slides laval stat avril 2011

96
Arthur CHARPENTIER, transformed kernels and beta kernels Beta kernels and transformed kernels applications to copulas and quantiles Arthur Charpentier Université Rennes 1 [email protected] http ://freakonometrics.blog.free.fr/ Statistical seminar, Université Laval, Québec, April 2011 1

Upload: arthur-charpentier

Post on 22-Nov-2014

2.543 views

Category:

Documents


0 download

DESCRIPTION

 

TRANSCRIPT

Page 1: Slides laval stat avril 2011

11pt

11pt

Note Exemple Exemple

11pt

Preuve

Arthur CHARPENTIER, transformed kernels and beta kernels

Beta kernels and transformed kernelsapplications to copulas and quantiles

Arthur Charpentier

Université Rennes 1

[email protected]

http ://freakonometrics.blog.free.fr/

Statistical seminar, Université Laval, Québec, April 2011

1

Page 2: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Agenda• General introduction and kernel based estimation

Copula density estimation

• Kernel based estimation and bias• Beta kernel estimation• Transforming observations

Quantile estimation

• Parametric estimation• Semiparametric estimation, extreme value theory• Nonparametric estimation• Transforming observations

2

Page 3: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Moving histogram to estimate a densityA natural way to estimate a density at x from an i.i.d. sample {X1, · · · , Xn} is tocount (and then normalized) how many observations are in a neighborhood of x,e.g. |x−Xi| ≤ h,

3

Page 4: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Kernel based estimationInstead of a step function 1(|x−Xi| ≤ h) consider so smoother functions,

fh(x) = 1n

n∑i=1

Kh(x− xi) = 1nh

n∑i=1

K(x− xi

h

),

where K(·) is a kernel i.e. a non-negative real-valued integrable function such

that∫ +∞

−∞K(u) du = 1 so that fh(·) is a density , and K(·) is symmetric, i.e.

K(−u) = K(u).

4

Page 5: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

5

Page 6: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Standard kernels are• uniform (rectangular) K(u) = 1

2 1{|u|≤1}

• triangular K(u) = (1− |u|) 1{|u|≤1}

• Epanechnikov K(u) = 34(1− u2) 1{|u|≤1}

• Gaussian K(u) = 1√2π

exp(−1

2u2)

6

Page 7: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Standard kernels are• uniform (rectangular) K(u) = 1

2 1{|u|≤1}

• triangular K(u) = (1− |u|) 1{|u|≤1}

• Epanechnikov K(u) = 34(1− u2) 1{|u|≤1}

• Gaussian K(u) = 1√2π

exp(−1

2u2)

7

Page 8: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

word about copulasA 2-dimensional copula is a 2-dimensional cumulative distribution functionrestricted to [0, 1]2 with standard uniform margins.

Copula (cumulative distribution function) Level curves of the copula

Copula density Level curves of the copula

If C is twice differentiable, let c denote the density of the copula.

8

Page 9: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Sklar theorem : Let C be a copula, and FX and FY two marginal distributions,then F (x, y) = C(FX(x), FY (y)) is a bivariate distribution function, withF ∈ F(FX , FY ).

Conversely, if F ∈ F(FX , FY ), there exists C such thatF (x, y) = C(FX(x), FY (y). Further, if FX and FY are continuous, then C isunique, and given by

C(u, v) = F (F−1X (u), F−1

Y (v)) for all (u, v) ∈ [0, 1]× [0, 1]

We will then define the copula of F , or the copula of (X,Y ).

9

Page 10: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

MotivationExample Loss-ALAE : consider the following dataset, were the Xi’s are lossamount (paid to the insured) and the Yi’s are allocated expenses. Denote by Riand Si the respective ranks of Xi and Yi. Set Ui = Ri/n = FX(Xi) andVi = Si/n = FY (Yi).

Figure 1 shows the log-log scatterplot (logXi, log Yi), and the associate copulabased scatterplot (Ui, Vi).

Figure 2 is simply an histogram of the (Ui, Vi), which is a nonparametricestimation of the copula density.

Note that the histogram suggests strong dependence in upper tails (theinteresting part in an insurance/reinsurance context).

10

Page 11: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

1 2 3 4 5 6

12

34

5Log!log scatterplot, Loss!ALAE

log(LOSS)

log(ALAE)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Copula type scatterplot, Loss!ALAE

Probability level LOSSP

roba

bilit

y le

vel A

LAE

Figure 1 – Loss-ALAE, scatterplots (log-log and copula type).

11

Page 12: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Figure 2 – Loss-ALAE, histogram of copula type transformation.

12

Page 13: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Why nonparametrics, instead of parametrics ?In parametric estimation, assume the the copula density cθ belongs to some givenfamily C = {cθ, θ ∈ Θ}. The tail behavior will crucially depend on the tailbehavior of the copulas in C

Example : Table below show the probability that both X and Y exceed highthresholds (X > F−1

X (p) and Y > F−1Y (p)), for usual copula families, where

parameter θ is obtained using maximum likelihood techniques.

p Clayton Frank Gaussian Gumbel Clayton∗ max/min

90% 1.93500% 2.73715% 4.73767% 4.82614% 5.66878% 2.93

95% 0.51020% 0.78464% 1.99195% 2.30085% 2.78677% 5.46

99% 0.02134% 0.03566% 0.27337% 0.44246% 0.55102% 25.82

99.9% 0.00021% 0.00037% 0.01653% 0.04385% 0.05499% 261.85

Probability of exceedances, for given parametric copulas, τ = 0.5.

13

Page 14: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Figure 3 shows the graphical evolution of p 7→ P(X > F−1

X (p), Y > F−1Y (p)

). If the

original model is an multivariate student vector (X,Y ), the associated probability is theupper line. If either marginal distributions are misfitted (e.g. Gaussian assumption), orthe dependence structure is mispecified (e.g. Gaussian assumption), probabilities arealways underestimated.

14

Page 15: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

0.6 0.7 0.8 0.9 1.0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Joint probability of exceeding high quantiles

Quantile levels

Student dependence structure, Student marginsGaussian dependence structure, Student marginsStudent dependence structure, Gaussian marginsGaussian dependence structure, Gaussian margins

0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Ratios of exceeding probability

Misfitting dependence structureMisfitting marginsMisfit margins and dependence

Figure 3 – p 7→ P(X > F−1

X (p), Y > F−1Y (p)

)when (X,Y ) is a Student t random

vector, and when either margins or the dependence structure is mispectified.

15

Page 16: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Kernel estimation for bounded support densityConsider a kernel based estimation of density f ,

f(x) = 1nh

n∑i=1

K(x−Xih

),

where K is a kernel function, given a n sample X1, ..., Xn of positive random variable(Xi ∈ [0,∞[). Let K denote a symmetric kernel, then

E(f(0)) = 12f(0) +O(h)

16

Page 17: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Exponential random variables

Dens

ity

!1 0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Exponential random variables

Dens

ity

!1 0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 4 – Density estimation of an exponential density, 100 points.

17

Page 18: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

0 2 4 6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Dens

ity

!0.2 0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

Dens

ity

Figure 5 – Density estimation of an exponential density, 10, 000 points.

18

Page 19: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Kernel based estimation of the uniform density on [0,1]

Den

sity

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Kernel based estimation of the uniform density on [0,1]

D

ensi

ty

Figure 6 – Density estimation of an uniform density on [0, 1].

19

Page 20: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

How to get a proper estimation on the borderSeveral techniques have been introduce to get a better estimation on the border,

– boundary kernel (Müller (1991))– mirror image modification (Deheuvels & Hominal (1989), Schuster (1985))– transformed kernel (Devroye & Györfi (1981), Wand, Marron & Ruppert

(1991))

In the particular case of densities on [0, 1],

– Beta kernel (Brown & Chen (1999), Chen (1999, 2000)),– average of histograms inspired by Dersko (1998).

20

Page 21: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Local kernel density estimatorsThe idea is that the bandwidth h(x) can be different for each point x at which f(x) isestimated. Hence,

f(x, h(x)) = 1nh(x)

n∑i=1

K

(x−Xih(x)

),

(see e.g. Loftsgaarden & Quesenberry (1965)).

Variable kernel density estimatorsThe idea is that the bandwidth h can be replaced by n values α(Xi). Hence,

f(x, α) = 1n

n∑i=1

1α(Xi)

K

(x−Xiα(Xi)

),

(see e.g. Abramson (1982)).

21

Page 22: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

The transformed Kernel estimateThe idea was developed in Devroye & Györfi (1981) for univariate densities.

Consider a transformation T : R→ [0, 1] strictly increasing, continuously differentiable,one-to-one, with a continuously differentiable inverse.

Set Y = T (X). Then Y has density

fY (y) = fX(T−1(y)) · (T−1)′(y).

If fY is estimated by fY , then fX is estimated by

fX(x) = fY (T (x)) · T ′(x).

22

Page 23: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

−3 −2 −1 0 1 2 3

0.0

0.1

0.2

0.3

0.4

0.5

Density estimation transformed kernel

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

Density estimation transformed kernel

Figure 7 – The transform kernel principle (with a Φ−1-transformation).

23

Page 24: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

The Beta Kernel estimateThe Beta-kernel based estimator of a density with support [0, 1] at point x, is obtainedusing beta kernels, which yields

f(x) = 1n

n∑i=1

K(Xi,

u

b+ 1, 1− u

b+ 1)

where K(·, α, β) denotes the density of the Beta distribution with parameters α and β,

K(x, α, β) = Γ(α+ β)Γ(α)Γ(β)x

α−1(1− x)β−11{x∈[0,1]}.

24

Page 25: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

0.0 0.2 0.4 0.6 0.8 1.0

02

46

810

Gaussian Kernel approach

0.0 0.2 0.4 0.6 0.8 1.0

02

46

810

Beta Kernel approach

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

Density estimation using beta kernels

Figure 8 – The beta-kernel estimate.

25

Page 26: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Copula density estimation : the boundary problemLet (U1, V1), ..., (Un, Vn) denote a sample with support [0, 1]2, and with density c(u, v),which is assumed to be twice continuously differentiable on (0, 1)2.

If K denotes a symmetric kernel, with support [−1,+1], then for all(u, v) ∈ [0, 1]× [0, 1], in any corners (e.g. (0, 0))

E(c(0, 0, h)) = 14 · c(u, v)− 1

2 [c1(0, 0) + c2(0, 0)]∫ 1

0ωK(ω)dω · h+ o(h).

on the interior of the borders (e.g. u = 0 and v ∈ (0, 1)),

E(c(0, v, h)) = 12 · c(u, v)− [c1(0, v)]

∫ 1

0ωK(ω)dω · h+ o(h).

and in the interior ((u, v) ∈ (0, 1)× (0, 1)),

E(c(u, v, h)) = c(u, v) + 12 [c1,1(u, v) + c2,2(u, v)]

∫ 1

−1ω2K(ω)dω · h2 + o(h2).

On borders, there is a multiplicative bias and the order of the bias is O(h) (while it isO(h2) in the interior).

26

Page 27: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

If K denotes a symmetric kernel, with support [−1,+1], then for all(u, v) ∈ [0, 1]× [0, 1], in any corners (e.g. (0, 0))

V ar(c(0, 0, h)) = c(0, 0)(∫ 1

0K(ω)2dω

)2

· 1nh2 + o

( 1nh2

).

on the interior of the borders (e.g. u = 0 and v ∈ (0, 1)),

V ar(c(0, v, h)) = c(0, v)(∫ 1

−1K(ω)2dω

)(∫ 1

0K(ω)2dω

)· 1nh2 + o

( 1nh2

).

and in the interior ((u, v) ∈ (0, 1)× (0, 1)),

V ar(c(u, v, h)) = c(u, v)(∫ 1

−1K(ω)2dω

)2

d · 1nh2 + o

( 1nh2

).

27

Page 28: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

0.2 0.4 0.6 0.8

0.2

0.4

0.60.8

0

1

2

3

4

5

Estimation of Frank copula

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 9 – Theoretical density of Frank copula.

28

Page 29: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

0.2 0.4 0.6 0.8

0.2

0.40.60.8

0

1

2

3

4

5

Estimation of Frank copula

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10 – Estimated density of Frank copula, using standard Gaussian (inde-pendent) kernels, h = h∗.

29

Page 30: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Transformed kernel techniqueConsider the kernel estimator of the density of the (Xi, Yi) = (G−1(Ui), G−1(Vi))’s,where G is a strictly increasing distribution function, with a differentiable density.

Since density f is continuous, twice differentiable, and bounded above, for all(x, y) ∈ R2,

f(x, y) = 1nh2

n∑i=1

K(x−Xih

)K(y − Yih

),

satisfiesE(f(x, y)) = f(x, y) +O(h2),

as long as∫ωK(ω) = 0. And the variance is

V ar(f(x, y)) = f(x, y)nh2

(∫K(ω)2dω

)2

+ o( 1nh2

),

and asymptotic normality can be obtained,

√nh2

(f(x, y)− E(f(x, y))

)L→ N (0, f(x, y)

(∫K(ω)2dω

)2

).

30

Page 31: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Sincef(x, y) = g(x)g(y)c[G(x), G(y)]. (1)

can be inverted in

c(u, v) = f(G−1(u), G−1(v))g(G−1(u))g(G−1(v)) , (u, v) ∈ [0, 1]× [0, 1], (2)

one gets, substituting f in (2)

c(u, v) = 1nh · g(G−1(u)) · g(G−1(v))

n∑i=1

K

(G−1(u)−G−1(Ui)

h,G−1(v)−G−1(Vi)

h

),

(3)

Therefore,

E(c(u, v, h)) = c(u, v) + o(h)g(G−1(u))g(G−1(v)) .

31

Page 32: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Similarly,

V ar(c(u, v, h)) = 1g(G−1(u))g(G−1(v))

[c(u, v)nh2

(∫K(ω)2dω

)2]

+ 1g(G−1(u))2g(G−1(v))2 o

( 1nh2

).

32

Page 33: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

0.2 0.4 0.6 0.8

0.2

0.4

0.60.8

0

1

2

3

4

5

Estimation of Frank copula

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Figure 11 – Estimated density of Frank copula, using a Gaussian kernel, after aGaussian normalization.

33

Page 34: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

0.2 0.4 0.6 0.8

0.2

0.4

0.60.8

0

1

2

3

4

5

Estimation of Frank copula

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Figure 12 – Estimated density of Frank copula, using a Gaussian kernel, after aStudent normalization, with 5 degrees of freedom.

34

Page 35: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

0.2 0.4 0.6 0.8

0.2

0.4

0.60.8

0

1

2

3

4

5

Estimation of Frank copula

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Figure 13 – Estimated density of Frank copula, using a Gaussian kernel, after aStudent normalization, with 3 degrees of freedom.

35

Page 36: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Bivariate Beta kernelsThe Beta-kernel based estimator of the copula density at point (u, v), is obtained usingproduct beta kernels, which yields

c(u, v) = 1n

n∑i=1

K(Xi,

u

b+ 1, 1− u

b+ 1)·K(Yi,

v

b+ 1, 1− v

b+ 1),

where K(·, α, β) denotes the density of the Beta distribution with parameters α and β.

36

Page 37: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Beta (independent) bivariate kernel , x=0.0, y=0.0 Beta (independent) bivariate kernel , x=0.2, y=0.0 Beta (independent) bivariate kernel , x=0.5, y=0.0

Beta (independent) bivariate kernel , x=0.0, y=0.2 Beta (independent) bivariate kernel , x=0.2, y=0.2 Beta (independent) bivariate kernel , x=0.5, y=0.2

Beta (independent) bivariate kernel , x=0.0, y=0.5 Beta (independent) bivariate kernel , x=0.2, y=0.5 Beta (independent) bivariate kernel , x=0.5, y=0.5

Figure 14 – Shape of bivariate Beta kernels K(·, x/b+1, (1−x)/b+1)×K(·, y/b+1, (1− y)/b+ 1) for b = 0.2.

37

Page 38: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Assume that the copula density c is twice differentiable on [0, 1]× [0, 1]. Let(u, v) ∈ [0, 1]× [0, 1]. The bias of c(u, v) is of order b, i.e.

E(c(u, v)) = c(u, v) +Q(u, v) · b+ o(b),

where the bias Q(u, v) is

Q(u, v) = (1− 2u)c1(u, v) + (1− 2v)c2(u, v) + 12 [u(1− u)c1,1(u, v) + v(1− v)c2,2(u, v)] .

The bias here is O(b) (everywhere) while it is O(h2) using standard kernels.

Assume that the copula density c is twice differentiable on [0, 1]× [0, 1]. Let(u, v) ∈ [0, 1]× [0, 1]. The variance of c(u, v) is in corners, e.g. (0, 0),

V ar(c(0, 0)) = 1nb2 [c(0, 0) + o(n−1)],

in the interior of borders, e.g. u = 0 and v ∈ (0, 1)

V ar(c(0, v)) = 12nb3/2

√πv(1− v)

[c(0, v) + o(n−1)],

38

Page 39: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

and in the interior,(u, v) ∈ (0, 1)× (0, 1)

V ar(c(u, v)) = 14nbπ

√v(1− v)u(1− u)

[c(u, v) + o(n−1)].

Remark From those properties, an (asymptotically) optimal bandwidth b can bededuced, maximizing asymptotic mean squared error,

b∗ ≡

(1

16πnQ(u, v)2 ·1√

v(1− v)u(1− u)

)1/3

.

Note (see Charpentier, Fermanian & Scaillet (2005)) that all those results can beobtained in dimension d ≥ 2.

Example For n = 100 simulated data, from Frank copula, the optimal bandwidth isb ∼ 0.05.

39

Page 40: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

0.2 0.4 0.6 0.8

0.2

0.4

0.60.8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Estimation of the copula density (Beta kernel, b=0.1) Estimation of the copula density (Beta kernel, b=0.1)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 15 – Estimated density of Frank copula, Beta kernels, b = 0.1

40

Page 41: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

0.2 0.4 0.6 0.8

0.2

0.4

0.60.8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Estimation of the copula density (Beta kernel, b=0.05) Estimation of the copula density (Beta kernel, b=0.05)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 16 – Estimated density of Frank copula, Beta kernels, b = 0.05

41

Page 42: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

0.0 0.2 0.4 0.6 0.8 1.0

01

23

4

Standard Gaussian kernel estimator, n=100

Estimation of the density on the diagonal

Den

sity o

f th

e e

stim

ato

r

0.0 0.2 0.4 0.6 0.8 1.0

01

23

4

Standard Gaussian kernel estimator, n=1000

Estimation of the density on the diagonal

Den

sity o

f th

e e

stim

ato

r

0.0 0.2 0.4 0.6 0.8 1.0

01

23

4

Standard Gaussian kernel estimator, n=10000

Estimation of the density on the diagonal

Den

sity o

f th

e e

stim

ato

r

Figure 17 – Density estimation on the diagonal, standard kernel.

42

Page 43: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

0.0 0.2 0.4 0.6 0.8 1.0

01

23

4

Transformed kernel estimator (Gaussian), n=100

Estimation of the density on the diagonal

Den

sity o

f th

e e

stim

ato

r

0.0 0.2 0.4 0.6 0.8 1.0

01

23

4

Transformed kernel estimator (Gaussian), n=1000

Estimation of the density on the diagonal

Den

sity o

f th

e e

stim

ato

r

0.0 0.2 0.4 0.6 0.8 1.0

01

23

4

Transformed kernel estimator (Gaussian), n=10000

Estimation of the density on the diagonal

Den

sity o

f th

e e

stim

ato

r

Figure 18 – Density estimation on the diagonal, transformed kernel.

43

Page 44: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

0.0 0.2 0.4 0.6 0.8 1.0

01

23

4

Beta kernel estimator, b=0.05, n=100

Estimation of the density on the diagonal

Den

sity o

f th

e e

stim

ato

r

0.0 0.2 0.4 0.6 0.8 1.0

01

23

4

Beta kernel estimator, b=0.02, n=1000

Estimation of the density on the diagonal

Den

sity o

f th

e e

stim

ato

r

0.0 0.2 0.4 0.6 0.8 1.0

01

23

4

Beta kernel estimator, b=0.005, n=10000

Estimation of the density on the diagonal

Den

sity o

f th

e e

stim

ato

r

Figure 19 – Density estimation on the diagonal, Beta kernel.

44

Page 45: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Copula density estimationGijbels & Mielniczuk (1990) : given an i.i.d. sample, a natural estimate for thenormed density is obtained using the transformed sample(FX(X1), FY (Y1)), ..., (FX(Xn), FY (Yn)), where FX and FY are the empiricaldistribution function of the marginal distribution. The copula density can beconstructed as some density estimate based on this sample (Behnen, Husková &Neuhaus (1985) investigated the kernel method).

The natural kernel type estimator c of c is

c(u, v) = 1nh2

n∑i=1

K

(u− FX(Xi)

h,v − FY (Yi)

h

), (u, v) ∈ [0, 1].

“this estimator is not consistent in the points on the boundary of the unit square.”

45

Page 46: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Copula density estimation and pseudo-observationsExample : in linear regression, residuals are pseudo observations.

εi = H(Xi, Yi) = Yi − α− βXi

εi = Hn(Xi, Yi) = Yi − αn − βnXi

Example : when dealing with copulas, ranks Ui, Vi yield pseudo-observations.

(Ui, Vi) = H(Xi, Yi) = (FX(Xi), FY (Yi))

(Ui, Vi) = Hn(Xi, Yi) = (FX(Xi), FY (Yi))

(see Genest & Rivest (1993)).

More formally, let X1, ...,Xn denote a series of observations of X (∈ X), stationaryand ergodic.

Let H : X → Rd and set εi = H(Xi) (non-observable).

If H is estimated by Hn then εi = Hn(Xi) are called pseudo-observations.

46

Page 47: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Let Kn denote the empirical distribution function of those pseudo-observations,

Kn(t) = 1n

n∑i=1

I(εi ≤ t) where t ∈ Rd.

Further, if K denotes the distribution function of ε = H(X), then define the empiricalprocess based on pseudo-observations,

Kn(t) =√n(Kn(t)−K(t)

)As proved in Ghoudi & Rémillard (1998, 2004), this empirical process convergesweakly.

Figure ?? shows scatterplots when margins are known (i.e. (FX(Xi), FY (Yi))’s), andwhen margins are estimated (i.e. (FX(Xi), FY (Yi)’s). Note that the pseudo sample ismore “uniform”, in the sense of a lower discrepancy (as in Quasi Monte Carlotechniques, see e.g. Niederreiter (1992)).

47

Page 48: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Scatterplot of observations (Xi,Yi)

Value of the Xis

Valu

e o

f th

e Y

is

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Scatterplot of pseudo−observations (Ui,Vi)

Value of the Uis (ranks)V

alu

e o

f th

e V

is (

ranks

)

Figure 20 – Observations and pseudo-observation, 500 simulated observationsfrom Frank copula (Xi, Yi) and the associate pseudo-sample (FX(Xi), FY (Yi)).

48

Page 49: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Because samples are more “uniform” using ranks and pseudo-observations, the varianceof the estimator of the density, at some given point (u, v) ∈ (0, 1)× (0, 1) is usuallysmaller. For instance, Figure 21 shows the impact of considering pseudo observations,i.e. substituting FX and FY to unknown marginal distributions FX and FY . The dottedline shows the density of c(u, v) from a n = 100 sample (Ui, Vi) (from Frank copula),and the straight line shows the density of c(u, v) from the sample (FU (Ui), FV (Vi)) (i.e.ranks of observations).

49

Page 50: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

0 1 2 3 4

0.00.5

1.01.5

2.0

Impact of pseudo−observations (n=100)

Distribution of the estimation of the density c(u,v)

Dens

ity of

the e

stima

tor

Figure 21 – The impact of estimating from pseudo-observations.

50

Page 51: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Roots of ‘transformed kernel’

51

Page 52: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

52

Page 53: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

53

Page 54: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

54

Page 55: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

55

Page 56: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Using a parametric approachIf FX ∈ F = {Fθ, θ ∈ Θ} (assumed to be continuous), qX(α) = F−1

θ (α), and thus, anatural estimator is

qX(α) = F−1θ

(α), (4)

where θ is an estimator of θ (maximum likelihood, moments estimator...).

56

Page 57: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Using the Gaussian distributionA natural idea (that can be found in classical financial models) is to assume Gaussiandistributions : if X ∼ N (µ, σ), then the α-quantile is simply

q(α) = µ+ Φ−1(α)σ,

where Φ−1(α) is obtained in statistical tables (or any statistical software), e.g.u = −1.64 if α = 90%, or u = −1.96 if α = 95%.Definition1Given a n sample {X1, · · · , Xn}, the (Gaussian) parametric estimation of the α-quantileis

qn(α) = µ+ Φ−1(α)σ,

57

Page 58: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Using a parametric modelsActually, is the Gaussian model does not fit very well, it is still possible to use Gaussianapproximation

If the variance is finite, (X − E(X))/σ might be closer to the Gaussian distribution, andthus, consider the so-called Cornish-Fisher approximation, i.e.

Q(X,α) ∼ E(X) + zα√V (X), (5)

where

zα = Φ−1(α) + ζ1

6 [Φ−1(α)2 − 1] + ζ2

24 [Φ−1(α)3 − 3Φ−1(α)]− ζ21

36 [2Φ−1(α)3 − 5Φ−1(α)],

where ζ1 is the skewness of X, and ζ2 is the excess kurtosis, i.e. i.e.

ζ1 = E([X − E(X)]3)E([X − E(X)]2)3/2 and ζ2 = E([X − E(X)]4)

E([X − E(X)]2)2 − 3. (6)

58

Page 59: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Using a parametric modelsDefinition2Given a n sample {X1, · · · , Xn}, the Cornish-Fisher estimation of the α-quantile is

qn(α) = µ+ zασ, where µ = 1n

n∑i=1

Xi and σ =

√√√√ 1n− 1

n∑i=1

(Xi − µ)2,

and

zα = Φ−1(α)+ ζ1

6 [Φ−1(α)2−1]+ ζ2

24 [Φ−1(α)3−3Φ−1(α)]− ζ21

36 [2Φ−1(α)3−5Φ−1(α)], (7)

where ζ1 is the natural estimator for the skewness of X, and ζ2 is the natural estimator of

the excess kurtosis, i.e. ζ1 =√n(n− 1)n− 2

√n∑n

i=1(Xi − µ)3(∑n

i=1(Xi − µ)2)3/2 and

ζ2 = n− 1(n− 2)(n− 3)

((n+ 1)ζ′2 + 6

)where ζ′2 =

n∑n

i=1(Xi − µ)4(∑n

i=1(Xi − µ)2)2 − 3.

59

Page 60: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Parametrics estimator and error model

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

Density, theoritical versus empirical

Theoritical lognormalFitted lognormalFitted gamma

−4 −2 0 2 4

0.0

0.1

0.2

0.3

Density, theoritical versus empirical

Theoritical StudentFitted lStudentFitted Gaussian

Figure 22 – Estimation of Value-at-Risk, model error.

60

Page 61: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Using a semiparametric modelsGiven a n-sample {Y1, . . . , Yn}, let Y1:n ≤ Y2:n ≤ . . .≤ Yn:n denotes the associated orderstatistics.

If u large enough, Y − u given Y > u has a Generalized Pareto distribution withparameters ξ and β ( Pickands-Balkema-de Haan theorem).

If u = Yn−k:n for k large enough, and if ξ>0, denote by βk and ξk maximum likelihoodestimators of the Genralized Pareto distribution of sample{Yn−k+1:n − Yn−k:n, ..., Yn:n − Yn−k:n},

Q(Y, α) = Yn−k:n + βk

ξk

((n

k(1− α)

)−ξk

− 1

), (8)

An alternative is to use Hill’s estimator if ξ > 0,

Q(Y, α) = Yn−k:n

(n

k(1− α)

)−ξk

, ξk = 1k

k∑i=1

log Yn+1−i:n − log Yn−k:n. (9)

61

Page 62: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

On nonparametric estimation for quantilesFor continuous distribution q(α) = F−1

X (α), thus, a natural idea would be to considerq(α) = F−1

X (α), for some nonparametric estimation of FX .Definition3The empirical cumulative distribution function Fn, based on sample {X1, . . . , Xn} is

Fn(x) = 1n

n∑i=1

1(Xi ≤ x).

Definition4The kernel based cumulative distribution function, based on sample {X1, . . . , Xn} is

Fn(x) = 1nh

n∑i=1

∫ x

−∞k(Xi − th

)dt = 1

n

n∑i=1

K(Xi − xh

)where K(x) =

∫ x

−∞k(t)dt, k being a kernel and h the bandwidth.

62

Page 63: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Smoothing nonparametric estimatorsTwo techniques have been considered to smooth estimation of quantiles, either implicit,or explicit.

• consider a linear combinaison of order statistics,

The classical empirical quantile estimate is simply

Qn(p) = F−1n

(i

n

)= Xi:n = X[np]:n where [·] denotes the integer part. (10)

The estimator is simple to obtain, but depends only on one observation. A naturalextention will be to use - at least - two observations, if np is not an integer. Theweighted empirical quantile estimate is then defined as

Qn(p) = (1− γ)X[np]:n + γX[np]+1:n where γ = np− [np].

63

Page 64: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

0.0 0.2 0.4 0.6 0.8 1.0

24

68

The quantile function in R

probability level

quan

tile

leve

l

type=1type=3type=5type=7

0.0 0.2 0.4 0.6 0.8 1.0

23

45

67

The quantile function in R

probability levelqu

antil

e le

vel

●●

●●●

●●●

●●●

●●

●●

●●●●●●●●

●●●●●●●●●●●●●●

●●●●

●●●

●●

●●

●●

●●●

●●●

●●●

●●

●●

●●●●●●●●

●●●●●●●●●●●●●●

●●●●

●●●

●●

●●

type=1type=3type=5type=7

Figure 23 – Several quantile estimators in R.

64

Page 65: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Smoothing nonparametric estimatorsIn order to increase efficiency, L-statistics can be considered i.e.

Qn (p) =n∑i=1

Wi,n,pXi:n =n∑i=1

Wi,n,pF−1n

(i

n

)=∫ 1

0F−1n (t) k (p, h, t) dt (11)

where Fn is the empirical distribution function of FX , where k is a kernel and h abandwidth. This expression can be written equivalently

Qn (p) =n∑i=1

[∫ in

(i−1)n

k(t− ph

)dt

]X(i) =

n∑i=1

[IK(

in− ph

)− IK

(i−1n− ph

)]X(i)

(12)

where again IK (x) =∫ x

−∞k (t) dt. The idea is to give more weight to order statistics

X(i) such that i is closed to pn.

65

Page 66: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

0.0 0.2 0.4 0.6 0.8 1.0

01

23

quantile (probability) level

Figure 24 – Quantile estimator as wieghted sum of order statistics.

66

Page 67: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

0.0 0.2 0.4 0.6 0.8 1.0

01

23

quantile (probability) level

Figure 25 – Quantile estimator as wieghted sum of order statistics.

67

Page 68: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

0.0 0.2 0.4 0.6 0.8 1.0

01

23

quantile (probability) level

Figure 26 – Quantile estimator as wieghted sum of order statistics.

68

Page 69: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

0.0 0.2 0.4 0.6 0.8 1.0

01

23

quantile (probability) level

Figure 27 – Quantile estimator as wieghted sum of order statistics.

69

Page 70: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

0.0 0.2 0.4 0.6 0.8 1.0

01

23

quantile (probability) level

Figure 28 – Quantile estimator as wieghted sum of order statistics.

70

Page 71: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Smoothing nonparametric estimatorsE.g. the so-called Harrell-Davis estimator is defined as

Qn(p) =n∑i=1

[∫ in

(i−1)n

Γ(n+ 1)Γ((n+ 1)p)Γ((n+ 1)q)y

(n+1)p−1(1− y)(n+1)q−1

]Xi:n,

• find a smooth estimator for FX , and then find (numerically) the inverse,

The α-quantile is defined as the solution of FX ◦ qX(α) = α.

If Fn denotes a continuous estimate of F , then a natural estimate for qX(α) is qn(α)such that Fn ◦ qn(α) = α, obtained using e.g. Gauss-Newton algorithm.

71

Page 72: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Improving Beta kernel estimatorsProblem : the convergence is not uniform, and there is large second order bias onborders, i.e. 0 and 1.

Chen (1999) proposed a modified Beta 2 kernel estimator, based on

k2 (u; b; t) =

k t

b, 1−t

b(u) , if t ∈ [2b, 1− 2b]

kρb(t), 1−t

b(u) , if t ∈ [0, 2b)

k tb,ρb(1−t) (u) , if t ∈ (1− 2b, 1]

where ρb (t) = 2b2 + 2.5−√

4b4 + 6b2 + 2.25− t2 − t

b.

72

Page 73: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Non-consistency of Beta kernel estimatorsProblem : k(0, α, β) = k(1, α, β) = 0. So if there are point mass at 0 or 1, the estimatorbecomes inconsistent, i.e.

fb(x) = 1n

∑k(Xi, 1 + x

b, 1 + 1− x

b

), x ∈ [0, 1]

= 1n

∑Xi 6=0,1

k(Xi, 1 + x

b, 1 + 1− x

b

), x ∈ [0, 1]

= n− n0 − n1

n

1n− n0 − n1

∑Xi 6=0,1

k(Xi, 1 + x

b, 1 + 1− x

b

), x ∈ [0, 1]

≈ (1− P(X = 0)− P(X = 1)) · f0(x), x ∈ [0, 1]

and therefore Fb(x) ≈ (1− P(X = 0)− P(X = 1)) · F0(x), and we may have problemfinding a 95% or 99% quantile since the total mass will be lower.

73

Page 74: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Non-consistency of Beta kernel estimatorsGouriéroux & Monfort (2007) proposed

f(1)b (x) = fb(x)∫ 1

0 fb(t)dt, for all x ∈ [0, 1].

It is called macro-β since the correction is performed globally.

Gouriéroux & Monfort (2007) proposed

f(2)b (x) = 1

n

n∑i=1

kβ(Xi; b;x)∫ 10 kβ(Xi; b; t)dt

, for all x ∈ [0, 1].

It is called micro-β since the correction is performed locally.

74

Page 75: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Transforming observations ?In the context of density estimation, Devroye and Györfi (1985) suggested to use aso-called transformed kernel estimate

Given a random variable Y , if H is a strictly increasing function, then the p-quantile ofH(Y ) is equal to H(q(Y ; p)).

An idea is to transform initial observations {X1, · · · , Xn} into a sample {Y1, · · · , Yn}where Yi = H(Xi), and then to use a beta-kernel based estimator, if H : R→ [0, 1].Then qn(X; p) = H−1(qn(Y ; p)).

In the context of density estimation fX(x) = fY (H(x))H ′(x). As mentioned inDevroye and Györfi (1985) (p 245), “for a transformed histogram histogramestimate, the optimal H gives a uniform [0, 1] density and should therefore be equal toH(x) = F (x), for all x”.

75

Page 76: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Transforming observations ? a monte carlo studyAssume that sample {X1, · · · , Xn} have been generated from Fθ0 (from a famillyF = (Fθ, θ ∈ Θ). 4 transformations will be considered– H = F

θ(based on a maximum likelihood procedure)

– H = Fθ0 (theoritical optimal transformation)– H = Fθ with θ < θ0 (heavier tails)– H = Fθ with θ > θ0 (lower tails)

76

Page 77: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Tra

nsfo

rmed

obs

erva

tions

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Tra

nsfo

rmed

obs

erva

tions

Figure 29 – F (Xi) versus Fθ(Xi), i.e. PP plot.

77

Page 78: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Est

imat

ed d

ensi

ty

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

1.2

1.4

Est

imat

ed d

ensi

ty

Figure 30 – Nonparametric estimation of the density of the Fθ(Xi)’s.

78

Page 79: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●

●●

●●

●●

●●

●●

0.80 0.85 0.90 0.95 1.00

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Estimated optimal transformation

Probability level

Qua

ntile

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●

●●

●●

●●

0.80 0.85 0.90 0.95 1.00

12

34

5

Estimated optimal transformation

Probability level

Qua

ntile

Figure 31 – Nonparametric estimation of the quantile function, F−1θ

(q).

79

Page 80: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Tra

nsfo

rmed

obs

erva

tions

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Tra

nsfo

rmed

obs

erva

tions

Figure 32 – F (Xi) versus Fθ0(Xi), i.e. PP plot.

80

Page 81: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Est

imat

ed d

ensi

ty

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

1.2

1.4

Est

imat

ed d

ensi

ty

Figure 33 – Nonparametric estimation of the density of the Fθ0(Xi)’s.

81

Page 82: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●

●●

●●

●●

●●

0.80 0.85 0.90 0.95 1.00

12

34

Estimated optimal transformation

Probability level

Qua

ntile

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●

●●

●●

●●

●●

0.80 0.85 0.90 0.95 1.00

12

34

Estimated optimal transformation

Probability level

Qua

ntile

Figure 34 – Nonparametric estimation of the quantile function, F−1θ0

(q).

82

Page 83: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Tra

nsfo

rmed

obs

erva

tions

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Tra

nsfo

rmed

obs

erva

tions

Figure 35 – F (Xi) versus Fθ(Xi), i.e. PP plot, θ < θ0 (heavier tails).

83

Page 84: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Est

imat

ed d

ensi

ty

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

1.2

1.4

Est

imat

ed d

ensi

ty

Figure 36 – Estimation of the density of the Fθ(Xi)’s, θ < θ0 (heavier tails).

84

Page 85: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●

●●

●●

0.80 0.85 0.90 0.95 1.00

24

68

1012

Estimated optimal transformation

Probability level

Qua

ntile

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●

●●

●●

0.80 0.85 0.90 0.95 1.00

24

68

1012

Estimated optimal transformation

Probability level

Qua

ntile

Figure 37 – Estimation of quantile function, F−1θ (q), θ < θ0 (heavier tails).

85

Page 86: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Tra

nsfo

rmed

obs

erva

tions

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Tra

nsfo

rmed

obs

erva

tions

Figure 38 – F (Xi) versus Fθ(Xi), i.e. PP plot, θ > θ0 (lighter tails).

86

Page 87: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Est

imat

ed d

ensi

ty

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

1.2

1.4

Est

imat

ed d

ensi

ty

Figure 39 – Estimation of density of Fθ(Xi)’s, θ > θ0 (lighter tails).

87

Page 88: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●

●●

●●

●●

●●

●●

0.80 0.85 0.90 0.95 1.00

1.0

1.5

2.0

2.5

3.0

3.5

Estimated optimal transformation

Probability level

Qua

ntile

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●

●●

●●

●●

●●

●●

0.80 0.85 0.90 0.95 1.00

1.0

1.5

2.0

2.5

3.0

3.5

Estimated optimal transformation

Probability level

Qua

ntile

Figure 40 – Estimation of quantile function, F−1θ (q), θ > θ0 (lighter tails).

88

Page 89: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

A universal distribution for lossesBuch-Larsen,Nielsen, Guillen, & Bolancé (2005) considered the Champernownegeneralized distribution to model insurance claims, i.e. positive variables,

Fα,M,c (y) = (y + c)α − cα

(y + c)α + (M + c)α − 2cα where α > 0, c ≥ 0 and M > 0.

The associated density is then

fα,M,c (y) = α (y + c)α−1 ((M + c)α − cα)((y + c)α + (M + c)α − 2cα)2 .

89

Page 90: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

A Monte Carlo study to compare those nonparametricestimators

As in Buch-Larsen,Nielsen, Guillen, & Bolancé (2005), 4 distributions wereconsidered– normal distribution,– Weibull distribution,– log-normal distribution,– mixture of Pareto and log-normal distributions,

90

Page 91: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

5 10 15 20

0.0

00

.0

50

.1

00

.1

50

.2

00

.2

50

.3

0

Density of quantile estimators (mixture longnormal/pareto)

Estimated value−at−risk

de

nsity o

f e

stim

ato

rs

Benchmark (R estimator)HD (Harrell−Davis)PRK (Park)B1 (Beta 1)B2 (Beta 2)

Box−plot for the 11 quantile estimators

5 10 15 20

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●● ●●●●●● ●● ● ●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ● ● ● ●● ● ●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●● ● ●●● ● ● ●●● ●●● ● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●● ●● ● ● ● ●

MICRO Beta2

MACRO Beta2

Beta2

MICRO Beta1

MACRO Beta1

Beta1

PRK Park

PDG Padgett

HD Harrell Davis

E Epanechnikov

R benchmark

Figure 41 – Distribution of the 95% quantile of the mixture distribution, n = 200,and associated box-plots.

91

Page 92: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

MSE ratio, normal distribution, HD (Harrell−Davis)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

●● ● ● ● ● ● ●

n= 50n=100n=200n=500

MSE ratio, normal distribution, B1 (Beta1)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

●●

●●

●●●

n= 50n=100n=200n=500

MSE ratio, normal distribution, MACB1 (MACRO−Beta1)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

●● ●

●●●

n= 50n=100n=200n=500

MSE ratio, normal distribution, PRK (Park)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

●●

n= 50n=100n=200n=500

MSE ratio, normal distribution, B1 (Beta1)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

●●

●●

●●●

n= 50n=100n=200n=500

MSE ratio, normal distribution, MACB1 (MACRO−Beta1)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

●● ●

●●●

n= 50n=100n=200n=500

Figure 42 – Comparing MSE for 6 estimators, the normal distribution case.

92

Page 93: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

MSE ratio, Weibull distribution, HD (Harrell−Davis)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

●●

● ● ● ●●

n= 50n=100n=200n=500

MSE ratio, Weibull distribution, MACB1 (MACRO−Beta1)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

●●

●●

●●

n= 50n=100n=200n=500

MSE ratio, Weibull distribution, MICB1 (MICRO−Beta1)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

●●

● ●●

●●

n= 50n=100n=200n=500

MSE ratio, Weibull distribution, PRK (Park)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0 ●

●●

n= 50n=100n=200n=500

MSE ratio, Weibull distribution, MACB1 (MACRO−Beta1)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

●●

●●

●●

n= 50n=100n=200n=500

MSE ratio, Weibull distribution, MICB1 (MICRO−Beta1)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

●●

● ●●

●●

n= 50n=100n=200n=500

Figure 43 – Comparing MSE for 6 estimators, the Weibull distribution case.

93

Page 94: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

MSE ratio, lognormal distribution, HD (Harrell−Davis)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

● ● ● ● ● ● ●

n= 50n=100n=200n=500

MSE ratio, lognormal distribution, MACB1 (MACRO−Beta1)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

● ● ●●

● ●●

n= 50n=100n=200n=500

MSE ratio, lognormal distribution, MICB1 (MICRO−Beta1)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

● ● ●

n= 50n=100n=200n=500

MSE ratio, lognormal distribution, B1 (Beta1)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

● ● ●●

●●

n= 50n=100n=200n=500

MSE ratio, lognormal distribution, PRK (Park)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

n= 50n=100n=200n=500

MSE ratio, lognormal distribution, MACB2 (MACRO−Beta2)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

●● ● ●

● ●● ●

n= 50n=100n=200n=500

MSE ratio, lognormal distribution, MICB2 (MICRO−Beta2)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.00.

00.

51.

01.

52.

0

●● ● ● ●

●●

n= 50n=100n=200n=500

MSE ratio, lognormal distribution, B2 (Beta2)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

●● ●

● ● ●●

n= 50n=100n=200n=500

Figure 44 – Comparing MSE for 9 estimators, the lognormal distribution case.

94

Page 95: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

MSE ratio, mixture distribution, HD (Harrell−Davis)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

● ● ● ● ●

●●

n= 50n=100n=200n=500

MSE ratio, mixture distribution, MACB1 (MACRO−Beta1)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

●●

n= 50n=100n=200n=500

MSE ratio, mixture distribution, MICB1 (MICRO−Beta1)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

●●

● ●

● ●

n= 50n=100n=200n=500

MSE ratio, mixture distribution, B1 (Beta1)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

●●

● ●●

n= 50n=100n=200n=500

MSE ratio, mixture distribution, PRK (Park)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

●●

● ●

n= 50n=100n=200n=500

MSE ratio, mixture distribution, MACB2 (MACRO−Beta2)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

● ● ● ●

● ●

●●

n= 50n=100n=200n=500

MSE ratio, mixture distribution, MICB2 (MICRO−Beta2)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.00.

00.

51.

01.

52.

0

● ● ● ●

●●

n= 50n=100n=200n=500

MSE ratio, mixture distribution, B2 (Beta2)

Probability, confidence levels (p)

MS

E r

atio

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

●●

● ●

●●

n= 50n=100n=200n=500

Figure 45 – Comparing MSE for 9 estimators, the mixture distribution case.

95

Page 96: Slides laval stat avril 2011

Arthur CHARPENTIER, transformed kernels and beta kernels

Some referencesCharpentier, A. , Fermanian, J-D. & Scaillet, O. (2006). The estimation ofcopulas : theory and practice. In : Copula Methods in Derivatives and RiskManagement : From Credit Risk to Market Risk. Risk Book

Charpentier, A. & Oulidi, A. (2008). Beta Kernel estimation for Value-At-Risk ofheavy-tailed distributions. in revision Journal of Computational Statistics and DataAnalysis.

Charpentier, A. & Oulidi, A. (2007). Estimating allocations for Value-at-Riskportfolio optimzation. to appear in Mathematical Methods in Operations Research.

Chen, S. X. (1999). A Beta Kernel Estimator for Density Functions. ComputationalStatistics & Data Analysis, 31, 131-145.

Devroye, L. & Györfi, L. (1981). Nonparametric Density Estimation : The L1 View.Wiley.

Gouriéroux, C., & Montfort, A. 2006. (Non) Consistency of the Beta KernelEstimator for Recovery Rate Distribution. CREST-DP 2006-32.

96