six ways for condensation in buildings

Upload: batteekh

Post on 07-Jan-2016

222 views

Category:

Documents


0 download

DESCRIPTION

methods to prevent condensation in the building enclosure

TRANSCRIPT

  • *WagdyAnis,FAIA,LEEDAP,Principal,Wiss,Janney,ElstnerAssociates,Inc.,Boston,[email protected]

    BEST2WB34SIXWAYSFORCONDENSATIONINBUILDINGSWagdyAnis,FAIA,LEEDap*

    Abstract:Sixofthewayscondensationcanoccuroncoldsurfacesinbuildingsarediscussedhere.Theyare:

    1. AirLeakage,2. Diffusion3. Convection,4. Thermalbridges5. Fenestration6. Groundcontact

    Eachofthesewayswillbediscussedinthispaperandsolutionssuggestedtomitigateandavoidtheproblemsfromoccurring,Preventingcondensation,ormoreaccurately,avoidinganincreaseinthemoisturecontentofbuildingmaterialstolevelsthatcansupportthegrowthofmicroorganisms,especiallymoldswithintheenclosureandoninteriorsurfaces,isfundamentaltoavoidinghealthandairqualityproblemsinbuildings;itisalsoessentialinavoidingprematuredeteriorationofenclosurecomponents.ThegrowthoramplificationofmicroorganismsinbuildingsnotonlyresultsinbiodeteriorationofsusceptibleconstructionmaterialsbutalsoleadstotheproductionofallergensandmicrobialVOCs(thecauseofmustyodors)thatcanaffectoccupanthealthandairquality.Acomplexmicrobialecology(e.g.,mitesfeedonmoldandskinparticles;otherorganismsfeedonmites)candevelopinoronconstructionmaterialsthatarechronicallywetordamp.Allergensassociatedwithmoldsandarthropods(theirfecesandbodyparts)growinginchronicallywetconstructionnichescanentertheindoorenvironmentandposearisktosensitiveoccupants.Themoisturecontentofbuildingmaterialsincreasesduetowatervaportransportacrossenclosureassemblies,eitherbyinfiltrating,exfiltrating,orconvectingaircomingincontactwithsurfacesthathaveatemperaturelowerthanthedewpointofthemovingair,and/orbydiffusionduetoadifferenceinwatervaporpressureacrosstheassembly,orbycapillarytransportthroughthemicroscopicvoidsinbuildingmaterials.Properlydesignedenclosureassemblieshavegreaterdryingpotentialthanwettingpotential.Theyachieveamoisturebalanceovertime.Whenthatbalanceisnotachievedproblemsoccur.Manybuildingdesignsdonotgetsufficientlyscrutinizedtoensurethatthedesignsareappropriatefortheclimatetheyareexpectedtoweather.Thermalbridgesareconductivematerialsthatpartiallyorcompletelypenetratetheinsulatedenclosure.Theheatlossthatresultscandroptemperaturesofinteriorsurfacestolevelsbelowthedewpointoftheindoorairandpromotecondensation

  • Page2

    Buildingenclosuresareoftendesignedwithoutaproperunderstandingoftheperformanceoftheassemblywhensubjectedtotheexteriorweatherandinteriorboundaryconditions.Coderequirementsmayevenimposesolutionsthatareproblematicsuchasrequiringvaporretardersprescriptivelyincircumstancesthatignorelocalconditions.Waterresistivebarriersthatmaybetoovaporpermeableundercertainweatherconditions.Prescriptivecriteriaincodesareslowlybeingimproved,butthesubstitutionofasinglematerialinanassemblycanradicallychangehowtheassemblyperformsovertime.BuildingenclosuresshouldbedesignedbyaknowledgeabledesignprofessionalusingdesigntoolsreferencedintheHandbookofFundamentals(ASHRAE,2009chapter25)1,inordertoavoidthelikelihoodofmoisturerelatedproblems.ControlAirLeakageAirleakageisidentifiedasthebiggestcauseofcondensationinbuildings(CBD23A.J.Wilson,1961).Condensationofmoistureininterstitialcavitiesfromexfiltratingairinnorthernclimates,orfrominfiltratinghothumidairinsouthernclimates,cancausecondensationandmoldgrowththatcanpromotehealthproblemsandprematurebuildingdeterioration.Unlikethemoisturetransportmechanismofdiffusionduetoavaporpressuredifference,airpressuredifferentialscantransporthundredsoftimesmorewatervaporthroughairleaksintheenvelopeoverthesameperiodoftime(Quirouette,1985).Thiswatervaporcancondensewithinthebuildingenclosureinaconcentratedmanner,dependingonthepathway,andtheinternaltemperaturedistributions.Therearethreemajorairpressuresonbuildingsthatcauseinfiltrationandexfiltration:

    WindPressure StackPressure(sometimescalledchimneyeffect,orbuoyancy) HVACFanPressure,includingappliancessuchasclothesdriers.

  • Page3

    Figure1CondensationofwatervaporcarriedbyairexfiltratingbetweentheSIPSpanelscausedcondensationandrotofOSBwithinoneyearofconstructionofthisnatatorium.

    Figure2Infiltratingwarmhumidairintothisairconditionedplenumcausedcondensationoncoldsurfacesofchilledwaterpipeinsulation.ControlofconvectionAirincontactwithcoolsurfaceswillbecooleddown.Coolairisheavierthanwarmairandwillsinkdown,beingreplacedbywarmeraircarryingmoisture,promotingaccumulationofcondensationonthecoolsurfacesduetoaconvectiveloop.Eliminatingandavoidingvoids(seeFig.4)adjacenttocoolsurfacesiskeytoreducingcondensationduetoconvection.Controllingconvectioncurrentswithinenvelopeassembliescausedbyconnectingaironthecoldsidetoaironthewarmsideofinsulationortheinteriorairbysealingtheinterior(Figure3).Thisisthetypicalmechanismofmoldformationininsulatedbasements,whereairthatisadjacenttoacoolconcretebasementwallcoolsdown,getsheavierandsinks,pullinginwarmhumidairatthetopoftheinsulatedwall.Typicalglassfiberinsulationislowdensityandpromotesconvection;denserinsulationssuchascellulose,rigidboardinsulationsandsprayfoaminsulationscaneliminatethisconvectionwhencarefullyinstalled.

  • Page4

    cold side warm side

    spaces allow air movement

    cold side warm side

    spaces allow air movementspaces allow air movementspaces allow air movement

    Figure3Aconvectiveloopdepositscondensationonthecoldsideofthewall

    Figure4Airspacesduetoshapeofstudscreatepathwaysforconvectionofair.DesignAirtightnessoftheenclosureIncludeacontinuousairbarriersystem2inthebuildingenclosure:

    Selectamaterialineachopaquewall,floorandroofassemblythatmeetsamaximumairpermeanceof0.02L/s.m2@75Pa(0.004cfm/[email protected])andjoinittogetherwithtapes,sealantsetc.,intoanassembly;orselectanassembly(ASTME2357orE1677)withamaximumairpermeanceof0.2L/s.m2@75Pa(0.04cfm/[email protected].)

    Jointheairbarrierlayerofeachassemblywiththeairbarrierlayerofadjacentones,andtoallfenestrationanddoors,untilallenclosureassemblies(roof,walls,andbelowgradecomponents)areinterconnectedandsealed.

    Sealallpenetrationsoftheairbarrierlayer. Theairtightlayerofeachassemblywillsupporttheentireairpressureofwind,stackeffectand

    HVACfans.Ensurethattheairtightlayerisstructurallysupportedandcansupportthe

  • Page5

    maximumpositiveandnegativeairpressuresitwillexperience,withoutrupture,displacementormechanicaldamage.Stressesmustbesafelytransferredtothestructure.

    ConvectionAirgapsadjacenttocoolorcoldsurfacescanpromoteconvectionwithinawallassembly.Coldairisheavierandsinks,pullinginwarmhumidairtoreplaceitanddepositmoistureonthecoldsurface.Thisisespeciallytrueinverticalorslopingassemblies.Thecoldersidecanbethesheathingorprecastconcreteincolderclimatesortheinteriordrywallinwarmerclimates.Eliminatingtheairspaceononeorothersideoftheinsulationcanbeeffectiveinpreventingtheseconvectiveloops.Fibrousinsulation,however,whichismostlyair,willalsoallowtheseconvectiveloopstohappen.Denserinsulationsincludingcellulose,rigidboardinsulationwheninstalledinamannertopreventairgaps,orsprayfoaminsulationcanbeespeciallyusefulinavoidingthisproblem.DiffusionAvaporretarderwithappropriatepermeancefortheapplication3shouldbeplacedonthepredominantlyhighvaporpressuresideoftheassembly.Todesignassembliesforappropriatediffusioncontrol,hygrothermalanalysisusingeitherthesteadystatedewpointorGlasermethodsdescribedintheHandbookofFundamentals,(ASHRAE,2009Chapter25)orbyusingamathematicalmodelthatsimulatestransienthygrothermalconditions(theASTMmanual,MoistureAnalysisandCondensationControlinBuildingEnvelopes(Trechsel,2001)reviewsthesemodels).Usersofsuchmethodsmustunderstandtheirlimitations,andinterpretationoftheanalysisresultsshouldbedonebyatrainedpersontoreasonablyextrapolatefieldperformanceapproachingthedesignresults.TheInternationalEnergyAgencyAnnex14(IEA,Hens1991)hasestablishedthatasurfacerelativehumidityof80%averagedoveraperiodof30daysrepresentsareasonablethresholdfordesignerstoachieveasuccessfulbuildingenclosureassemblyfortemperaturesbetween40Fand120F(5Cand50C).Thisisathresholdabovewhichmoldcangrowandbuildingassembliesdeteriorate.WindowandSkylightSelectionFenestrationshouldbeselectedcarefullybydesignerstoavoidcondensation.Fenestrationisselectedtakingintoaccounttheinteriorboundaryconditionsandexteriorweatherconditions;fromachartdevelopedbytheAmericanArchitecturalManufacturersAssociation(AAMA)4,(seeFig.5)theappropriateCondensationResistanceFactor(CRF)forthewindoworskylightisdeterminedbycomparingtheindoorrelativehumidityagainstthe99.6%winterdesigntemperature.

  • Page6

    Figure5CondensationResistanceFactorcurves(AAMA)Fenestrationwithagoodthermalbreak(>1/4thickoflowconductionmaterial)thatminimizetheamountofexteriormetalexposedtocoldusuallyperformbest,andfromacondensationresistanceperspective,mayoutperformnonmetalunits(nonmetalunitsmayhaveimprovedUfactorsthough).Theedgespaceroftheinsulatingglassunitisusuallythemostconductive(andcoldest)locationinawindowassembly.Anewgenerationofwarmedgespacersthatincludethermallybrokenaluminumspacers,stainlesssteelspacersandnonmetallicglassfiberreinforcedplasticspacersareincreasinglybeingusedtoimprovethethermalperformanceoffenestration.InertgasfillssuchasArgonandKrypton,andmultiplelowEfilmsreduceheattransmissionfurtherbyreducingconvectionandradiation.WindowandskylightmanufacturersgenerallycanprovideNationalFenestrationRatingCouncil(NFRC)5simulationsusingthesoftwareTHERMthatshowshowaspecificselectionofwindow,spacerandglass,withvariousgaseousfillwillperform.ItisalsoimportanttonotethatsomenonmetalwindowsthathaveanimprovedUfactormayhaveaworseCRFthanametallicthermallybrokenwindowwithahigherUfactor.CustomdesignsareoftenrequiredtobeverifiedusingtheTHERMandWINDOWsoftware,andvalidatedbyphysicallaboratorytestingaswell.Commonproblems,inadditiontopoorselectionofawindow,andtheirdesign,constructionandinstallationinclude:

    1. Poorlocationofthermalbreak,ornothermalbreakatall.2. Thewarmsideofathermallybrokenwindowframeexposedtocoldtemperatures.3. Weepholesthatcommunicatebetweentheindoorandoutdoorenvironmentsresultinair

    leakageofcoldairintothewindowframe.

  • Page7

    4. AirLeakageattheinterfaceofthewindowframetotheopaquewallsairbarriercausingcoolingofthewarmsideofathermallybrokenwindow.

    Figure6Weepholesconnectinginteriorandexteriorenvironments.Thermalbreaksinpoorlyselectedlocation.

  • Page8

    Figure7Frostonacurtainwallframeduetolackofprimaryairbarrierseal.

    BelowGradeWallsandSlabsonandBelowGradeDeepgroundtemperatureinalocaleisnotunliketheaverageannualtemperature,withlocalvariationsduetoshadingfromvegetation,elevationorproximitytothecoast.ComparingtheannualaveragetemperaturewiththeAugustdewpointtemperatureoftheair(seeFig.8)isagoodindicationofwhethercondensationislikelytooccuronslabsandwallsofbelowgradestructures.Concreteishighlyconductiveandwillattainatemperaturesimilartothatofthegroundand,potentially,becomealikelycondensationsurface.Insulatingtheoutsideoftheconcretewallsandfloorsisthebestchoiceforkeepingtheconcreteabovethedewpointoftheindoorair.Intermiteinfestedareas,selectrigidinsulationthathastermiticidesincluded;thatrenderspoisoningthesoilunnecessary.Fullinsulationunderslabswithavaporretarderontopoftheinsulationinintimatecontactwiththeslabisthebeststrategyforadryslab.Selectionofinsulationdensityshouldtakeintoconsiderationmaximumpointloadswithanappropriatefactorofsafetytoavoidcrushing.Insulatingontheinsideofbelowgradewallsispossible,butitisbesttoinsulateusingadheredrigidinsulationsoastoavoidconvectionthroughfibrousinsulation(seeFig9).

  • Page9

    Figure8ComparingalocationsaverageannualtemperaturewiththeAugustdewpointoftheairisa

    goodindicationofwhetherbelowgradestructuresmaycausecondensationandmold.

  • Page10

    S.O.G

    SEALANT AT ALL CONSTRUCTION JOINTS

    TREAT AND SEAL ALL CRACKS & PENETRATIONS

    VAPOR BARRIER AND INSULATION KEEPS SLAB WARM AND REDUCES CHANCES OF CONDENSATION

    CRUSHED ROCK AND PERFORATED PIPES RELIEVE GAS PRESSURE AND PROTECT BASEMENT S.O.G. FROM MOISTURE TRANSFER

    DAMPPROOFING AND DRAINAGE INSULATION RELIEVE GAS PRESSURE AND KEEP BASEMENT WALLS WARM AND DRY.

    CONNECT PERIMETER DRAIN AND UNDERDRAIN SYSTEMS TO A GAS-TIGHT PVC PIPE THROUGH ROOF. ADD IN-LINE DRAFT FAN IF NECESSARY

    Figure9InsulateoutsidebelowgradestructuresThermalBridgingThermalbridges,duetoconductivematerialsthatpenetrateorinterruptthethermalinsulationlayer,causeadropintemperatureoftheinteriorsurfaceincoldclimates;buildingswithexoskeletons,orbuildingswithexteriorstructuralcomponentsareatypicalexample.Thiscancausecondensationduetocoldertemperaturesandresultinmoldgrowth.Itcanalsocausedepositionofparticulatesontothecoldinteriorsurfacescalledghosting.Inthebuildingshownbelowinacoldclimate,interiorhumidity,candlesmokeandthermalbridgingcombinedtocauseghostingofthesteelstuds;(seeFig.10and11).

    Figure10THERManalysisshowingtemperaturevariationcausedbythermalbridgingbysteelstuds

    (Anis,2007)

  • Page11

    Figure11Steelstudsloweringtemperatureofinteriorsurfacescausingghosting

    Figure12Theseexteriorsteelcolumnsareheatsinks,drawingheatfromthebeamsthatpenetratefromtheconditionedspace.Beamsinsidethebuildingweredrippingwet.

  • Page12

    Figure13Asteelbeamtosteelbeamstructuralthermalbreak,oneofmanydesignsavailable.Structuralmembersthatareoutsidethethermalinsulatedenclosure(seeFig12)canbeheatsinksdissipatingheatintotheenvironmentanddroppinginteriortemperaturesbelowthedewpoint.Smallerthermalbridgesincludingmetalfastenersandfurringmemberscanalsobeaproblem;itisimportanttorememberthatstainlesssteelhasaboutonethirdtheconductivityofcarbonsteelandonetenththatofaluminum.Conclusions:Keepingenclosurecomponenttemperaturesabovethedewpointoftheaircomingincontactwithit,controllingairmovement,vaporpressuresandthermalbridgesinbuildingenclosureassembliesiscriticaltoavoidingcondensationin/onbuildingenclosures.Knowledgeableprofessionalsshouldfollowsoundbuildingscienceprinciplesinthechoiceanddesignofenclosureassembliesfortheapplicationsandclimatesinvolved.References:1HandbookofFundamentals;ASHRAE2009,Chapter252AirBarrierSystemsinBuildings,WholeBuildingDesignGuidewww.wbdg.org;Anis,W.FAIA3InternationalBuildingCode2009,InternationalCodesCouncil4www.aamanet.org5www.nfrc.org