides7-18 8/17

Page 9: slides7-18

7/21/2019 slides7-18

http://slidepdf.com/reader/full/slides7-18 9/17

Span, Linear

Independence,

Dimension

Math 240

Spanning sets

Linear

independence

Bases andDimension

Practice

1.  Find a linear dependency among the vectors

f 1(x) = 1, f 2(x) = 2 sin2 x, f 3(x) = −5cos2 x

in the vector space  C 0(R).

2.   If  v1 = (1, 2,−1),  v2 = (2,−1, 1), and  v3 = (8, 1, 1),

show that  {v1, v2,v3}   is linearly dependent in  R3 byexhibiting a linear dependency.

Proposition

Any set of vectors that are not all zero contains a linearly 

independent subset with the same span.

Proof.Remove  0  and any vectors that are linear combinations of theothers.   Q.E .D.

Page 10: slides7-18

7/21/2019 slides7-18

http://slidepdf.com/reader/full/slides7-18 10/17

Page 11: slides7-18

7/21/2019 slides7-18

http://slidepdf.com/reader/full/slides7-18 11/17

Span, Linear

Independence,

Dimension

Math 240

Spanning sets

Linear

independence

Bases andDimension

Linear independence of functions

Definition

A set of functions  {f 1, f 2, . . . , f  n}   is   linearly independent onan interval  I   if the only values of the scalars  c1, c2, . . . , cnsuch that

c1f 1(x) + c2f 2(x) + · · · + cnf n(x) = 0  for all  x ∈ I 

are c1 = c2 = · · · = cn  = 0.

DefinitionLet  f 1, f 2, . . . , f  n ∈ C n−1(I ). The   Wronskian  of thesefunctions is

W [f 1, . . . , f  n](x) =

f 1(x)   f 2(x)   · · ·   f n(x)f 1(x)   f 2(x)   · · ·   f n(x)

...  ...

  . . .  ...

f (n−1)1   (x)   f 

(n−1)2   (x)   · · ·   f 

(n−1)n   (x)

.

Page 12: slides7-18

7/21/2019 slides7-18

http://slidepdf.com/reader/full/slides7-18 12/17

Span, Linear

Independence,

Dimension

Math 240

Spanning sets

Linear

independence

Bases andDimension

Linear independence of functions

TheoremLet  f 1, f 2, . . . , f  n ∈ C n−1(I ). If   W [f 1, f 2, . . . , f  n]   is nonzero at 

some point in  I   then {f 1, . . . , f  n}  is linearly independent on  I .

Remarks

1.   In order for  {f 1, . . . , f  n}  to be linearly independent on  I ,it is enough for  W [f 1, . . . , f  n]  to be nonzero at a singlepoint.

2.  The theorem  does not say  that the set is linearlydependent if  W [f 1, . . . , f  n](x) = 0  for all  x ∈  I .

3.  The Wronskian will be more useful in the case wheref 1, . . . , f  n  are the solutions to a differential equation, inwhich case it will completely determine their lineardependence or independence.

Page 13: slides7-18

7/21/2019 slides7-18

http://slidepdf.com/reader/full/slides7-18 13/17

Span, Linear

Independence,

Dimension

Math 240

Spanning sets

Linear

independence

Bases andDimension

Minimal spanning sets

Since we can remove vectors from a linearly dependent set

without changing the span, a “minimal spanning set” should belinearly independent.

DefinitionA set of vectors {v1,v2, . . . , vn} in a vector space  V    is called abasis  (plural  bases) for  V    if 

1.  The vectors are linearly independent.

2.   They span  V  .

Examples

1.   The  standard basis  for  Rn is

e1 = (1, 0, 0, . . . ),   e2 = (0, 1, 0, . . . ), . . .

2.  Any linearly independent set is a basis for its span.

Page 14: slides7-18

7/21/2019 slides7-18

http://slidepdf.com/reader/full/slides7-18 14/17

Page 15: slides7-18

7/21/2019 slides7-18

http://slidepdf.com/reader/full/slides7-18 15/17

Span, Linear

Independence,

Dimension

Math 240

Spanning sets

Linearindependence

Bases andDimension

Dimension

R3 has a basis with 3 vectors. Could any basis have more?

Suppose  v1,v2, . . . , vn  is another basis for  R3 and  n > 3.Express each  v j   as

vi  = (v1 j , v2 j , v3 j) = v1 je1 + v2 je2 + v3 je3.

If A =

v1   v2   · · ·   vn

 = [vij ]

then the system  Ax =  0  has a nontrivial solution becauserank(A) ≤ 3. Such a nontrivial solution is a linear dependency

among v

1,v2, . . . ,

vn, so in fact they do not form a basis.

TheoremIf a vector space has a basis consisting of    m  vectors, then any 

set of more than  m  vectors is linearly dependent.

S Li

Page 16: slides7-18

7/21/2019 slides7-18

http://slidepdf.com/reader/full/slides7-18 16/17

Span, Linear

Independence,

Dimension

Math 240

Spanning sets

Linearindependence

Bases andDimension

Dimension

Corollary

Any two bases for a single vector space have the same number 

of elements.

Definition

The number of elements in any basis is the dimension

 of thevector space. We denote it  dim V  .

Examples

1.   dim Rn = n

2.   dim M m×n(R) = mn3.   dim P n  = n + 1

4.   dim P   = ∞

5.   dim C k(I ) = ∞6.   dim{0} = 0

A vector space is called  finite dimensional if it has a basis witha finite number of elements, or  infinite dimensional  otherwise.

S Li Di i

Page 17: slides7-18

7/21/2019 slides7-18

http://slidepdf.com/reader/full/slides7-18 17/17

Span, Linear

Independence,

Dimension

Math 240

Spanning sets

Linearindependence

Bases andDimension

Dimension

TheoremIf   dim V    = n, then any set of    n   linearly independent vectors in

V    is a basis.

TheoremIf   dim V    = n, then any set of    n  vectors that spans  V    is a basis.

Corollary

If   S  is a subspace of a vector space  V    then

dim S  ≤ dim V  

and  S  = V    only if    dim S  = dim V  .