slides sales-forecasting-session2-web

76

Upload: arthur-charpentier

Post on 22-Nov-2014

422 views

Category:

Documents


1 download

DESCRIPTION

 

TRANSCRIPT

Page 1: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Sales forecasting # 2

Arthur Charpentier

[email protected]

1

Page 2: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Agenda

Qualitative and quantitative methods, a very general introduction

• Series decomposition

• Short versus long term forecasting

• Regression techniques

Regression and econometric methods

• Box & Jenkins ARIMA time series method

• Forecasting with ARIMA series

Practical issues : forecasting with MSExcel

2

Page 3: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition

0 20 40 60 80

1500

020

000

2500

030

000

A13 Highway

3

Page 4: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition

0 20 40 60 80

1500

020

000

2500

030

000

A13 Highway

4

Page 5: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition

0 20 40 60 80

−500

00

5000

A13 Highway, removing trending

5

Page 6: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition

●●

●●

●●

●●

● ●

●●

●●

● ●

● ●

● ●

● ●

● ●

● ●

●● ●

●●

● ●

2 4 6 8 10 12

−500

00

5000

A13 Highway, removing trending

Months

6

Page 7: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition

●●

●●

●●

●●

● ●

●●

●●

● ●

● ●

● ●

● ●

● ●

● ●

●● ●

●●

● ●

2 4 6 8 10 12

−500

00

5000

A13 Highway, removing trending

Months

7

Page 8: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition

0 20 40 60 80

1500

020

000

2500

030

000

A13 Highway: trend and cycle

8

Page 9: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

0 20 40 60 80

−300

0−1

000

010

0020

00

A13 Highway: random part

9

Page 10: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

0 20 40 60 80

−300

0−1

000

010

0020

00

A13 Highway: random part

10

Page 11: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

0 20 40 60 80

−300

0−1

000

010

0020

00

A13 Highway: random part

11

Page 12: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition

0 20 40 60 80 100

1500

020

000

2500

030

000

A13 Highway, prediction

12

Page 13: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition

0 20 40 60 80 100

1500

020

000

2500

030

000

A13 Highway, prediction

13

Page 14: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

0 20 40 60 80

−200

0−1

000

010

0020

00

A13 Highway: random part (v2)

14

Page 15: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

0 20 40 60 80

−200

0−1

000

010

0020

00

A13 Highway: random part (v2)

15

Page 16: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition, modeling the random part

Histogram of residuals (v2)

Den

sity

−3000 −2000 −1000 0 1000 2000

0e+0

02e

−04

4e−0

4

16

Page 17: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition, modeling the random part

●●

●●

●●

● ●

●●

●●●

●●

●●

●●

●●

−2 −1 0 1 2

−200

0−1

000

010

0020

00

Normal QQ plot of residuals (v2)

Theoretical Quantiles

Sam

ple

Qua

ntile

s

17

Page 18: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition, forecasting

0 20 40 60 80 100

1500

020

000

2500

030

000

A13 Highway, forecast scenario

●●

●●

●●

●●

●●

18

Page 19: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition, forecasting

0 20 40 60 80 100

1500

020

000

2500

030

000

A13 Highway, forecast scenario

●●

●●

●●

●●

●●●

19

Page 20: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition, forecasting

0 20 40 60 80 100

1500

020

000

2500

030

000

A13 Highway, forecast scenario

●●

●●

●●

●●

●●

●●

●●

20

Page 21: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition, forecasting

0 20 40 60 80 100

1500

020

000

2500

030

000

A13 Highway, forecast scenario

●●

●●

●●

21

Page 22: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition, modeling the seasonal

componant

●●

●●

●●

●●

● ●

●●

●●

● ●

● ●

● ●

● ●

● ●

● ●

●● ●

●●

● ●

2 4 6 8 10 12

−500

00

5000

A13 Highway, removing trending

Months

22

Page 23: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition, modeling the seasonal

componant

0 20 40 60 80

1500

020

000

2500

030

000

A13 Highway: trend and cycle

23

Page 24: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition, modeling the seasonal

componant

●●

●●●

●●

●●

●●

●●

●●

●●

●●

0 20 40 60 80

−400

0−2

000

020

0040

00

A13 Highway: random part

24

Page 25: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Modeling the random component

The unpredictible random component is the key element when forecasting. Most

of the uncertainty comes from this random component εt.

The lower the variance, the smaller the uncertainty on forecasts.

The general theoritical framework related to randomness of time series is related

to weakly stationary.

25

Page 26: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

De�ning stationarity

Time series (Xt) is weakly stationary if

� for all t, E(X2t

)< +∞,

� for all t, E (Xt) = µ, constant independent of t,

� for all t and for all h, cov (Xt, Xt+h) = E ([Xt − µ] [Xt+h − µ]) = γ (h),independent of t.

Function γ (·) is called autocovariance function.

Given a stationary series (Xt) , de�ne the autocovariance function, as

h 7→ γX (h) = cov (Xt, Xt−h) = E (XtXt−h)− E (Xt) .E (Xt−h) .

and de�ne the autocorrelation function, as

h 7→ ρX (h) = corr (Xt, Xt−h) =cov (Xt, Xt−h)√V (Xt)

√V (Xt−h)

=γX (h)γX (0)

.

26

Page 27: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

De�ning stationarity

A process (Xt) is said to be strongly stationary if for all t1, ..., tn and h we have

the following law equality

L (Xt1 , ..., Xtn) = L (Xt1+h, ..., Xtn+h) .

A time series (εt) is a white noise if all autocovariances are null, i.e. γ (h) = 0 for

all h 6= 0. Thus, a process (εt) is a white noise if it is stationary, centred and

noncorrelated, i.e.

E (εt) = 0, V (εt) = σ2 and ρε (h) = 0 for any h 6= 0.

27

Page 28: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Statistical issues

Consider a set of observations {X1, ..., XT }.

The empirical mean is de�ned as

XT =1T

T∑t=1

Xt.

The empirical autocovariance function is de�ned as

γ̂T (h) =1

T − h

T−h∑t=1

(Xt −XT

) (Xt−h −XT

),

while the empirical autocorrelation function is de�ned as

ρ̂T (h) =γ̂T (h)γ̂T (0)

.

Remark those estimators can be biased, but asymptotically unbiased. More

precisely γ̂T (h)→ γ (h) and ρ̂T (h)→ ρ (h) as T →∞.

28

Page 29: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Backward and forward operators

De�ne the lag operator L (or B for backward) the linear operator de�ned as

L : Xt 7−→ L (Xt) = LXt = Xt−1,

and the forward operator F ,

F : Xt 7−→ F (Xt) = FXt = Xt+1,

Note that L ◦ F = F ◦ L = I (identity operator) and further F = L−1 and

L = F−1.

� it is possible to compose those operators : L2 = L ◦ L, and more generally

Lp = L ◦ L ◦ ... ◦ L︸ ︷︷ ︸ where p ∈ N

with convention L0 = I. Note that Lp (Xt) = Xt−p.

� Let A denote a polynom,A (z) = a0 + a1z + a2z2 + ...+ apz

p. Then A (L) is the

29

Page 30: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

operator

A (L) = a0I + a1L+ a2L2 + ...+ apL

p =p∑k=0

akLk.

Let (Xt) denote a time series. Series (Yt) de�ned by Yt = A (L)Xt satis�es

Yt = A (L)Xt =p∑k=0

akXt−k.

or, more generally, assuming that we can formally the limit,

A (z) =∞∑k=0

akzk et A (L) =

∞∑k=0

akLk.

30

Page 31: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Backward and forward operators

Note that for all moving average A and B, thenA (L) +B (L) = (A+B) (L)

α ∈ R, αA (L) = (αA) (L)

A (L) ◦B (L) = (AB) (L) = B (L) ◦A (L) .

Moving average C = AB = BA satis�es( ∞∑k=0

akLk

)◦

( ∞∑k=0

bkLk

)=

( ∞∑i=0

ciLi

)où ci =

i∑k=0

akbi−k.

31

Page 32: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Geometry and probability

Recall that it is possible to de�ne an inner product in L2 (space of squared

integrable variables, i.e. �nite variance),

< X,Y >= E ([X − E(X)] · [Y − E(Y )]) = cov([X − E(X)], [Y − E(Y )])

Then the associated norm is ||X||2 = E([X − E(X)]2

)= V (X).

Two random variables are then orthogonal if < X,Y >= 0, i.e.cov([X − E(X)], [Y − E(Y )]) = 0.

Hence conditional expectation is simply a projection in the L2, E(X|Y ) is the theprojection is the space generated by Y of random variable X, i.e.

E(X|Y ) = φ(Y ), such that

� X − φ(Y ) ⊥ X, i.e. < X − φ(Y ), X >= 0,� φ(Y ) = Z∗ = argmin{Z = h(Y ), ||X − Z||2}� E(φ(Y )) <∞.

32

Page 33: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Linear projection

The conditional expectation E(X|Y ) is a projection if the set of all functions

{h(Y )}.

In linear regression, the projection if made in the subset of linear functions h(·).

We call this linear function conditional linear expectation, or linear projection,

denoted EL(X|Y ).

In purely endogeneous models, the best forecast for XT+1 given past

informations {XT , XT−1, XT−2, · · · , XT−h, ...} is

X̂T+1 = E(XT+1|{XT , XT−1, XT−2, · · · , XT−h, · · · }) = φ(XT , XT−1, XT−2, · · · , XT−h, · · · ).

Since estimating a nonlinear function is di�cult (especially in high dimension),

we focus on linear functions, i.e. autoregressive models,

X̂T+1 = EL(XT+1|{XT , XT−1, XT−2, · · · , XT−h, · · · }) = α0XT+α1XT−1+α2XT−2+· · ·+αhXT−h+· · · .

33

Page 34: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

De�ning partial autocorrelations

Given a stationary series (Xt), de�ne the partial autocorrelation function

h 7→ ψX (h) as

ψX (h) = corr(X̂t, X̂t−h

),

where X̂t−h = Xt−h − EL (Xt−h|Xt−1, ..., Xt−h+1)

X̂t = Xt − EL (Xt|Xt−1, ..., Xt−h+1) .

34

Page 35: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition, modeling the random part

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

0 20 40 60 80

−200

0−1

000

010

0020

00

A13 Highway: random part (v2)

35

Page 36: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition, modeling the random part

0 5 10 15

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Lag

AC

F

Autocorrelations of residuals (v2)

36

Page 37: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition, modeling the random part

5 10 15

−0.2

−0.1

0.0

0.1

0.2

Lag

Par

tial A

CF

Partial autocorrelations of residuals (v2)

37

Page 38: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition, modeling the detrended series

0 20 40 60 80

−500

00

5000

A13 Highway, removing trending

38

Page 39: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition, modeling the detrended series

0 5 10 15 20 25 30 35

−0.5

0.0

0.5

1.0

Lag

AC

F

Autocorrelations of detrended series

39

Page 40: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition, modeling the detrended series

0 5 10 15 20 25 30 35

−0.4

−0.2

0.0

0.2

0.4

0.6

Lag

Par

tial A

CF

Partial autocorrelations of detrended series

40

Page 41: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition, modeling Yt = Xt −Xt−12

0 10 20 30 40 50 60 70

−300

0−1

000

010

0020

00

A13 Highway: lagged detrended series

41

Page 42: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition, modeling Yt = Xt −Xt−12

0 10 20 30 40 50 60 70

−300

0−1

000

010

0020

00

A13 Highway: lagged detrended series

42

Page 43: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition, modeling Yt = Xt −Xt−12

0 5 10 15 20 25 30 35

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Lag

AC

F

Autocorrelations of lagged detrended series

43

Page 44: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition, modeling Yt = Xt −Xt−12

0 5 10 15 20 25 30 35

−0.2

−0.1

0.0

0.1

0.2

Lag

Par

tial A

CF

Partial autocorrelations of lagged detrended series

44

Page 45: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition, forecasting

A13 Highway: forecasting detrended series (ARMA)

1990 1992 1994 1996 1998 2000

−500

00

5000

●●

●●

●●

●●

●●

45

Page 46: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition, forecasting

A13 Highway: forecasting detrended series (ARMA)

1990 1992 1994 1996 1998 2000

−500

00

5000

●●

●●

●●

●●

●●

●●

●●

●●

46

Page 47: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

47

Page 48: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Estimating autocorrelations with MSExcel

48

Page 49: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

A white noise

A white noise is de�ned as a centred process (E(εt) = 0), stationary(V (εt) = σ2), such that cov (εt, εt−h) = 0 for all h 6= 0.

The so-called Box-Pierce test can be used to test H0 : ρ (1) = ρ (2) = ... = ρ (h) = 0

Ha : there exists i such that ρ (i) 6= 0.

The idea is to use

Qh = Th∑k=1

ρ̂2k,

where h is the lag number and T the total number of observations.

Under H0, Qh has a χ2 distribution, with h degrees of freedom.

49

Page 50: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

A white noise

Another statistics with better properties is a modi�ed version of Q,

Q′h = T (T + 2)h∑k=1

ρ̂2k

T − k,

Most of the softwares return Qh for h = 1, 2, · · · , and the associated p-value. If p

exceeds 5% (the standard signi�cance level) we feel con�dent in accepting H0,

while if p is less than 5% , we should reject H0.

50

Page 51: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

A white noise

0 100 200 300 400 500

−2

−1

01

23

Simulated white noise

0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

Lag

AC

F

White noise autocorrelations

0 10 20 30 40

−0.

6−

0.4

−0.

20.

00.

20.

40.

6

Lag

Par

tial A

CF

White noise partial autocorrelations

51

Page 52: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition, testing for white noise

Box−Pierce statistic, testing for white noise on lagged detrended series

5 10 15 20

05

1015

20

0.0

0.2

0.4

0.6

0.8

1.0

Q B

ox−P

ierc

e st

atis

tics

p−va

lue

52

Page 53: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Time series decomposition, testing for white noise

Box−Pierce statistic, testing for white noise on residuals (v2)

5 10 15 20

010

2030

4050

60

0.0

0.2

0.4

0.6

0.8

1.0

Q B

ox−P

ierc

e st

atis

tics

p−va

lue

53

Page 54: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Autoregressive process AR(p)

We call autoregressive process of order p, denoted AR (p), a stationnary process

(Xt) satisfying equation

Xt −p∑i=1

φiXt−i = εt for all t ∈ Z, (1)

where the φi's are real-valued coe�cients and where (εt) is a white noise process

with variance σ2. (1) is equivalent to

Φ (L)Xt = εt where Φ (L) = I− φ1L− · · · − φpLp

54

Page 55: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Autoregressive process AR(1), order 1

The general expression for AR (1) process is

Xt − φXt−1 = εt for all t ∈ Z,

where (εt) is a white noise with variance σ2.

If φ = ±1, process (Xt) is not stationary. E.g. if φ = 1, Xt = Xt−1 + εt (called

random walk) can be written

Xt −Xt−h = εt + εt−1 + ...+ εt−h+1,

and thus E (Xt −Xt−h)2 = hσ2.

But it is possible to prove that for any stationary process

E (Xt −Xt−h)2 ≤ 4V (Xt). Since it is impossible to have for any h,

hσ2 ≤ 4V (Xt), it means that the process cannot be stationary.

55

Page 56: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Autoregressive process AR(1), order 1

If |φ| < 1 it is possible to invert the polynomial lag operator

Xt = (1− φL)−1εt =

∞∑i=0

φiεt−i (as a function of the past) (εt) ). (2)

For a stationary process,the aucorelation function is given by ρ (h) = φh.

Further, ψ(1) = φ and ψ(h) = 0 for h ≥ 2.

56

Page 57: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

A AR(1) process, Xt = 0.7Xt−1 + εt

Simulated AR(1)

0 100 200 300 400 500

−4

−2

02

0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

Lag

AC

F

AR(1) autocorrelations

0 10 20 30 40

−0.

6−

0.4

−0.

20.

00.

20.

40.

6

Lag

Par

tial A

CF

AR(1) partial autocorrelations

57

Page 58: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

A AR(1) process, Xt = 0.4Xt−1 + εt

Simulated AR(1)

0 100 200 300 400 500

−3

−2

−1

01

23

0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

Lag

AC

F

AR(1) autocorrelations

0 10 20 30 40

−0.

6−

0.4

−0.

20.

00.

20.

40.

6

Lag

Par

tial A

CF

AR(1) partial autocorrelations

58

Page 59: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

A AR(1) process, Xt = −0.5Xt−1 + εt

Simulated AR(1)

0 100 200 300 400 500

−2

02

4

0 10 20 30 40

−0.

50.

00.

51.

0

Lag

AC

F

AR(1) autocorrelations

0 10 20 30 40

−0.

6−

0.4

−0.

20.

00.

20.

40.

6

Lag

Par

tial A

CF

AR(1) partial autocorrelations

59

Page 60: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

A AR(1) process, Xt = 0.99Xt−1 + εt

Simulated AR(1)

0 100 200 300 400 500

−10

−5

05

10

0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

Lag

AC

F

AR(1) autocorrelations

0 10 20 30 40

−0.

6−

0.4

−0.

20.

00.

20.

40.

6

Lag

Par

tial A

CF

AR(1) partial autocorrelations

60

Page 61: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Autoregressive process AR(2), order 2

Those processes are also called Yule process, and they satisfy(1− φ1L− φ2L

2)Xt = εt,

where the roots of Φ (z) = 1− φ1z − φ2z2 are assumed to lie outside the unit

circle, i.e. 1− φ1 + φ2 > 0

1 + φ1 − φ2 > 0

φ21 + 4φ2 > 0,

61

Page 62: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Autoregressive process AR(2), order 2

Autocorrelation function satis�es equation

ρ (h) = φ1ρ (h− 1) + φ2ρ (h− 2) for any h ≥ 2,

and the partial autocorrelation function satis�es

ψ (h) =

ρ (1) for h = 1[ρ (2)− ρ (1)2

]/[1− ρ (1)2

]for h = 2

0 for h ≥ 3.

62

Page 63: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

A AR(2) process, Xt = 0.6Xt−1 − 0.35Xt−2 + εt

Simulated AR(2)

0 100 200 300 400 500

−4

−2

02

0 10 20 30 40

−0.

20.

00.

20.

40.

60.

81.

0

Lag

AC

F

AR(2) autocorrelations

0 10 20 30 40

−0.

6−

0.4

−0.

20.

00.

20.

40.

6

Lag

Par

tial A

CF

AR(2) partial autocorrelations

63

Page 64: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

A AR(2) process, Xt = −0.4Xt−1 − 0.5Xt−2 + εt

Simulated AR(2)

0 100 200 300 400 500

−4

−2

02

0 10 20 30 40

−0.

4−

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Lag

AC

F

AR(2) autocorrelations

0 10 20 30 40

−0.

6−

0.4

−0.

20.

00.

20.

40.

6

Lag

Par

tial A

CF

AR(2) partial autocorrelations

64

Page 65: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Moving average process MA(q)

We call moving average process of order q, denoted MA (q), a stationnary

process (Xt) satisfying equation

Xt = εt +q∑i=1

θiεt−i for all t ∈ Z, (3)

where the θi's are real-valued coe�cients, and process (εt) is a white noise

process with variance σ2. (3) processes can be written equivalently

Xt = Θ (L) εt whereΘ (L) = I + θ1L+ ...+ θqLq.

The autocovariance function satis�es

γ (h) = E (XtXt−h)

= E ([εt + θ1εt−1 + ...+ θqεt−q] [εt−h + θ1εt−h−1 + ...+ θqεt−h−q])

=

[θh + θh+1θ1 + ...+ θqθq−h]σ2 if 1 ≤ h ≤ q0 if h > q,

65

Page 66: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Moving average process MA(q)

If h = 0, then γ (0) =[1 + θ21 + θ22 + ...+ θ2q

]σ2. This equation can be written

γ (k) = σ2

q∑j=0

θjθj+k with convention θ0 = 1.

Autocovariance function satis�es

ρ (h) =θh + θh+1θ1 + ...+ θqθq−h

1 + θ21 + θ22 + ...+ θ2qif 1 ≤ h ≤ q,

and ρ (h) = 0 if h > q.

66

Page 67: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Moving average process MA(1), order 1

The general expression of MA (1) is

Xt = εt + θεt−1, for all t ∈ Z,

where (εt) is a white noise with variance σ2. Autocorrelations are given by

ρ (1) =θ

1 + θ2, and ρ (h) = 0, for h ≥ 2.

Note that −1/2 ≤ ρ (1) ≤ 1/2 : MA (1) processes only have small

autocorrelations.

Partial autocorrelation of order h is given by

ψ (h) =(−1)h θh

(θ2 − 1

)1− θ2(h+1)

.

67

Page 68: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

A MA(1) process, Xt = εt + 0.7εt−1

Simulated MA(1)

0 100 200 300 400 500

−3

−2

−1

01

23

0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

Lag

AC

F

MA(1) autocorrelations

0 10 20 30 40

−0.

6−

0.4

−0.

20.

00.

20.

40.

6

Lag

Par

tial A

CF

MA(1) partial autocorrelations

68

Page 69: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

A MA(1) process, Xt = εt − 0.6εt−1

Simulated MA(1)

0 100 200 300 400 500

−3

−2

−1

01

23

0 10 20 30 40

−0.

50.

00.

51.

0

Lag

AC

F

MA(1) autocorrelations

0 10 20 30 40

−0.

6−

0.4

−0.

20.

00.

20.

40.

6

Lag

Par

tial A

CF

MA(1) partial autocorrelations

69

Page 70: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Autoregressive moving average process ARMA(p, q)

We call autoregressive moving average process of orders p and q, denoted

ARMA (p, q), a stationnary process (Xt) satisfying equation

Xt =p∑j=1

φjXt−j + εt +q∑i=1

θiεt−i for all t ∈ Z, (4)

where the φj 's and θi's are real-valued coe�cients, and process (εt) is a white

noise process with variance σ2. (4) processes can be written equivalently

Φ (L)Xt = Θ (L) εt,

where Φ (L) = I− φ1L− ...− φqLq and Θ (L) = I + θ1L+ ...+ θqLq .

70

Page 71: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Autoregressive moving average process ARMA(p, q)

Note that under some technical assumptions, one can write

Xt = Φ−1 (L) ◦Θ (L) εt,

i.e. the ARMA(p, q) process is also an MA(∞) process, and

Φ (L) ◦Θ−1 (L)Xt = εt,

i.e. the ARMA(p, q) process is also an AR(∞) process.

Wald's theorem claims that any stationary process (satisfying further technical

conditions) can be written as a MA process.

More generally, in practice, a stationary series can be modeled either by an

AR(p) process, a MA(q), or an ARMA(p′, q′) whith p < p′ and q < q′.

71

Page 72: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

A ARMA(1, 1) process, Xt = 0.7Xt−1εt − 0.6εt−1

Simulated ARMA(1,1)

0 100 200 300 400 500

−2

−1

01

23

0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

Lag

AC

F

ARMA(1,1) autocorrelations

0 10 20 30 40

−0.

6−

0.4

−0.

20.

00.

20.

40.

6

Lag

Par

tial A

CF

ARMA(1,1) partial autocorrelations

72

Page 73: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

A ARMA(2, 1) process, Xt = 0.7Xt−1 − 0.2Xt−2εt − 0.6εt−1

Simulated ARMA(2,1)

0 100 200 300 400 500

−2

02

4

0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

Lag

AC

F

ARMA(2,1) autocorrelations

0 10 20 30 40

−0.

6−

0.4

−0.

20.

00.

20.

40.

6

Lag

Par

tial A

CF

ARMA(2,1) partial autocorrelations

73

Page 74: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Fitting ARMA processes with MSExcel

74

Page 75: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Forecasting with AR(1) processes

Consider an AR (1) process, Xt = µ+ φXt−1 + εt then

• TX∗T+1 = µ+ φXT ,

• TX∗T+2 = µ+ φ.TX

∗T+1 = µ+ φ [µ+ φXT ] = µ [1 + φ] + φ2XT ,

• TX∗T+3 = µ+ φ.TX

∗T+2 = µ+ φ [µ+ φ [µ+ φXT ]] = µ

[1 + φ+ φ2

]+ φ3XT ,

and recursively TX∗T+h can be written

TX∗T+h = µ+ φ.TX

∗T+h−1 = µ

[1 + φ+ φ2 + ...+ φh−1

]+ φhXT .

or equivalently

TX∗T+h =

µ

φ+ φh

[XT −

µ

φ

]= µ

1− φh

1− φ︸ ︷︷ ︸1+φ+φ2+...+φh−1

+ φhXT .

75

Page 76: Slides sales-forecasting-session2-web

Arthur CHARPENTIER - Sales forecasting.

Forecasting with AR(1) processes

The forecasting error made at time T for horizon h is

T∆h = TX∗T+h −XT+h =T X

∗T+h − [φXT+h−1 + µ+ εT+h]

= ...

= TX∗T+h −

[φh1XT +

(φh−1 + ...+ φ+ 1

+εT+h + φεT+h−1 + ...+ φh−1εT+1,

(6)

thus, T∆h = εT+h + φεT+h−1 + ...+ φh−1εT+1, with variance having variance

V̂ =[1 + φ2 + φ4 + ...+ φ2h−2

]σ2, where V (εt) = σ2.

thus, variance of the forecast error increasing with horizon.

76