slides fall 10

Upload: hunter16gun

Post on 09-Apr-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/8/2019 Slides Fall 10

    1/400

    Lesson 1

    1

  • 8/8/2019 Slides Fall 10

    2/400

    2

  • 8/8/2019 Slides Fall 10

    3/400

    3

  • 8/8/2019 Slides Fall 10

    4/400

    4

  • 8/8/2019 Slides Fall 10

    5/400

    System model (mathematical description)

    Model inversion

    5

  • 8/8/2019 Slides Fall 10

    6/400

    6

    Special case linear systems:

    Nonlinear systems:

    Linearization of nonlinear systems:

  • 8/8/2019 Slides Fall 10

    7/400

    7

  • 8/8/2019 Slides Fall 10

    8/400

    Saugrohr

    Drosseklappe

    Katalysator (Haupt-)Katalysator

    Einspritz-ventile

    vK

    mL

    *

    hK2P

    hK , NO , CO , ( HC, CO 2)

    Motronic

    n

    vK :BOSCH LSU4

    (Breitband-Sonde)

    hK2P :BOSCH LSF4

    (Zweipunkt-Sonde)

    Driver

    System: Model:

    d dt

    x( t ) = f ( x(t ), u( t ), p)

    y( t )= g( x( t ), u(t ), p)

    Uncertainty: pi,min p p i,max ,

    i = 1, N

    8

    y

    u

  • 8/8/2019 Slides Fall 10

    9/400

    9

  • 8/8/2019 Slides Fall 10

    10/400

    10

  • 8/8/2019 Slides Fall 10

    11/400

    11

  • 8/8/2019 Slides Fall 10

    12/400

    12

  • 8/8/2019 Slides Fall 10

    13/400

    Feedback: powerful, but dangerous

    Feedback is everywhere

    stabilization model uncertainty not measurable disturbances cost reduction

    engineering biology

    social systems

    13

  • 8/8/2019 Slides Fall 10

    14/400

    14

  • 8/8/2019 Slides Fall 10

    15/400

    15

  • 8/8/2019 Slides Fall 10

    16/400

    16

  • 8/8/2019 Slides Fall 10

    17/400

    17

  • 8/8/2019 Slides Fall 10

    18/400

    d s

    18

  • 8/8/2019 Slides Fall 10

    19/400

    19

  • 8/8/2019 Slides Fall 10

    20/400

    20

  • 8/8/2019 Slides Fall 10

    21/400

    21

  • 8/8/2019 Slides Fall 10

    22/400

    Lesson 2

    22

  • 8/8/2019 Slides Fall 10

    23/400

    23

  • 8/8/2019 Slides Fall 10

    24/400

    24

  • 8/8/2019 Slides Fall 10

    25/400

    25

    Example Water Tank

  • 8/8/2019 Slides Fall 10

    26/400

    26

  • 8/8/2019 Slides Fall 10

    27/400

    27

  • 8/8/2019 Slides Fall 10

    28/400

    28

    Example Stirred Tank Reactor

  • 8/8/2019 Slides Fall 10

    29/400

    29

  • 8/8/2019 Slides Fall 10

    30/400

    30

  • 8/8/2019 Slides Fall 10

    31/400

    31

  • 8/8/2019 Slides Fall 10

    32/400

    Strecke

    Strung

    Sollwert

    r

    Regler-

    e

    Stellsignal

    u

    FehlerIstwert y

    cylinders

    injectors

    T e

    u

    y

    Example: cruise control

    throttle

    disturbance

    outputcar ECU

    control

    error reference

    32

  • 8/8/2019 Slides Fall 10

    33/400

    33

  • 8/8/2019 Slides Fall 10

    34/400

    34

  • 8/8/2019 Slides Fall 10

    35/400

    35

  • 8/8/2019 Slides Fall 10

    36/400

    36

  • 8/8/2019 Slides Fall 10

    37/400

    v(t)

    37

    Example Loudspeaker

  • 8/8/2019 Slides Fall 10

    38/400

    38

  • 8/8/2019 Slides Fall 10

    39/400

    39

  • 8/8/2019 Slides Fall 10

    40/400

    40

  • 8/8/2019 Slides Fall 10

    41/400

    41

    Example Conveyor Belt

  • 8/8/2019 Slides Fall 10

    42/400

    Lesson 3

    42

  • 8/8/2019 Slides Fall 10

    43/400

    43

  • 8/8/2019 Slides Fall 10

    44/400

    44

  • 8/8/2019 Slides Fall 10

    45/400

    nominal point

    no physical dimension and around 1 if OK

    Normalized system equation

    Equilibrium condition

    h0

    0

    0

    45

  • 8/8/2019 Slides Fall 10

    46/400

    46

  • 8/8/2019 Slides Fall 10

    47/400

    Problem: equilibrium point cannot be used for normalization

    Standard:

    Choice:

    z g=

    Equilibrium:

    47

  • 8/8/2019 Slides Fall 10

    48/400

    f 0 ( x, u )

    x

    u

    x e

    ue

    f 0 ( xe + x, ue + u) f 0 ( xe , ue ) + f 0 x xe ,ue

    x + f 0 u xe ,ue

    u

    = 0

    x

    u

    f 0 x xe ,ue

    x + f 0 u xe ,ue

    u

    48

  • 8/8/2019 Slides Fall 10

    49/400

  • 8/8/2019 Slides Fall 10

    50/400

    50

  • 8/8/2019 Slides Fall 10

    51/400

    51

  • 8/8/2019 Slides Fall 10

    52/400

    x ( t ) = 1 + x (t )u ( t ) = 1 + u (t )

    1 + x (t ) = 1 +1

    2 x (t ) +

    Linearized equation:

    52

  • 8/8/2019 Slides Fall 10

    53/400

    Equilibrium condition:

    therefore:

    or:

    with:

    53

  • 8/8/2019 Slides Fall 10

    54/400

    54

  • 8/8/2019 Slides Fall 10

    55/400

    Equilibrium condition:

    therefore:

    or:

    55

  • 8/8/2019 Slides Fall 10

    56/400

    Equilibrium z i , e , v e , w e

    f ( zi,e

    ,ve) = 0

    we = g( zi,e ,ve )

    defined by

    Case A z i ,e 0 z i ,0 = z i ,ev e 0 v 0 = v ew e 0 w 0 = w e

    Case B z i ,0 =

    v 0 =

    w 0 =

    Reasonable, but arbitrary choice(depends on problem at hand)

    Result case A x i,e = 1, u e = 1, ye = 1

    Result case B

    x i, e = 0, u e = 0, ye = 0

    d dt

    z( t )= f ( z( t ), v( t )), w( t ) = g( z( t ), v( t ))System model:

    Always normalize with z i ,0 , v 0 , w 0

    and linearize around x i , e , u e , ye

    56

  • 8/8/2019 Slides Fall 10

    57/400

    57

  • 8/8/2019 Slides Fall 10

    58/400

    58

  • 8/8/2019 Slides Fall 10

    59/400

    m

    v 0

    (m

    , ,v

    0 )

    k (m , v 0 )

    59

  • 8/8/2019 Slides Fall 10

    60/400

    60

  • 8/8/2019 Slides Fall 10

    61/400

    61

  • 8/8/2019 Slides Fall 10

    62/400

    First-order system (n=1, the most simple case):62

    63

  • 8/8/2019 Slides Fall 10

    63/400

    63

    64

  • 8/8/2019 Slides Fall 10

    64/400

    Lesson 4

    64

    65

  • 8/8/2019 Slides Fall 10

    65/400

    C

    y0

    0

    v

    x(t ) = A x(t) + b u(t )

    y(t ) = c x(t) + d u(t )

    . . .

    . .

    0u0

    . z(t )= f(z (t),v( t ))

    w(t )= g(z (t), v(t ))w0

    -1 y

    y

    u

    u v w

    approximated by:

    P

    ue y

    e

    65

    66

  • 8/8/2019 Slides Fall 10

    66/400

    d dt x( t )

    = A x( t ) + b u( t )

    y( t ) = c x( t ) + d u( t )

    66

    67

  • 8/8/2019 Slides Fall 10

    67/400

    Pro memoria scalar exponential:

    Main feature:

    The derivative of an exponential is a linear function of anexponential!

    67

    68

  • 8/8/2019 Slides Fall 10

    68/400

    Generalization matrix exponential:

    Key point:

    Verify that!

    68

    69

  • 8/8/2019 Slides Fall 10

    69/400

    A few remarks:

    if matrices do not commute, but:

    Matrix exponentials are not as simple as scalar ones, i.e,

    The inverse is well defined because

    Proofs see QC

    69

    70

  • 8/8/2019 Slides Fall 10

    70/400

    Application of matrix exponentials to the solution of the

    initial-value problem :

    For a known initial condition

    and a known input

    what is the state trajectory ?

    70

    71

  • 8/8/2019 Slides Fall 10

    71/400

    71

    72

  • 8/8/2019 Slides Fall 10

    72/400

    System output

    Definition convolution operator ( x0=0 , d =0)

    72

    73

  • 8/8/2019 Slides Fall 10

    73/400

    73

    74

  • 8/8/2019 Slides Fall 10

    74/400

    Quantitative solutions to test signals easy.For the sake of simplicity d =0.

    74

    75

  • 8/8/2019 Slides Fall 10

    75/400

    75

    76

  • 8/8/2019 Slides Fall 10

    76/400

    77

  • 8/8/2019 Slides Fall 10

    77/400

    78

  • 8/8/2019 Slides Fall 10

    78/400

  • 8/8/2019 Slides Fall 10

    79/400

    80

  • 8/8/2019 Slides Fall 10

    80/400

    High-order systems: quantitative solutions to testsignals not easy!

    Qualitative solutions?

    b l81

  • 8/8/2019 Slides Fall 10

    81/400

    x 1

    x n

    x (0)

    Lyapunov Stability

    82

  • 8/8/2019 Slides Fall 10

    82/400

    Pro memoria I

    A vector v that is mapped by a linear mapping A intoa collinear vector

    vis called an Eigenvector

    The scalar gain is an Eigenvalue of A. In general,both and v are complex-valued objects.

    Equation (*) can be written as

    and a nontrivial solution exists iff

    (*)

    83

  • 8/8/2019 Slides Fall 10

    83/400

    If n linearly independent Eigenvectors vi exist (this isoften the case, for instance if all Eigenvalues aredistinct) then they can be used to define a coordinatetransformation with

    T =

    with the following property

    T 1

    A T =

    1

    0 0

    0 2

    0 0 n

    det( T ) 0

    Pro memoria II

    84

  • 8/8/2019 Slides Fall 10

    84/400

    Back to Stability Problem General solution

    T x (t )= e A t T x (0)

    x (t )= T 1 e A t T x (0)

    x (t )= T 1 I + A t + 12

    A 2 t 2

    +

    T x (0)

    x (t )= T 1 T + T 1 A T t +1

    2T 1 A T T

    1 A T t

    2+

    x (0)

    x (t )= I + A t +1

    2 A 2 t 2 +

    x (0) = e

    A t x (0) = e

    T 1 A T t x (0)

    det( T ) 0

    85

  • 8/8/2019 Slides Fall 10

    85/400

    Assume that transformation T can be chosen such that

    In this case is diagonal as well ( 2, 3, diagonal) with

    T 1 A T =

    1

    0 0

    0 2

    0 0 n

  • 8/8/2019 Slides Fall 10

    86/400

    87

  • 8/8/2019 Slides Fall 10

    87/400

    Solution in the new coordinates

    real part imaginary part

    88

  • 8/8/2019 Slides Fall 10

    88/400

    x = 0 x = 0

    x = x =

    x < x <

    det( T ) 0

    [T ]ij <

    For

    Therefore

    therefore

    What if A is not diagonalizable? 89

  • 8/8/2019 Slides Fall 10

    89/400

    What if A is not diagonalizable?

    More details subsequent lectures.

    90

  • 8/8/2019 Slides Fall 10

    90/400

    region of attraction

    91

  • 8/8/2019 Slides Fall 10

    91/400

    Example:

    pendulum on a cart

    92

  • 8/8/2019 Slides Fall 10

    92/400

    nominalposition

    93

  • 8/8/2019 Slides Fall 10

    93/400

    nominalposition

    94

  • 8/8/2019 Slides Fall 10

    94/400

    Lesson 5

    95

  • 8/8/2019 Slides Fall 10

    95/400

    A = [ 0 1 00 0 1

    -1 -2 -1]c = [ 1 1 1]x0 = [ 1

    1

    1 ]t=0:0.01:10;y=[];for i=1:max(length(t));

    y = [y;c*expm(A*t(i))*x0];end;plot(t,y)

    96

  • 8/8/2019 Slides Fall 10

    96/400

    97

  • 8/8/2019 Slides Fall 10

    97/400

    x2

    x1

    xn

    98

  • 8/8/2019 Slides Fall 10

    98/400

    x2

    x1

    xn

    99

  • 8/8/2019 Slides Fall 10

    99/400

    x2

    x1

    xn

    100

  • 8/8/2019 Slides Fall 10

    100/400

    therefore, analyze

    101

  • 8/8/2019 Slides Fall 10

    101/400

    Definition:

    Yields:

    102

  • 8/8/2019 Slides Fall 10

    102/400

    x2

    x1

    xn

    r1

    rr

    Problem:103

  • 8/8/2019 Slides Fall 10

    103/400

    Solution:

    Pro memoria: characteristic polynomial of A:

    Therefore:

    M i l104

  • 8/8/2019 Slides Fall 10

    104/400

    Main result:

    The system { A,b} is completely controllable iff

    the matrix defined by

    has full rank n. If its rank r

  • 8/8/2019 Slides Fall 10

    105/400

    For linear time-invariant systems the reachableand the controllable subspace are identical.

    The system is stabilizable only if the state variablesof the non-reachable subspace are all asymp-totically stable.

    +

    106

  • 8/8/2019 Slides Fall 10

    106/400

  • 8/8/2019 Slides Fall 10

    107/400

    T ti l th t l108

  • 8/8/2019 Slides Fall 10

    108/400

    Tangential thruster only:

    Rank?

    R di l th t l109

  • 8/8/2019 Slides Fall 10

    109/400

    Radial thruster only:

    Rank?

    110

  • 8/8/2019 Slides Fall 10

    110/400

    When can two different I C yield the same output?111

  • 8/8/2019 Slides Fall 10

    111/400

    When can two different I.C. yield the same output?

    Only when the difference

    The system is completely observable iff the kernelis empty, i.e., if the rank of is full.

    is in the kernel of

    112

  • 8/8/2019 Slides Fall 10

    112/400

    113

  • 8/8/2019 Slides Fall 10

    113/400

    Can the pendulum be stabilized in its upper position?114

  • 8/8/2019 Slides Fall 10

    114/400

    Can the pendulum be stabilized in its upper position?

    bu =

    Controllability OK

    M i g d l gl i t OK115

  • 8/8/2019 Slides Fall 10

    115/400

    Measuring pendulum angle is not OK

    It is not possible to stabilize the system withthis information!

    116

  • 8/8/2019 Slides Fall 10

    116/400

    Measuring tip position is OK

    i.e., it is possible to stabilize the system using thisinformation in a feedback loop.

    Surprisingly measuring the cart position is OK too!117

  • 8/8/2019 Slides Fall 10

    117/400

    Surprisingly, measuring the cart position is OK too!

    Later well see that it is possible, but more difficultto stabilize the system using only this signal.

    118

  • 8/8/2019 Slides Fall 10

    118/400

    yes

    no

    yes no

    119

  • 8/8/2019 Slides Fall 10

    119/400

    RO

    RO

    RO

    u y

    R

    O

    120

  • 8/8/2019 Slides Fall 10

    120/400

    ~ ~ ~ ~

    ~~

    b

    c

    ~

    ~

    1

    2

    4

    3

    Block diagram representations I121

  • 8/8/2019 Slides Fall 10

    121/400

    Block diagram representations Id

    dt x

    1( t ) = 2 x

    1( t ) + 3 u(t )

    y( t ) = 4 x1 (t ) + 1 u( t )

    Block diagram representations IId 122

  • 8/8/2019 Slides Fall 10

    122/400

    Block diagram representations IIdt

    x1( t ) = x 2 ( t )

    d

    dt x 2 ( t ) = x 3 ( t )

    d

    dt x

    3 ( t ) = x1( t ) 2 x 2 ( t ) 3 x 3 ( t ) + u ( t )

    y( t ) = x1 ( t )

    Input/Output Formsd 123

  • 8/8/2019 Slides Fall 10

    123/400

    Input/Output Formsdt

    x1( t ) = x 2 ( t )

    d

    dt x 2 ( t ) = x 3 ( t )

    d

    dt x

    3 ( t ) = x1( t ) 2 x 2 ( t ) 3 x 3 ( t ) + u ( t )

    y( t ) = x1 ( t )

    124

  • 8/8/2019 Slides Fall 10

    124/400

    Internal description {A,b,c}

    Physical coordinates!

    I/O description

    No coordinates!

    125

  • 8/8/2019 Slides Fall 10

    125/400

    realizationusing

    canonical

    coordinateslater

    without coordinates

    with coordinates

    Li S S i i P i i l

    126

  • 8/8/2019 Slides Fall 10

    126/400

    Linear Systems Superposition Principle

    u y

    ( u1 + u2) = (u1) + (u2)

    u1,

    u2 : signals , : real numbers

    Controller Canonical Form, Example n=3 and m=1127

  • 8/8/2019 Slides Fall 10

    127/400

    y(3)

    (t ) + a 2 y(2)

    (t ) + a 1 y(1)

    (t ) + a 0 y(t ) = b1 u(1)

    ( t ) + b0 u (t )

    Known IO description of system:

    Define auxiliary variable (t):

    (3) ( t ) + a 2 (2) ( t ) + a 1

    (1) ( t ) + a 0 ( t ) = u ( t )

    Find y(t) using superposition principle:

    y(t ) = b1 (t ) + b0 ( t )

    Define auxiliary variable (t): (3) ( t ) + a 2

    (2) ( t ) + a 1 (1) ( t ) + a 0 ( t ) = u

    (1) ( t )

    x( i ) (t ) = d i x

    dt i(t )

    y(0) = y(1) (0) = y(2 ) (0) = 0

    128

  • 8/8/2019 Slides Fall 10

    128/400

    Realization of (t) :

    (2) (1) (3)u+

    a 2

    a 1

    a 0

    -

    -

    -

    (2) (1) (3)u+

    (1)ddt

    u

    129

  • 8/8/2019 Slides Fall 10

    129/400

    Realization of (t) :a 2

    a 1

    a 0

    -

    -

    -

    (2) (1) (3)u+

    a 2

    a 1

    a 0

    -

    -

    -

    ddt

    (2) (1) (3)u+

    a 2

    a 1

    a 0

    -

    -

    -

    1.

    2.

    3.

    Superposition principle and coordinates

    130

  • 8/8/2019 Slides Fall 10

    130/400

    (2) (1) (3)u+

    b1

    b0 y

    a2

    a 1

    a0

    +

    +

    -

    -

    -

    x1 x2 x 3

    =

    0 1 0

    0 0 1

    a 0 a1 a 2

    x1 x2 x 3

    +

    0

    0

    1

    u

    y = b0 b1 0[ ] x1 x2 x 3

    + 0[ ]u

    State-space description incanonical coordinates(arbitrary but convenientchoice):

    x 1= , x 2 = (1) , x 3= (2)

    x 1 x 2 x 3

    131

  • 8/8/2019 Slides Fall 10

    131/400

    132

  • 8/8/2019 Slides Fall 10

    132/400

    133

  • 8/8/2019 Slides Fall 10

    133/400

  • 8/8/2019 Slides Fall 10

    134/400

  • 8/8/2019 Slides Fall 10

    135/400

    136

  • 8/8/2019 Slides Fall 10

    136/400

    Lesson 6

  • 8/8/2019 Slides Fall 10

    137/400

    138

  • 8/8/2019 Slides Fall 10

    138/400

    Is there a shortcut?

    Yes, there is Laplace transformation!

    General solution powerful, but difcult, in

    particular if u(t)=u( x(t)) (feedback):

    139

  • 8/8/2019 Slides Fall 10

    139/400

    Denition of Laplace transformation for a signal x ( t ) 140

  • 8/8/2019 Slides Fall 10

    140/400

    Function x:

    Function X :

    Transformation is reversible, no information is lost.

    s = + j

  • 8/8/2019 Slides Fall 10

    141/400

    Proof:142

  • 8/8/2019 Slides Fall 10

    142/400

    Generalization:

    d

    dt x (t ) e st dt

    0

    = x (t ) e st |0 x (t ) (s ) e st dt 0

    = x (0) + s x (t ) e st dt 0

    = x (0) + s X (s )

    The Laplace transforms of themost important signals

    143

  • 8/8/2019 Slides Fall 10

    143/400

    most important signals

    Note: all signals = 0 for t

  • 8/8/2019 Slides Fall 10

    144/400

    Ratio of two (real-coefcient) polynomials

    Strictly proper, i.e., m < n

    The transfer function is the Laplace transform of theimpulse response

    145

  • 8/8/2019 Slides Fall 10

    145/400

    impulse response

    Using internal description ( d =0)

    Therefore:

    (c and b are constant rank-1 vectors)

    Therefore:

    Laplace transforms and IO system description146

  • 8/8/2019 Slides Fall 10

    146/400

    Assume all initial conditions = 0 (makes sense in an IO setting)

    s n Y ( s ) + a n 1 sn 1

    Y ( s ) + + a 1 s Y ( s ) + a 0 Y ( s ) =

    b m smU ( s ) + + b1 s U ( s ) + b 0 U ( s )

    s n + a n 1 sn 1

    + + a 1 s + a 0[ ]Y ( s ) = b m s m + + b 1 s + b 0[ ]U ( s )

    Y ( s ) = b m sm

    + + b 1 s + b 0s n + a n 1 s

    n 1+ + a 1 s + a 0

    U ( s ) = ( s ) U ( s )

    Relationship between IO and internal description147

  • 8/8/2019 Slides Fall 10

    147/400

    ( s ) =b

    m s m + + b

    1 s + b

    0

    s n

    + a n 1 s n 1

    + + a 1 s + a 0=

    b (s )

    a (s )

    Same system, two descriptions of IO dynamics

    derived using internaldescription

    derived using IO

    measurements only

    ( s ) = ( s ) iff the system is minimal, i.e., completelycontrollable and completely observable

    Otherwise pole/zero cancellations must occur. These cancellationsremove the not controllable and/or not observable modes.

    Dealing with delays148

  • 8/8/2019 Slides Fall 10

    148/400

    There is no nite dimensional state-space description of that system

    d dt

    x(t ) = A x(t ) + b u(t ), y(t ) = c x(t )

    but with Laplace transform (use shift law of Table 6.1)

    Note that (s) is not rational anymore

    m

    F (t)

    F (t)rExample Geostationary Satellite149

  • 8/8/2019 Slides Fall 10

    149/400

    r(t)

    M

    R (t)

    ( )

    d dt

    x1 x2 x3 x4

    =

    0 1 0 0

    3 0

    2 0 0 2 0 r0

    0 0 0 1

    0 2 0 r0 0 0

    x1 x2 x3 x4

    +

    0

    1

    0

    0

    u1 +

    0

    0

    0

    1/ r0

    u 2

    y = 0 0 1 0[ ] x

    measure azimuth

    Transfer function from tangential thruster to azimuth angle:

    u 2 y

    Two zeros at

    1/ 2= 3

    0

    Four poles at 1/ 2 = j 0 , 3/ 4 = 0

    Transfer Function from radial thruster to azimuth angle:150

  • 8/8/2019 Slides Fall 10

    150/400

    u 1 y

    Pole-zero cancellation (one pole and one zero at s=0)

    What is the system-theoretic explanation for that? The system isnot completely controllable with radial thruster only:

    Therefore minimal realization has order < 4 (here 3) and onemode does not inuence the transfer function.

    Quick Check : For a system dened by its internal description

    1 3 1

    151

  • 8/8/2019 Slides Fall 10

    151/400

    x 1

    x 2

    =

    + 1 3

    0 1

    x 1

    x 2

    +

    1

    1

    u

    y = 0 1[ ] x 1

    x 2

    Compute its transfer function (s).

    Is the system minimal?

    Eigenvalues and poles?

    Is the system stabilizable?

  • 8/8/2019 Slides Fall 10

    152/400

  • 8/8/2019 Slides Fall 10

    153/400

    ( )

    1

    Transfer functions (use superposition principle)154

  • 8/8/2019 Slides Fall 10

    154/400

    y1 = 1 (u 2 y 1 ) y1 =1

    1 + 2 1 u

    y 2 = 2 1 (u y 2 ) y 2 = 2 11 + 2 1 u

    y = y 1 + y 2 y =(1 + 2 ) 11 + 2 1

    u =(1 + 2 ) 11 + 2 1

    Laplace transformations

  • 8/8/2019 Slides Fall 10

    155/400

    156

  • 8/8/2019 Slides Fall 10

    156/400

  • 8/8/2019 Slides Fall 10

    157/400

    For the design of feedback control systems the

    158

  • 8/8/2019 Slides Fall 10

    158/400

    transfer function

    is the most important object.

    Using Cramers rule

    159

  • 8/8/2019 Slides Fall 10

    159/400

    160

  • 8/8/2019 Slides Fall 10

    160/400

  • 8/8/2019 Slides Fall 10

    161/400

    QC:

    162

  • 8/8/2019 Slides Fall 10

    162/400

    Q

    DC gain of

    DC gain of

    ( s ) =2 s + 3

    s2

    + 3 s + 2

    ( s ) =s + 3

    s + 7

    163

  • 8/8/2019 Slides Fall 10

    163/400

    Test for BIBO stability:

    Main result (LTI systems):

  • 8/8/2019 Slides Fall 10

    164/400

    165

  • 8/8/2019 Slides Fall 10

    165/400

    The Tent-Pole Theorem

    s 2

    166

  • 8/8/2019 Slides Fall 10

    166/400

    Example: (s)= s+2(s2+2s+5)( s+4)

    Map: s | (s)|

    = -2 = -4, -1 j 2

    | (s)|

  • 8/8/2019 Slides Fall 10

    167/400

  • 8/8/2019 Slides Fall 10

    168/400

    Computation residuum169

  • 8/8/2019 Slides Fall 10

    169/400

    Example: i=1, i=-1, i=1

    1,1 = lims 11

    (1 1)!d (11)

    ds (11)s + 2

    ( s + 1)( s + 3) 2 (s 2 + 1)(s + 1)

    =11

    1 + 2(1 + 3)2 ((1) 2 + 1)

    =1

    4 2=

    18

    Contribution of this part to u(t)1

    8

    1

    (1 1)! t (1

    1) e (

    1 t )=

    1

    8 e

    t

  • 8/8/2019 Slides Fall 10

    170/400

    171

  • 8/8/2019 Slides Fall 10

    171/400

    Poles:

    Parameters:

    172

  • 8/8/2019 Slides Fall 10

    172/400

  • 8/8/2019 Slides Fall 10

    173/400

    174

  • 8/8/2019 Slides Fall 10

    174/400

    (linearity, table 6.2, and damping law)

    Y (s)

    175

  • 8/8/2019 Slides Fall 10

    175/400

    (linearity, table 6.2, and damping law)

    Y (s)

    176

  • 8/8/2019 Slides Fall 10

    176/400

    177

  • 8/8/2019 Slides Fall 10

    177/400

    178

  • 8/8/2019 Slides Fall 10

    178/400

    179

  • 8/8/2019 Slides Fall 10

    179/400

    180

  • 8/8/2019 Slides Fall 10

    180/400

    QC

    181

  • 8/8/2019 Slides Fall 10

    181/400

    If the real part of all zeros is negative then the systemis minimum phase . If the real part of at least one zerois positive the system is non-minimum phase.

    The zeros are those frequencies for which a non-zeroinput u*(t ) and initial conditions x*(0) exist that producea zero output y*(t)=0

    182

  • 8/8/2019 Slides Fall 10

    182/400

    a zero output y (t) 0.

    (s)

    M -1 Adj (M)c Adj (sI-A) b

    (s)

    ( s ) =b

    1s + b

    0

    s 2 + a1s + a

    0

    183

  • 8/8/2019 Slides Fall 10

    183/400

    Result:184

  • 8/8/2019 Slides Fall 10

    184/400

    185

  • 8/8/2019 Slides Fall 10

    185/400

    < k < +

    | k | case no finite zero

    | k | 0 case worst finite zero

  • 8/8/2019 Slides Fall 10

    186/400

    m

    l

    187

  • 8/8/2019 Slides Fall 10

    187/400

  • 8/8/2019 Slides Fall 10

    188/400

    Lesson 8

    Computation of output signals for low-order systems:189

  • 8/8/2019 Slides Fall 10

    189/400

    (partial fraction expansion)

    (plus linearity of Laplace transf.)

    (for complex poles useEuler theorem)

    Example:

    (t ) 4 (t ) 6 (t ) 4 (t ) 3 (t ) 6 (t ) 4 (t )

    190

  • 8/8/2019 Slides Fall 10

    190/400

    y(t ) + 4 y(t ) + 6 y(t ) + 4 y(t ) = 3u (t ) + 6u (t ) + 4u (t )

    u(t ) = h(t )

    Y (s) =3s 2 + 6 s + 4

    s 3 + 4 s 2 + 6 s + 4

    1

    s (all i.c. zero)

    Y (s) =1

    s

    1

    s + 2+

    1

    (s + 1) 2 + 1 (p.f.d.)

    y(t ) = h(t ) 1 e 2 t + e t sin( t )[ ] (linearity & damping law)

    191

  • 8/8/2019 Slides Fall 10

    191/400

    (linearity, table 6.2, and damping law)

    Y (s)

    192

  • 8/8/2019 Slides Fall 10

    192/400

    k =193

  • 8/8/2019 Slides Fall 10

    193/400

    194

  • 8/8/2019 Slides Fall 10

    194/400

    20o

    70o

    10o15 o

    40o

  • 8/8/2019 Slides Fall 10

    195/400

    Example: non-minimumphase system196

  • 8/8/2019 Slides Fall 10

    196/400

    "no slip"

    x(t )=v(t ) cos( z(t )).d dt

    momentarycenter of rotation

    model ODE:

    v(t )=u (t )d dt 1

    197

  • 8/8/2019 Slides Fall 10

    197/400

    y(t )

    x(t )

    l

    z(t )

    v(t )

    w(t )

    w(t )

    l tan( w(t ))

    w(t )=u (t )d dt 2

    y(t )=v(t ) sin( z(t )).d

    dt z(t )= tan( w(t )).d dt l

    v(t )

  • 8/8/2019 Slides Fall 10

    198/400

    Experiment

    199

  • 8/8/2019 Slides Fall 10

    199/400

    (s )

    astab

    Explanation

    200

  • 8/8/2019 Slides Fall 10

    200/400

    Input:

    Output:

    System astab 201

  • 8/8/2019 Slides Fall 10

    201/400

    therefore

    where

    m cos( t + ) = m cos( t )cos( ) sin( t )sin( )[ ]

    202

  • 8/8/2019 Slides Fall 10

    202/400

    = m cos( t )cos( ) m sin( t )sin( ) = cos( t ) + sin( t ) = m cos( ), = m sin( )

    2 + 2 = m 2 cos 2 ( ) + m 2 sin 2 ( ) = m 2

    = m sin( )m cos(

    )

    = tan( )

    Connection and , or m and with (s )?203

  • 8/8/2019 Slides Fall 10

    203/400

    Therefore

    Therefore204

  • 8/8/2019 Slides Fall 10

    204/400

    or, with

    the final result

    Main result

    205

  • 8/8/2019 Slides Fall 10

    205/400

    (s )

    astab

    Nyquist Diagram, example206

  • 8/8/2019 Slides Fall 10

    206/400

    frequency is animplicit parameter

    2 2

    207

  • 8/8/2019 Slides Fall 10

    207/400

    ( j ) =

    0

    ( j ) 2 + 2 j + 02 =

    0

    ( 02 2 ) + j (2 )

    =

    0

    2 ( 02 2 ) j (2 )

    ( 02 2 ) 2 + 4 2 2=

    re(

    )+

    j

    im(

    )

    re(

    )=

    02

    02 2[ ]

    ( 02 2 ) 2 + 4 2 2 , im(

    )=

    02 2

    ( 02 2 ) 2 + 4 2 2

    Bode Diagram, example208

  • 8/8/2019 Slides Fall 10

    208/400

    frequency is anexplicit parameter

    omega_0=1; !

    delta=0.2; !

    209

  • 8/8/2019 Slides Fall 10

    209/400

    omega=logspace(-1,1,1000); !num=omega_0^2; !

    den=[1,2*delta*omega_0,omega_0^2]; !

    [m,phi]=bode(num,den,omega); !subplot(211); !

    semilogx(omega,20*log10(m)); !

    subplot(212); !semilogx(omega,phi) !

    210

  • 8/8/2019 Slides Fall 10

    210/400

    211

  • 8/8/2019 Slides Fall 10

    211/400

    212

  • 8/8/2019 Slides Fall 10

    212/400

    213

  • 8/8/2019 Slides Fall 10

    213/400

    214

  • 8/8/2019 Slides Fall 10

    214/400

    1

    s2

    + s + 1

    1s ( s + 3)

    s + 1

    s2

    215

  • 8/8/2019 Slides Fall 10

    215/400

    Relative Degree216

  • 8/8/2019 Slides Fall 10

    216/400

    1

    s2

    + s + 1

    s + 3

    s2

    + 3 s + 3

    s + 2

    s2

    + 3 s + 3

    0.05 s 2 + 0.1 s + 0.2

    s2

    + 0.2 s + 0.2

    217

  • 8/8/2019 Slides Fall 10

    217/400

  • 8/8/2019 Slides Fall 10

    218/400

    219

  • 8/8/2019 Slides Fall 10

    219/400

    220

  • 8/8/2019 Slides Fall 10

    220/400

    221

  • 8/8/2019 Slides Fall 10

    221/400

    ( s ) =1

    z

    s + 1

    222

  • 8/8/2019 Slides Fall 10

    222/400

    ( s ) =

    zs + 1

    1

    223

  • 8/8/2019 Slides Fall 10

    223/400

    224

  • 8/8/2019 Slides Fall 10

    224/400

    Lesson 9

    225

  • 8/8/2019 Slides Fall 10

    225/400

    226

  • 8/8/2019 Slides Fall 10

    226/400

    227

  • 8/8/2019 Slides Fall 10

    227/400

    Physical interpretation (for a mechanical system, similar for allother areas of system dynamics)

    228

  • 8/8/2019 Slides Fall 10

    228/400

    229

  • 8/8/2019 Slides Fall 10

    229/400

    Remark: small damping added in all subsequent plots/calculationsto avoid numerical problem; this has no inuence on the results

    230

  • 8/8/2019 Slides Fall 10

    230/400

    231

  • 8/8/2019 Slides Fall 10

    231/400

    232

  • 8/8/2019 Slides Fall 10

    232/400

    233

  • 8/8/2019 Slides Fall 10

    233/400

    234

  • 8/8/2019 Slides Fall 10

    234/400

    Nominal model described by TF

    True plant described by unknown TF

    235

  • 8/8/2019 Slides Fall 10

    235/400

    Set of possible TF

    Uncertainty generator

    Uncertainty bound

    Quick Check:

    100 1 mm

    236

  • 8/8/2019 Slides Fall 10

    236/400

    100 1 mm

    What is the nominal model?What is the uncertainty generator?What is the uncertainty bound?Is this family equivalent to the family

  • 8/8/2019 Slides Fall 10

    237/400

    Step 1: fit a nominal model:238

  • 8/8/2019 Slides Fall 10

    238/400

    Step 2: true plant

    satisfies

    therefore

    Step 3: find a low-order bound239

  • 8/8/2019 Slides Fall 10

    239/400

    Where are we now?

    240

  • 8/8/2019 Slides Fall 10

    240/400

  • 8/8/2019 Slides Fall 10

    241/400

    loop gain

    Definitions242

  • 8/8/2019 Slides Fall 10

    242/400

    sensitivity

    complementarysensitivity

    return diference

    243

  • 8/8/2019 Slides Fall 10

    243/400

    If plant and/or controller unstable then CL

    244

  • 8/8/2019 Slides Fall 10

    244/400

    system astab iff all following 9 (4) TF astab:

    If both P(s) and C(s) are astab then it is sufcientto check that S(s) or T(s)are astab

  • 8/8/2019 Slides Fall 10

    245/400

    246

  • 8/8/2019 Slides Fall 10

    246/400

    Case n+=n0=0247

  • 8/8/2019 Slides Fall 10

    247/400

    L( j )

    T ( j ) astab?

    Case n+=n0=0248

  • 8/8/2019 Slides Fall 10

    248/400

    L( j )

    T ( j ) astab?

  • 8/8/2019 Slides Fall 10

    249/400

    250

  • 8/8/2019 Slides Fall 10

    250/400

  • 8/8/2019 Slides Fall 10

    251/400

    252

  • 8/8/2019 Slides Fall 10

    252/400

    return difference

    253

  • 8/8/2019 Slides Fall 10

    253/400

    Re

    Im-1

    254

  • 8/8/2019 Slides Fall 10

    254/400

    255

  • 8/8/2019 Slides Fall 10

    255/400

    log

    ||

    256

  • 8/8/2019 Slides Fall 10

    256/400

  • 8/8/2019 Slides Fall 10

    257/400

    0

    258

  • 8/8/2019 Slides Fall 10

    258/400

    0

    259

  • 8/8/2019 Slides Fall 10

    259/400

    260

  • 8/8/2019 Slides Fall 10

    260/400

    261

  • 8/8/2019 Slides Fall 10

    261/400

    | L( j )|

    262

  • 8/8/2019 Slides Fall 10

    262/400

    log 0

    Test plant:

    dominant NMP zero

    dominant unstable poleastab and MP plant,but uncertain

  • 8/8/2019 Slides Fall 10

    263/400

    Interpretation:264

  • 8/8/2019 Slides Fall 10

    264/400

    upper limit for

    Example:

    265

  • 8/8/2019 Slides Fall 10

    265/400

    T (s)= k n(s)(s)

    ImPoles of the CL system for varying k :

    266

  • 8/8/2019 Slides Fall 10

    266/400

    Re

    OL poles ( k =0)

    OL zeros ( k =0)

    Generalization267

  • 8/8/2019 Slides Fall 10

    267/400

    log

    | L( j )|

    0

    rule of thumb:

    Interpretation

    268

  • 8/8/2019 Slides Fall 10

    268/400

    Time delays are similar to NMP zeros.

    e-sT 1/T

    269

  • 8/8/2019 Slides Fall 10

    269/400

    k p

    e -sT

    270

  • 8/8/2019 Slides Fall 10

    270/400

    Simplest case:

    L( j ) = k /(a-j ) = k (a+j )/(a2+ 2)n+ = 1, n0 = 0

    k > 0 not OK

    k < 0 can be OK271

  • 8/8/2019 Slides Fall 10

    271/400

  • 8/8/2019 Slides Fall 10

    272/400

    | ( )|

    Generalization273

  • 8/8/2019 Slides Fall 10

    273/400

    log

    | L( j )|

    0

    rule of thumb:

    274

  • 8/8/2019 Slides Fall 10

    274/400

    Maximum-Modulus Theorem:

    Robst Stability Theorem:

    Therefore:

    Interpretation:

    Both NMP zeros and unstable poles:275

  • 8/8/2019 Slides Fall 10

    275/400

    276

  • 8/8/2019 Slides Fall 10

    276/400

    277

  • 8/8/2019 Slides Fall 10

    277/400

    Lesson 11

    Good Design278

  • 8/8/2019 Slides Fall 10

    278/400

    Why Not?100 dB

    |L(j )|

    279

  • 8/8/2019 Slides Fall 10

    279/400

    log( )

    log( )

    -100 dB

    -45

    Arg{L(j )}

    If:

    280

  • 8/8/2019 Slides Fall 10

    280/400

    Then:

  • 8/8/2019 Slides Fall 10

    281/400

    282

  • 8/8/2019 Slides Fall 10

    282/400

    r(t ), = h(t )

    uP

    yrC

    -e

    283

  • 8/8/2019 Slides Fall 10

    283/400

    Rise time t 90Max overshoot

    time

    CL step response

    284

  • 8/8/2019 Slides Fall 10

    284/400

    Step1: CL TD -> CL FD 285

  • 8/8/2019 Slides Fall 10

    285/400

    Step2: CL FD -> OL FD

    =>

    286

  • 8/8/2019 Slides Fall 10

    286/400

    L( j ) =

    02

    j ( j + 2 0 )

    287

  • 8/8/2019 Slides Fall 10

    287/400

    cross-over frequency

    phase margin

    insert

    288

  • 8/8/2019 Slides Fall 10

    288/400

    289

  • 8/8/2019 Slides Fall 10

    289/400

    uP

    yrC

    -e

    Specs:290

  • 8/8/2019 Slides Fall 10

    290/400

    =>

    Controller has only 1 DOF =>

    Phase P(j) = Phase L(j) 291

  • 8/8/2019 Slides Fall 10

    291/400

    c=0.65 rad/s

    292

  • 8/8/2019 Slides Fall 10

    292/400

    |P(j)|

    | L(j)|

    293

  • 8/8/2019 Slides Fall 10

    293/400

    = 0.53

    294

  • 8/8/2019 Slides Fall 10

    294/400

    Frequency-Domain Closed -Loop Specs 295

  • 8/8/2019 Slides Fall 10

    295/400

    Definition:

    Im

    L(j )

    S max

    1/ S max

    296

  • 8/8/2019 Slides Fall 10

    296/400

    Re(j )

    1 +L(j )

    -1

  • 8/8/2019 Slides Fall 10

    297/400

  • 8/8/2019 Slides Fall 10

    298/400

    Recap: 299

  • 8/8/2019 Slides Fall 10

    299/400

    Easy to communicate with non-experts using closed-loop

    and time-domain quantiers, e.g.:

    rise time

    max. overshoot

    t 90

    Step 1:

    Approximate closed-loop system

    300

  • 8/8/2019 Slides Fall 10

    300/400

    R(s)

    because the exact solution y(t)of the latter is known.

    time-domain -> frequency domain

    {t 90 , }

    { 0 , }

    by a second-order system Y(s)

    Step 2:

    Transform closed-loop specs to open-loop specs !!

    301

  • 8/8/2019 Slides Fall 10

    301/400

    Plot results and derive approximations

    { 0 , } { c , }

    Recipe1. Choose desired rise time and maximum

    overshoot of the CL system

    2 Compute cross-over frequency and phasei f h O i

    302

  • 8/8/2019 Slides Fall 10

    302/400

    2. Compute cross over frequency and phasemargin of the OL system using

    3. Check if these specs are realizable

    4. Find a controller C(s) that, for a given plant P(s),realizes these specs (Chapter 11, 12, and 13)

    5. Check nominal and robust stability of CL system

    303An Old Exam Question

  • 8/8/2019 Slides Fall 10

    303/400

    304

  • 8/8/2019 Slides Fall 10

    304/400

    a) Since plant is type = 1

    P ( s ) =1s

    1s + 10

    (1 10 s ) = 10 s + 1s ( s + 10)

    + = 0.1305

  • 8/8/2019 Slides Fall 10

    305/400

    a) Since plant is type 1

    b) NMP zero limits crossover frequency!

    c) No overshoot requires

    Arg{ L( j c )}=

    Arg{ P ( j c )}=

    110 c 0.03

    C (s) = k p

    c

    < 0.1 t 90 > 1.7 /0.1 = 17

    70

    | P ( j c ) | 10 dB k p 10 dB 0.3

    306

  • 8/8/2019 Slides Fall 10

    306/400

    c

    0.03

    t 90 1.7 /0.03 56 s

    Arg{ P ( j

    c)} = 110

    (finally )

    307

  • 8/8/2019 Slides Fall 10

    307/400

    (finally )

    First approach: choose a suitable controller structure and optimize the parameter of that controller.

    308

  • 8/8/2019 Slides Fall 10

    308/400

    90-95% of all controllers are PI(D) controllers

    309

  • 8/8/2019 Slides Fall 10

    309/400

    l ( )

    dB

    Why is PI(D) so common?310

  • 8/8/2019 Slides Fall 10

    310/400

    0

    |P ( j )|

    log( )

    -20 dB/dec

    311

  • 8/8/2019 Slides Fall 10

    311/400

    |L(j )|

    c

    312

  • 8/8/2019 Slides Fall 10

    312/400

    |C ( j )|

    Performance OK313

  • 8/8/2019 Slides Fall 10

    313/400

    Stability?Robustness?

  • 8/8/2019 Slides Fall 10

    314/400

    Main assumptions:

    Real plant is well approximated by

    315

  • 8/8/2019 Slides Fall 10

    315/400

    Ratio of time constants

    must be small (below 0.3)

  • 8/8/2019 Slides Fall 10

    316/400

    Interpretation

    317

  • 8/8/2019 Slides Fall 10

    317/400

    1: Set

    2:

    = small318

  • 8/8/2019 Slides Fall 10

    318/400

    measure

    3: Choose

  • 8/8/2019 Slides Fall 10

    319/400

    P ( j ) =1

    1 + 2( )5 e

    j arctan { }5

    320

  • 8/8/2019 Slides Fall 10

    320/400

    kp*| P( j )|

    |P(j)|

    321

  • 8/8/2019 Slides Fall 10

    321/400

    Arg{ P( j )}

    |P( j )|

    P(s)

    d

    yC(s)

    -

    322

  • 8/8/2019 Slides Fall 10

    322/400

    323

  • 8/8/2019 Slides Fall 10

    323/400

    Limits of Ziegler-Nichols Approach

    > 0.3

    324

  • 8/8/2019 Slides Fall 10

    324/400

    Iterate

    Objective: improve shape of loop gain

    Badly damped resonances, NMP zeros,

    325

  • 8/8/2019 Slides Fall 10

    325/400

    Numerical solution:

    y(t)

    326

  • 8/8/2019 Slides Fall 10

    326/400

    t

    y(t)

    ZN

    LS

    1 2

  • 8/8/2019 Slides Fall 10

    327/400

    328

  • 8/8/2019 Slides Fall 10

    328/400

    Lesson 13

    329

  • 8/8/2019 Slides Fall 10

    329/400

    Lead

    Lag

    Lead

    330

  • 8/8/2019 Slides Fall 10

    330/400

    Lag

    331

  • 8/8/2019 Slides Fall 10

    331/400

    332

  • 8/8/2019 Slides Fall 10

    332/400

    Recap: How to Design a PID-Controller?

    Ziegler-Nichols

    333

  • 8/8/2019 Slides Fall 10

    333/400

    Parametric loop shaping

    Lead/Lag loop shaping

    {k p ,T i,T d , }

    Plant:

    334

  • 8/8/2019 Slides Fall 10

    334/400

    Specs:

    In a second step, a 2nd-order Lead is added

    335

  • 8/8/2019 Slides Fall 10

    335/400

    C 2(s)=C l2(s).C(s)

    l2

    with

    336

  • 8/8/2019 Slides Fall 10

    336/400

    There is much more in RT II:

    337

  • 8/8/2019 Slides Fall 10

    337/400

    and in the subsequent lessons

    338

  • 8/8/2019 Slides Fall 10

    338/400

    Starting point: {P(s), W 2(s)}

    Objective: find a C (s) that takes into account boththe nominal plant and the uncertainty

    Possible Model-Error Structures339

  • 8/8/2019 Slides Fall 10

    339/400

    340

  • 8/8/2019 Slides Fall 10

    340/400

    Dangerous!

    Rule #1: never cancel unstable poles or non-

    341

  • 8/8/2019 Slides Fall 10

    341/400

    minimumphase zeros!

    Rule #2: never apply these methods if the nominaland the true plant have not the samenumber of unstable poles or NMP zeros!

    Rule #3: use plant inversion methods with caution.

    Case 1:

    Known: W 2 (s) with | W 2 ( j ) | < 1, < 2

    342

  • 8/8/2019 Slides Fall 10

    342/400

    Desired loop gain

    Plant343

  • 8/8/2019 Slides Fall 10

    343/400

    Resulting controller

  • 8/8/2019 Slides Fall 10

    344/400

    345

  • 8/8/2019 Slides Fall 10

    345/400

    346

  • 8/8/2019 Slides Fall 10

    346/400

  • 8/8/2019 Slides Fall 10

    347/400

    348

  • 8/8/2019 Slides Fall 10

    348/400

    349

  • 8/8/2019 Slides Fall 10

    349/400

    Why not? Example:

    Case 2:

    350

  • 8/8/2019 Slides Fall 10

    350/400

    Loop shaping using PID/Lead/Lag/ valid approach

    L ( s ) = C (s ) P ( s ) =( s + 1)

    ( s 1) s

    s 1

    ( s + 1)=

    1

    s

    Why not? Example:

    What is wrong?

    351

  • 8/8/2019 Slides Fall 10

    351/400

    2 (not restricting)

    First iteration

    Choose suchthat cross-over frequency is and 0.2

    352

  • 8/8/2019 Slides Fall 10

    352/400

    that cross over frequency is andloop rolls off with -20 dB/dec around crossover

    Problem: phase reserve is not OK, therefore

    c

    0.2

    353

  • 8/8/2019 Slides Fall 10

    353/400

    354

  • 8/8/2019 Slides Fall 10

    354/400

    355

  • 8/8/2019 Slides Fall 10

    355/400

    P(s)

    d

    yC(s)

    -

    356

  • 8/8/2019 Slides Fall 10

    356/400

    trade-off robustness versus performance

    | 1 + L ( j ) |

    357

  • 8/8/2019 Slides Fall 10

    357/400

    | 1 + L1 ( j ) |

    | 1 + L2 ( j ) |

    | W 2 ( j ) L2 ( j ) |

    | W 2( j ) L

    1( j ) |

    y

    Case 3:358

  • 8/8/2019 Slides Fall 10

    358/400

  • 8/8/2019 Slides Fall 10

    359/400

    P(j )

    -1

    Re

    =0+

    +

    or not feasibleC (0) +feasible, but phase shift must be >180

    (plant has -180, controller has -180 at =0, loopmust reach at least -179, )

    C (0) C (0)

    |P( j )||C ( j )|

    | L( j )|

    360

  • 8/8/2019 Slides Fall 10

    360/400

    Therefore to reach more than+180 phase shift

    361

  • 8/8/2019 Slides Fall 10

    361/400

    to make controller realizable

    first high-pass than low-pass bevior

    1

    L( j ) C ( j )

    1

    362

  • 8/8/2019 Slides Fall 10

    362/400

    =1P( j )

    =1

    =1

    L 14

    363

  • 8/8/2019 Slides Fall 10

    363/400

    Lesson 14

    1. Extension:364

  • 8/8/2019 Slides Fall 10

    364/400

    2. Extension:

    Design of C (s) in the OL/FD

    design of C (s) in the CL/TD

    365

  • 8/8/2019 Slides Fall 10

    365/400

    1. Design inner (fast) loop without consideringouter loop. Main objective: speed

    2. Design outer (slow) loop with inner loop active

    (closed). Main objective: accuracy

    366

  • 8/8/2019 Slides Fall 10

    366/400

    Case 1: output-feedback design367

  • 8/8/2019 Slides Fall 10

    367/400

    output-feedback controller (aggressive!)

    368

  • 8/8/2019 Slides Fall 10

    368/400

    Case 2: cascaded-feedback design, part 1369

  • 8/8/2019 Slides Fall 10

    369/400

    inner feedback (fast) controller

    370

  • 8/8/2019 Slides Fall 10

    370/400

    Case 2: cascaded-feedback design, part 2

    outer transfer function with inner loop closed

    371

  • 8/8/2019 Slides Fall 10

    371/400

    outer feedback (accurate) controller

    372

  • 8/8/2019 Slides Fall 10

    372/400

    373

  • 8/8/2019 Slides Fall 10

    373/400

    374

  • 8/8/2019 Slides Fall 10

    374/400

    375

  • 8/8/2019 Slides Fall 10

    375/400

    376

  • 8/8/2019 Slides Fall 10

    376/400

    Bridge between classical and modern methods

    Works in the time domain and closed loop

    MUST be accompanied by a post-design frequency

    domain check

    Basic Idea

    Plot poles of CLOSED-LOOP system as a functionof STATIC loop gain

    377

  • 8/8/2019 Slides Fall 10

    377/400

    => poles = solution of

    Main assumption: L(s)asymptotically stable

    (if L(s)unstable see Section 9.3)

    Poles closed loop dened by rational equation:

    Pro Memoria:378

  • 8/8/2019 Slides Fall 10

    378/400

    Poles closed loop dened by rational equation:

    Characteristic polynomial:

    Poles

    Main Rules1. The root locus is a set of curves in the complex plane2. The curves start ( k =0 ) at the poles of the OL system

    3. For k approaching infinity, m of the curves approachthe m finite zeros of the OL system

    379

  • 8/8/2019 Slides Fall 10

    379/400

    4. The n-m=r other curves go to infinity approachingstraight asymptotes

    5. The center of these asymptotes is at a + j 0 6. The angle of the asymptotes is i 7. A point in the complex plane is part of the root locus

    iff it satisfies the phase condition

    Center of asymptotes ( r straight lines)

    Rules for asymptotes380

  • 8/8/2019 Slides Fall 10

    380/400

    Angle of asymptotes

    i = 1, , n m > 0

    L ( s ) =b (s )a (s )

    =s + 1

    (s + 2) s 2 + 2 s + 3( )

    Root locus = curve of solutions of

    Example:381

  • 8/8/2019 Slides Fall 10

    381/400

    Root locus curve of solutions of

    Why is this a one-dimensional curve?

    Can we choose any point in the complex plane to be

    on the root locus?

    Re

    Im

    a ( s ) = 0

    b ( s ) = 0

    382

  • 8/8/2019 Slides Fall 10

    382/400

    Re

    1=

    2

    =

    3=

    1 =

    a =1

    [ ]

    Number of asymptotes =

    383

  • 8/8/2019 Slides Fall 10

    383/400

    Phase condition (most useful!)A point z is part of the root locus iff:

    zeros of L(s) poles of L(s)

    384

  • 8/8/2019 Slides Fall 10

    384/400

    i = 1,0,1,

    385

  • 8/8/2019 Slides Fall 10

    385/400

    L(

    s)

    =b (s )a (s )

    =b

    m (s 1) (s 2 )

    (s 1) (s 2 ) (s 3 )

    arg L (s ){ }= arg b (s ){ } arg a (s ){ }

    =

    args

    1{ }+

    [ ]

    args

    1{ }+

    [ ]

    Re

    Im

    Illustration: z

    z- 2 z- 1

    386

  • 8/8/2019 Slides Fall 10

    386/400

    poles 1, 2zero

    ( + ) =

    1

    387

  • 8/8/2019 Slides Fall 10

    387/400

    Plant:

    Specs:

    388

  • 8/8/2019 Slides Fall 10

    388/400

    1

    2

    3

    Controller:

    spec 1 OK

    spec 2 and 3 to be satised by appropriatechoice of the poles of the CL system

    2

    389

  • 8/8/2019 Slides Fall 10

    389/400

    T ( s ) =

    0

    s 2 + 2 0 s + 02 where (Sect. 10.3)

    = ( ) = log(0.02)

    2 + log(0.02) 2 0.78

    0 = 0 ( , t 90 ) = 0.14 + 0.4 [ ]2

    1.3 2.2 rad / s

    390

  • 8/8/2019 Slides Fall 10

    390/400

    391

  • 8/8/2019 Slides Fall 10

    391/400

    392

  • 8/8/2019 Slides Fall 10

    392/400

    C 1 (s) = k p = 1 C 2 (s) = k p (s + ) = s +

    C 1 (s) = k p = 1

    C (s)1

    open-loop zero

    open-loop pole

    closed-loop pole

    Im

    2

    4

    6

    k = 0

    393

  • 8/8/2019 Slides Fall 10

    393/400

    desired pole

    p p

    Re-5 0

    -6

    -4

    -2

    0

    n-m=2

    =0.5(-1-3)=-2

    C (s)2

    open-loop zero

    open-loop pole

    desired pole

    closed-loop pole

    Im

    -2

    0

    2

    4

    6

    ( + ) =

    394

  • 8/8/2019 Slides Fall 10

    394/400

    Re-10 -5 0

    -6

    -4

    Outlook: Better control system design methods, in

    particular for MIMO and nonlinear systems

    Realization aspects (SW and HW, sensors,

    395

  • 8/8/2019 Slides Fall 10

    395/400

    Realization aspects (SW and HW, sensors,actuators, , COST)

    System modeling and experimental validation

    Applications

    State Feedback

    396

  • 8/8/2019 Slides Fall 10

    396/400

    397

  • 8/8/2019 Slides Fall 10

    397/400

    Reset (Integrator) Windup

    398

  • 8/8/2019 Slides Fall 10

    398/400

    Gain Scheduling

    ( how to cope with real-life problems )

    399

  • 8/8/2019 Slides Fall 10

    399/400

    400

    Hardware I

  • 8/8/2019 Slides Fall 10

    400/400

    401

    Hardware II