sis slides v1

Upload: xarly-polite-jr

Post on 02-Jun-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Sis Slides v1

    1/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 1Slide 1

    SAFETY INSTRUMENTED SYSTEMS &

    EMERGENCY SHUTDOWN SYSTEMS

    for Process Industriesusing IEC 61511 and IEC 61508

    Unit 7: SIL Instrument Selection

    Version for EQO26: 7 November 2012

    Presented by Dave Macdonald,

    EIT Cape Town South Africa

    Contact E-mail: [email protected]

    EIT Safety Instrumentation E-Learning

  • 8/10/2019 Sis Slides v1

    2/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 2

    Introduction to Chapter 7: Practical selection ofsensors and actuators for safety duties

    Impact on SIS Reliability,

    Types of Sensors and Actuators

    Failure modes and causes

    Separation, redundancy, diversity, diagnostics

    Device Selection Issues: What IEC 61511 requires + Common sense

    Technologies: Safety certified instruments and fieldbus

  • 8/10/2019 Sis Slides v1

    3/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 3

    Sensors and Actuators remain the most critical reliability items in an SIS

    Separation, diversity and redundancy are critical issues.

    Safety related instruments must have a proven record of performance.

    IEC 61508 / 61511 have specific requirements

    Logic solver intelligence and communications power will help to provide

    diagnostic capabilities to assist field device reliability

    Failure modes and common cause issues are potential problems for

    intelligent instruments

  • 8/10/2019 Sis Slides v1

    4/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 4

    Instrument practice for safety systems : well established

    ISA S 84.01 Appendix B.obsolete standard but still relevant.

    IEC 61511 specifics defined in clause 11.5 and 11.6 of part 1. Gruhn & Cheddie ISA Textbook; chapter 9

    IEC 61511-1 Paragraph 11.5:

    Requirements for selection of components and subsystems 11.5.2.1 Components and subsystems selected for use as part of a safety

    instrumented system for SIL 1 to SIL 3 applications shall either be inaccordance with IEC 61508-2 and IEC 61508-3, as appropriate, or else theyshall be in accordance with 11.4 and 11.5.3 to 11.5.6, as appropriate

    Certifiedcompliant toIEC 61508

    Faulttolerance

    Prior use

    justification

  • 8/10/2019 Sis Slides v1

    5/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 5

    Typical Reliability Table

    Item Fail to

    Danger Rate/ yr.

    PFD avg(3 month proof test)

    PFD avg

    % of total

    Input sensor loop 0.05 0.006 32

    SIL 3 Logic Solver PLC 0.0005 3

    Output Actuator loop

    (Solenoid + valve)

    0.1 0.0125 65

    Totals 0.019 (SIL 1) 100

    The field devices taken together contribute 97% of the PFD for this example.

    The PFD figures for the field devices are affected by environmental conditions

    and maintenance factors.

    PES logic solvers benefit from auto-diagnostics.

    Table 7.1

  • 8/10/2019 Sis Slides v1

    6/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 6

    Bus connected safety certified instrumentsFoundation Field Bus

    Profi-safe

    ASI-Safety Bus

    See Session 5

  • 8/10/2019 Sis Slides v1

    7/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 7

    ! " #

    Good reliability and accuracy

    Signal present at all timesimproved SFF Potential for diagnostics, easier to detect faults

    Possible to compare signal with other parameters

    Trending and alarming available Multiple set points

    Competitive pricing

    Rationalized spares

  • 8/10/2019 Sis Slides v1

    8/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 8

    $

    Components of the instrument

    Process connection

    Fouling /corrosion/process fluids/clogging

    Wiring

    Environmental: Process/Climate/Electrical

    Specification/range/resolution.

    Response time

    Power supplies

    Intrinsic safety barriers

    Calibration/testing/ left on test/isolated.

  • 8/10/2019 Sis Slides v1

    9/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 9

    $

    SIS

    Logic

    Electrical Drive Trip

    Interlocks

    M

    Process Valve Trip

    380 v ac

    power

    SIS

    Logic

    Figure 7.4

  • 8/10/2019 Sis Slides v1

    10/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 10

    Safety

    Relay

    K1

    Relay

    K1 Time

    Delayed

    Reset

    Drive

    controller

    Stop Category 1

    Safety Control Category 2

    E-Stop

    command

    Power

    %& & # '(

  • 8/10/2019 Sis Slides v1

    11/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 11

    Components of the actuator, positioner, mechanical

    failures of springs

    Process connection/leaks. Mechanical distortion of

    pipes causing stress in valve

    Valve internal faults due to : Fouling or corrosion by

    process fluids/jamming/sticking/leaking Wiring to solenoids

    Pneumatics/ venting failures

    Environmental. Physical impacts/fire/freezing oricing up.

    Solenoid valves sticking or blocking

    Potential Causes of Failures in Final Elements

  • 8/10/2019 Sis Slides v1

    12/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 12

    ) * $% "&

    Sensor contacts closed during normal operation

    Tx signals go to trip state upon failure (Normally < 4mA)

    Broken wire = trip

    Output contacts closed and energized for normal operation

    Final trip valves go to trip (safe) position on air failure

    Drives go to stop on trip or SIS signal failure

  • 8/10/2019 Sis Slides v1

    13/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 13

    For an instrument to qualify for SIL target

    Prior Use Build to IEC 61508 HW & SW

    Smart tx

    SIL 3 requires

    assessement and a safety

    manual

    And PFD must satisfy SIL target

    Certify to IEC 61508Analog or switch

    or

    Apply IEC 61511

    limitations

    SIL 1 or 2

  • 8/10/2019 Sis Slides v1

    14/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 14

    # +

    Do not share sensors because it:

    Violates the principles of independence

    Creates a high level of common cause failure

    Does not create a separate layer of protection

    Does not provide secure maintenance

  • 8/10/2019 Sis Slides v1

    15/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 15

    Boiler Steam

    Drum

    LT1

    Feed watersupply

    LSL

    SIS Logic Solver

    Logic

    Boiler

    Trip

    LIC

    1

    Figure 7.5Snap question: What is wrong with this safety tripdesign?

    Snap question: Draw a better arrangement

  • 8/10/2019 Sis Slides v1

    16/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 16

    Boiler Steam

    Drum

    Separate Sensors for Control and Trip: Acceptable

    LT1

    Feed watersupply

    LIC

    1

    SIS Logic Solver

    Logic

    Boiler

    Trip

    LT2

    LSL

    Figure 7.5 cont.

  • 8/10/2019 Sis Slides v1

    17/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 17

    Boiler Damage

    AND

    OR

    FW Fails

    LT-1 Fails

    high-No TripLIC causes

    low level

    Boiler Damage

    AND

    OR

    FW Fails LT-1 Fails

    high, LIC-1

    causes low

    level

    0.2 / yr.

    0.1 / yr.

    LT-2 Fails high

    Trip fails on

    demand

    PFD = 0.1/2 X 0.5

    = 0.025

    0.0075 / yr.

    Low level and NO TRIP

    Low level

    0.3 / yr.

    Trip fails on demand from

    FW failure

    FW Fails and

    No Trip

    0.105 / yr.

    Low level and NO TRIP

    PFD = 0.1/2 X 0.5

    = 0.025

    0.2 / yr.

    0.005 / yr.

    0.1 / yr.

    Separate Sensor

    Fault Tree Analysis for Boiler Low Level TripShared Sensor

    Figure 7.6

  • 8/10/2019 Sis Slides v1

    18/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 18

    & , $ & - , .-./

    Sharing of sensor between SIS and BPCS only allowed

    if safety integrity targets can be met. This would requiresensor diagnostics and is only likely to be possible for

    SIL 1

    Separate sensor is allowed to be copied to BPCS viaisolator

    SIL 2, 3 and 4 normally require separate sensors with

    redundancy

    SIL 3 and 4 normally require separation and diverse

    redundancy

  • 8/10/2019 Sis Slides v1

    19/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 19

    & , $ & - , .-./

    A single valve may be used for both BPCS and SIS but

    is not recommended if valve failure places a demand onthe SIS.

    Normally shared valve can only be used if: Diagnostic

    coverage and reaction time are sufficient to meetsafety integrity requirements

    Recommendations for a single valve application

    SIL 2 and SIL 3 normally require identical or diverse

    separation. Diversity not always desireble

  • 8/10/2019 Sis Slides v1

    20/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 20

    !&& ', 0

    SIS

    BPCS

    FY

    FV

    A/S

    Check hazard demands due to valve

    Positioner

    Solenoid valve

    direct acting,

    direct mounted.

    De-energise to

    vent actuator.

    Figure 7.7

  • 8/10/2019 Sis Slides v1

    21/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 21

    & # '

    0 - 0 1

    Check hazard demands due to valve

    SIS BPCS

    A/S

    FY

    Figure 7.8

  • 8/10/2019 Sis Slides v1

    22/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 22

    Do not confuse with proof testing

    Compare trip transmitter value with relatedvariables. Not often practicable

    Use safety transmitters if available

    Use Smart transmitters with diagnostic alarm

    but see next

  • 8/10/2019 Sis Slides v1

    23/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 23

    Valve Diagnostics

    Assurance that a trip valve will respond correctly when needed

    Freedom of movement, full travel

    Correct venting of actuator

    Correct rate of response

    Absence of sticking

    Trip signals and solenoid all working

  • 8/10/2019 Sis Slides v1

    24/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 24

    Methods for Valve Diagnostics

    Online trip testing

    Discrepancy alarm

    Position feedback response testing

    Partial closure testing manual or automatic

    Smart positioners certified safety positioner

  • 8/10/2019 Sis Slides v1

    25/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 25

    & 23

    IEC 61508 places an upper limit on the SIL that can beclaimed for any safety function on the basis of the fault

    tolerance of the subsystems that it uses.

    Limit is a function ofthe hw fault tolerancethe safe failure fractionthe degree of confidence in the behaviour under fault

    conditions

    Details in IEC 61508 part 2

  • 8/10/2019 Sis Slides v1

    26/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 26

    23 *&

    IEC Defines two types of equipment for use in SafetySystems:

    Type A: Simple Devices: Non PES. E.g Limit switch, levelfloat switch, analogue circuits.

    Type B: Complex Devices: Including PES. E.G Smarttransmitters. Digital communications, processor based systems.

    Fault tolerance rating of B is less than A except under certainconditions

  • 8/10/2019 Sis Slides v1

    27/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 27

    IEC 61511-1 Table 6: Minimum hardware fault tolerance of

    sensors, final elements and non PES logic

    SIL Minimum HW Fault Tolerance

    1 0

    2 1

    3 2

    4 Special requirements: See IEC 61508

    Alternatively tables 2 and 3 of IEC 61508 may be applied with an assessment

    The following summarized conditions apply for SIL 1,2 and 3 :

    Increase FT by 1 if instrument does not have fail safe characteristics

    Decrease FT by 1 if instrument meets 4 conditions.

    Predominately fail safe

    Prior Use ( Proven in use)Limited device adjustment (process parameters only)

    Password protected

  • 8/10/2019 Sis Slides v1

    28/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 28

    4& 0 #, 4 5

  • 8/10/2019 Sis Slides v1

    29/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 29

    4& 0 #, 4

  • 8/10/2019 Sis Slides v1

    30/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 30

    4&

    0#,4

  • 8/10/2019 Sis Slides v1

    31/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 31

    Redundancy Options

    Sensor or Actuator

    Configuration.

    Selection

    1oo1 Use if both PFD and FT and nuisance triptargets are met.

    1oo2 2 Sensors installed, 1 required to trip. PFD

    value improved, nuisance trip rate doubled.

    2oo3 3 Sensors installed, 2 required to trip. PFDimproved over 1oo1, nuisance trip ratedramatically reduced.

    Table 7.4

  • 8/10/2019 Sis Slides v1

    32/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 32

    Common Cause Failures in Sensors

    Wrong specification

    Hardware or circuit design errors

    Environmental stress

    Shared process connections

    Wrong maintenance procedures

    Incorrect calibrators

  • 8/10/2019 Sis Slides v1

    33/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 33

    Be careful to analyze

    for common causefaults

    e.g Try to avoid this

    PT

    1B

    PT

    1A

    SIS

    Figure 7.10

  • 8/10/2019 Sis Slides v1

    34/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 34

    Where measurement is

    the problem use diverse

    redundancy.

    e.g. Steam or Ammoniaoverpressure protection

    TT

    01

    PT

    01

    SIS

    Figure 7.11

  • 8/10/2019 Sis Slides v1

    35/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 35

    Requirements for Device to be Provenin-use

    Evidence that the instrument is suitable for SIS

    Consider manufacturers QA systems

    PES devices need extra validation

    Performance record in a similar profile

    Adequate documentation

    Volume of experience, > 1 yr exposure per case.

  • 8/10/2019 Sis Slides v1

    36/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 36

    The approved safety instrument list

    Each instrument that is suitable for SIS

    Update and monitor the list regularly

    Add instruments only when the data is adequate

    Remove instruments from the list when they let you down

    Adequate details: Include the process application

    EIT E C SS U i 7 I S l i

  • 8/10/2019 Sis Slides v1

    37/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 37

    Additional requirements for smart transmitters

    and actuators:

    Details in IEC 61511 11.5.4 for devices with

    Fixed Programming Languages (FPLs)Extra for SIL 3

    Formal assessmentlow probability of failure in planned

    application.

    Appropriate standards used in build

    Consider manufacturers QA systems

    Must have a safety manual

    EIT E C t SS U it 7 I t t S l ti

  • 8/10/2019 Sis Slides v1

    38/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 38

    6 ! 7 &

    Smart

    Transmitter

    4-20 mA + FSK Data

    Hart

    Interface

    DI

    SIS Logic Solver

    AI

    Status Alarm

    Hand Held

    Programmer

    Figure 7.12

    FSK = Frequency Shift Keyed

    EIT E C t SS U it 7 I t t S l ti

  • 8/10/2019 Sis Slides v1

    39/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 39

    4& !

    Figure 7.1

    EIT: E Cert SS: Unit 7 Instrument Selection

  • 8/10/2019 Sis Slides v1

    40/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 40

    + !,

    Internal diagnostics with high coverage factor

    Very low PFDavg values. Saves on proof testing etc.

    Certified for single use in SIL 2 (instead of dual channel)

    Certified for dual redundant use in SIL 3 (instead of 1oo3)

    End user verification is simplified

    EIT: E Cert SS: Unit 7 Instrument Selection

  • 8/10/2019 Sis Slides v1

    41/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 41

    & 8The safety manual presents all the essential information and set

    up conditions that must be followed to allow the instrument to

    be validated for any given application.

    The manual also supplies the failure rates summary and

    expected PFDavg

    Compliance to safety manual requirements must be

    demonstrated in the validation phase.

    See examples of safety manuals and FMEDA reports

    EIT: E-Cert SS: Unit 7 Instrument Selection

  • 8/10/2019 Sis Slides v1

    42/100

    EIT: E-Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 42

    & The safety certificate is issued by the testing body to clearly define what

    products have been tested and what standards and limitations have been

    applied in the evaluation.

    The safety certificate is an essential document for the validation phase.

    See examples of Safety Certificates: 3051C and Rex Radar

    Testing Authorities include :TUV Rheinland

    Exida.com

    Any recognized testing body that can show competency in the SIS field.

    Note : Exida specializes in certifying instruments claiming prior usequalification. Reports supply SFF and failure rate data with declaration of fault

    tolerance requirements relevant to IEC 61511. See examples.

    EIT: E-Cert SS: Unit 7 Instrument Selection

  • 8/10/2019 Sis Slides v1

    43/100

    EIT: E Cert SS: Unit 7 Instrument Selection

    www.eit.edu.au

    Slide 43

    $

    Instruments must be well proven for safety with an assessment

    report or Certified SIL capable to IEC 61508.

    Intelligent instruments treated as PES

    Separation, Redundancy, Diversity, Diagnostics

    Diagnostic Coverage via Smarts or Logic Solver

    Bus technology established and growing.

    EIT EQO26: Unit 8 Reliability Analysis

  • 8/10/2019 Sis Slides v1

    44/100

    EIT EQO26: Unit 8 Reliability Analysis

    www.eit.edu.au Slide 44

    Slide 44

    SAFETY INSTRUMENTED SYSTEMS &

    EMERGENCY SHUTDOWN SYSTEMS

    for Process Industriesusing IEC 61511 and IEC 61508

    Unit 8: Reliability Analysis

    Version for EQO26: 7 November 2012

    Presented by Dave Macdonald,

    EIT Cape Town South Africa

    Contact E-mail: [email protected]

    EIT Safety Instrumentation E-Learning

    EIT EQO26: Unit 8 Reliability Analysis

  • 8/10/2019 Sis Slides v1

    45/100

    Q y y

    www.eit.edu.au Slide 45

    The task of measuring or evaluating the SIS design

    for its overall safety integrity

    Reasons and objectives

    Resolving the SIS into reliability block diagrams

    Identification of formulae

    Trial calculation examples

    Calculation software tools

    Introduction to Chapter 8:

    Reliability Analysis of the SIS

    EIT EQO26: Unit 8 Reliability Analysis

  • 8/10/2019 Sis Slides v1

    46/100

    Q y y

    www.eit.edu.au Slide 46

    IEC 61511 requires reliability analysis be done for each SIF to

    show that SIL target and RRF can be achieved. Why?

    Because it tells everyone what RRF can be expected from each

    individual safety function. It confirms the basis of the design and the chosen proof test

    interval

    Compares the calculated RRF for your design with the target toshow you can achieve the target.

    To predict the accident rate: H events/yr = Demand Rate (D) x

    PFDavg or H = D/ RRF

    EIT EQO26: Unit 8 Reliability Analysis

  • 8/10/2019 Sis Slides v1

    47/100

    y y

    www.eit.edu.au Slide 47

    Terminology

    RRF Risk Reduction Factor ( e.g. 200)

    SIL Safety Integrity Level ( depends on RRF)

    (SIL Tables)D Demand rate on Safety Function. ( How often the SIF is

    demanded to respond to a hazard condition)

    HHazardous event rate ( also called accident rate )

    ( e.g. 0.1/yr = 1 in 10 years)

    PFDavg Average probability of failure on demand of the SIF

    EIT EQO26: Unit 8 Reliability Analysis

  • 8/10/2019 Sis Slides v1

    48/100

    www.eit.edu.au Slide 48

    Terminology

    MTTFd Mean time to fail dangerously ( = 1/d)

    MTTFs Mean time to fail safe (or spurious) ( = 1/s)

    MTTRd Mean time to detect and repair a dangerous fault

    Ti Time interval between proof tests

    dd Failure rate for dangerous detectable faults

    du Failure rate for dangerous undetectable faults (requiresproof testing)

    sd Safe revealed failure rate ( causes spurious trip or loss ofaffected safety channel)

    EIT EQO26: Unit 8 Reliability Analysis

  • 8/10/2019 Sis Slides v1

    49/100

    www.eit.edu.au Slide 49

    Risk Reduction Factor and PFDavg

    (PFDavg = average probability of failure on demand,)

    PFDavg is a function of:

    1. Failure rate per hour for undetected faults : du

    2. Test interval: Ti

    3. Redundancy (1oo1, 1oo2, 2oo3, etc)

    Compare PFDavg with the target PFDavg for the SIL range we need.

    RRF =1

    PFDavg

  • 8/10/2019 Sis Slides v1

    50/100

    EIT EQO26: Unit 8 Reliability Analysis

    F il i f U t t d SIF

  • 8/10/2019 Sis Slides v1

    51/100

    www.eit.edu.au Slide 51

    Mission time

    State of Process

    Operating

    safely

    Operating but

    not protected

    Hazardous condition

    occurs (Demand)

    Reportable

    accidentoccurs

    1 yr 2 yr

    Unrevealed Dangerous fault

    occurs

    Failure scenario for an Untested SIF

    EIT EQO26: Unit 8 Reliability Analysis

  • 8/10/2019 Sis Slides v1

    52/100

    www.eit.edu.au Slide 52

    Mission time

    StateofProcess

    Operating

    safely

    Operating but not

    protected

    Hazardous condition

    Occurs (Demand)

    Accident

    prevented

    0.5 yr 1 yr

    Proof test reveals

    fault

    Fault

    repaired

    Low Demand Mode: Proof Tested SIF repaired before demand

    Unrevealed Dangerous

    fault occurs

    Proof test

    EIT EQO26: Unit 8 Reliability Analysis

  • 8/10/2019 Sis Slides v1

    53/100

    www.eit.edu.au Slide 53

    Mission time

    Stateo

    fProcess

    Operating

    safely

    Operating but not

    protected

    0.5 yr 1 yr

    Demand occursbefore next proof

    test

    Failure (to respond)

    on Demand

    Low Demand Mode: Proof tested SIF but failure on demand

    Unrevealed Dangerous

    fault occurs

    Reportable

    accident

    occurs

    Proof test

    EIT EQO26: Unit 8 Reliability Analysis

    Di ti + P f T t d SIF

  • 8/10/2019 Sis Slides v1

    54/100

    www.eit.edu.au Slide 54

    Mission time

    State of Process

    Detectable Dangerous

    fault occurs

    Operating safely

    1 yr 2 yr

    Diagnostic test

    reveals fault

    Proof test forundetected

    faults

    Diagnostic + Proof Tested SIF

    Accident

    prevented

    Diagnostic test

    typically100

    times/day

    PFDavg = MTTD&R x Fail danger rate

    Fault

    detected &

    repaired

    EIT EQO26: Unit 8 Reliability Analysis

    0 8 6 8

  • 8/10/2019 Sis Slides v1

    55/100

    www.eit.edu.au Slide 55

    0# 8 6 8

    Low demand mode applies when the demand on the SIS is equal toor less than once per year. ( IEC 61511) . Alternatively no more thantwo demands per proof test interval.

    Low demand calculations use PFDavg. Hazard event rate H = D x PFDavg

    High demand mode applies when the demand on the SIS is morethan once per year. ( IEC 61511) . Alternatively more than twodemands per proof test interval.

    High demand mode calculations use PFH probability of dangerousfailure per hour.

    Hazard event rate H = PFH

    96 :# ;

    EIT EQO26: Unit 8 Reliability Analysis

  • 8/10/2019 Sis Slides v1

    56/100

    www.eit.edu.au Slide 56

    Low Demand Mode Application

    Pressure relief

    trip (SIS)

    Pressure surge

    once per year(D)

    Accident occurs if

    dangerous fault

    undetected before the

    surge occurs

    Accident rate H = D x PFDavg

    Provided Test interval is shorter than 1 year or

    diagnostics detect faults quickly

    Example: If PFDavg = 0.05 and D= 1 : H = 0.05/yr

    EIT EQO26: Unit 8 Reliability Analysis

    Hi h d d M d A li i

  • 8/10/2019 Sis Slides v1

    57/100

    www.eit.edu.au Slide 57

    High demand Mode Application

    Electronic

    Braking Controls

    (SIS)

    Brake applied

    100 times per

    day

    Accident occurs as

    soon as brake circuit

    fails

    Accident rate = Probability of failure/hr of the EBC

    = Failure rate per hour of the SIS

    Example: If PFH = 0.0001/hr H = 0.0001/hr of service

    If machine used for 5000 hrs /yr accident rate = 0.5/yr.

    EIT EQO26: Unit 8 Reliability Analysis

    D i I i f T PFD i L D d M d

  • 8/10/2019 Sis Slides v1

    58/100

    www.eit.edu.au Slide 58

    Design Iteration for Target PFD in Low Demand Mode

    Set Target PFD

    Evaluate Solution PFD

    Revise Design

    No

    Yes

    Proceed to Detail Design

    Acceptable

    SRS defines the Risk Reduction Factor

    PFD = 1/RRF

    Calculated PFD < Target PFD?

    EIT EQO26: Unit 8 Reliability Analysis

    El t d t i th SIS d l

  • 8/10/2019 Sis Slides v1

    59/100

    www.eit.edu.au Slide 59

    Elements and terms in the SIS model

    (SIS)Hazard

    Demand Rate D

    Protective System

    H HazardEvent Rate

    PFD avg. = H/D = 1/(Risk Reduction Factor)

    SIL3

    SIL2

    SIL1

    Sensor Logic ActuatorD H

    PFD1 PFD2 PFD3

    Overall PFD = PFD1 + PFD2 + PFD3

    EIT EQO26: Unit 8 Reliability Analysis

  • 8/10/2019 Sis Slides v1

    60/100

    www.eit.edu.au Slide 60

    Single Channel Basic calculation of PFD

    If the fail to danger rate is d and proof test interval is Ti

    PFDavg = du x Ti/2 (failure rate/yr x mean time to detect )

    Example Fail to danger rate = 0.05 per year, Ti = 1 year

    PFDavg = 0.05 x = 0.025. ( SIL 1)

    How is this formula obtained ?

    du

    EIT EQO26: Unit 8 Reliability Analysis

    6

  • 8/10/2019 Sis Slides v1

    61/100

    www.eit.edu.au Slide 61

    6

  • 8/10/2019 Sis Slides v1

    62/100

    www.eit.edu.auSlide 62

    8 ! =. &

    ,

    Time t

    p(t)

    Probability of

    being failed when

    demand occurs.

    1

    0

    =

    Ti 2Ti

    Proof test action

    Average

    value

    EIT EQO26: Unit 8 Reliability Analysis

  • 8/10/2019 Sis Slides v1

    63/100

    www.eit.edu.auSlide 63

    $ 8

    Overt Failures

    Spurious Trip Rate

    S = 1/MTBFsp

    Loss of Production

    Detectable

    by Self

    Diagnostics

    Undetectable

    except by manual

    proof testing

    Trips plant unless

    2oo3 or 2oo2 voting

    Covert Failures

    Dangerous Failure Rate

    D = 1/MTTFD

    D

    DUDD

    DU = (1 C) DDD = C D

    S + DD

    C= Coverage

    EIT EQO26: Unit 8 Reliability Analysis

    Example: Find the Safe and Dangerous Failure Modes

    SIS Hi h L l T i

  • 8/10/2019 Sis Slides v1

    64/100

    www.eit.edu.auSlide 64

    LTLT

    11

    PSVPSVPSVPSV

    LCLC

    11

    I/PI/PI/PI/P

    FCFC

    FluidFluid

    FeedFeedFCFC

    Logic SolverLogic Solver

    LTLT

    22

    ASAS

    SIS High Level TripSIS High Level Trip

    Fail Modes/yr Device sp du dd

    Bottom Blocked : 0.1 . Top leaks 0.2 LE connection

    Runs low: 0.05. Runs high : 0.02 LT electronics

    Breaks: 0.01 Shorts across LT: 0.1 Cable

    Lost power: 0.02 Power

    Totals for sensor sub system:

    Assume out of range detection provided (forcing a trip)

    EIT EQO26: Unit 8 Reliability Analysis

    1oo1 SIS Formulae

  • 8/10/2019 Sis Slides v1

    65/100

    www.eit.edu.auSlide 65

    Single Channel SIS Fail Rates

    Overt Failures

    Spurious Trip Rate

    S = 1/MTBFsp

    Loss of Production

    Detectable by

    Self

    Diagnostics

    Detectable by

    manual proof

    testing

    Trips plant unless

    2oo3 or 2oo2 voting

    Covert Failures

    Dangerous Failure Rate

    D = 1/MTTFD

    D

    DU = (1 C) DS + DD

    C= Coverage

    DD = C D

    PFD1 = DD x (MTTR) PFD2 = DU x (Ti/2)SP Trip Rate = s + DD

    EIT EQO26: Unit 8 Reliability Analysis

    1oo2 SIS Formulae

  • 8/10/2019 Sis Slides v1

    66/100

    www.eit.edu.auSlide 66

    Single Channel SIS Fail Rates

    Overt Failures

    Spurious Trip Rate

    S = 1/MTBFsp

    Loss of Production

    Detectable by

    Self

    Diagnostics

    Detectable by

    manual proof

    testing

    Trips plant unless

    2oo3 or 2oo2 voting

    Covert Failures

    Dangerous Failure Rate

    D = 1/MTTFD

    D

    DU = (1 C) D

    C= Coverage

    DD = C D

    SP Trip Rate = 2 ( s + DD) PFD2 =((D U .Ti)2)/3PFD1 =2(DD)

    2( MTTR)2

    EIT EQO26: Unit 8 Reliability Analysis

    Formula sets

  • 8/10/2019 Sis Slides v1

    67/100

    www.eit.edu.auSlide 67

    Single Channel SIS Fail Rates

    Overt Failures

    Spurious Trip Rate

    S = 1/MTBFsp

    Loss of Production

    Detectable by

    Self

    Diagnostics

    Detectable by

    manual proof

    testing

    Trips plant unless

    2oo3 or 2oo2 voting

    Covert Failures

    Dangerous Failure Rate

    D = 1/MTTFDD

    DU = (1 C) DS + DD

    C= Coverage

    DD = C D

    Formula set 2

    in Fig 8.6

    Formula set 3

    in Fig 8.6

    Formula set 1

    in Fig 8.6

    EIT EQO26: Unit 8 Reliability Analysis

    Multi-channel Formula Sets for PFD and s (excludingd f il )

    Figure 8.6

  • 8/10/2019 Sis Slides v1

    68/100

    www.eit.edu.auSlide 68

    Overt Failures

    Spurious Trip Rate

    s = 1/MTBFsp

    By SelfDiagnostics

    By ManualProof testing

    s1oo1

    2s1oo2

    2(s)2(MTTR)2oo2

    D U (Ti/2)D D (MTTR)

    ((D U .Ti)2)/32(DD)

    2( MTTR)2

    D U .Ti2 D D (MTTR)

    6(D D)2 (MTTR)22oo3 6(s)2(MTTR)

    Detectable

    Spurious trip rate PFD due to diagnostics

    (if detected but not tripped)

    common mode failures )

    Covert Failures

    Dangerous Failure Rate

    d = 1/MTTF

    PFD due to proof test

    Detectable

    Formula set 1 Formula set 2 Formula set 3

    D D = DC. D D U = (1-DC) DVoting

    ((D U .Ti)2)

    EIT EQO26: Unit 8 Reliability Analysis

    Sources of Reliability Data

  • 8/10/2019 Sis Slides v1

    69/100

    www.eit.edu.auSlide 69

    Sintef: http://www.sintefbok.no/Product.aspx?sectionId=65&productId=559&categoryId=10

    http://www.sintef.no/Projectweb/PDS-Main-Page/PDS-Handbooks/

    Also see:

    1. exida.com Reliability Handbook

    2. Manufacturers Safety manuals for

    specific SIL certified instruments

    3. Faradip 3 Database4. exida.com: Safety Automation

    Equipment List ..Functional Safety

    Assessment Reports

    http://www.exida.com/index.php/resour

    ces/sael/

    EIT EQO26: Unit 8 Reliability Analysis

    Dual Channel Basic calculation of PFD

  • 8/10/2019 Sis Slides v1

    70/100

    www.eit.edu.auSlide 70

    If the fail to danger rate is du and proof test interval is Ti.

    PFDavg = (du xTi)2/3

    Example: If fail to danger rate = 0.05 per year, Ti = 1 year

    PFDavg = (0.05 x 1)2/ 3 = 0.00083 ( SIL 3)

    But this ignores common cause and is unrealistic

    du

    du

    Note: dd omitted for clarity

    EIT EQO26: Unit 8 Reliability Analysis

    Beta Factor: Common Cause Failures in redundant SISchannels

  • 8/10/2019 Sis Slides v1

    71/100

    www.eit.edu.auSlide 71

    channels

    (1-) d

    (1-) d

    (1-) d

    d

    Unit Failures Common CauseFailures

    Example:2oo3 sensor withcommon causefailures

    EIT EQO26: Unit 8 Reliability Analysis

    Formulae Sets with Common Cause Factor included

  • 8/10/2019 Sis Slides v1

    72/100

    www.eit.edu.auSlide 72

    EIT EQO26: Unit 8 Reliability Analysis

    Dual Channel Basic calculation of PFD inc Common Cause 5%

    N t dd itt d f l it

  • 8/10/2019 Sis Slides v1

    73/100

    www.eit.edu.auSlide 73

    If the fail to danger rate is d and proof test interval is Ti.

    PFDavg = ((1-) du xTi)2/3 + du xTi/2

    Example Fail to danger rate = 0.05 per year, Ti = 1 year Beta = 5%

    PFDavg = (0.95 x 0.05 x 1)2/ 3 + (0.05 x 0.05 x ) = 0.002 ( SIL 2)

    du(1-) du

    (1-) du

    Note: dd omitted for clarity

    EIT EQO26: Unit 8 Reliability Analysis

    2oo3 Channel Basic calculation of PFD inc Common Cause 5%

  • 8/10/2019 Sis Slides v1

    74/100

    www.eit.edu.auSlide 74

    If the fail to danger rate is d and proof test interval is Ti.

    PFDavg = ((1-) du xTi)2 + du xTi/2

    Example Fail to danger rate = 0.05 per year, Ti = 1 year Beta = 5%

    PFDavg = (0.95 x 0.05 x 1)2 + (0.05 x 0.05 x ) = 0.0035 ( SIL 2)

    d(1-) d

    (1-) d

    (1-) d

    EIT EQO26: Unit 8 Reliability Analysis

    Formulae Sets with Common Cause Factor included

  • 8/10/2019 Sis Slides v1

    75/100

    www.eit.edu.auSlide 75

    EIT EQO26: Unit 8 Reliability Analysis

    ! $

  • 8/10/2019 Sis Slides v1

    76/100

    www.eit.edu.auSlide 76

    7: 4&

    Formula for calculating PFDavg for 1oo1

    PFDavg = (DU xTi/2) + (DD x MTTR)

    Failures per year

    Parameter Value Notes

    DU 0.0500 Dangerous undetected failure rate for one channel

    DD 0.1000 Dangerous detected failure rate for one channel

    Ti in yrs 1.0000 Proof test interval

    MTTR in yrs 0.0027 Mean time to detect and repair a detectable fault

    (DU xTi/2) 2.50E-02 Undetected portion

    (DD x MTTR) 2.74E-04 Detected portion

    PFD for 1oo1 subsystem 2.53E-02 SIL Table: SIL 1

    EIT EQO26: Unit 8 Reliability Analysis

    ! $

  • 8/10/2019 Sis Slides v1

    77/100

    www.eit.edu.auSlide 77

    7: 4&

    Formula for calculating PFDavg for 1oo1

    PFDavg = (DU xTi/2) + (DD x MTTR)

    Failures per hour

    Parameter Value Notes

    DU 5.71E-06 Dangerous undetected failure rate for one channel

    DD 1.14 E-05 Dangerous detected failure rate for one channel

    Ti in hrs 8760 Proof test interval

    MTTR in hrs 24 Mean time to detect and repair a detectable fault

    (DU xTi/2) 2.50E-02 Undetected portion

    (DD x MTTR) 2.74E-04 Detected portion

    PFD for 1oo1 subsystem 2.53E-02 SIL Table: SIL 1

    EIT EQO26: Unit 8 Reliability Analysis

    $ ! $

    (1(1 )) dd

  • 8/10/2019 Sis Slides v1

    78/100

    www.eit.edu.auSlide 78

    7: 4& -Formula for calculating PFDavg for 1oo2

    PFDavg = (1/3)*((1-)DU xTi)2 + 2((1-)DD x MTTR)2 +(DU xTi/2)+(DD)x MTTR

    Failures per year

    Parameter Value Notes

    DU 5.71E-06 Dangerous undetected failure rate for one channel

    DD 1.14 E-05 Dangerous detected failure rate for one channel

    0.1000 Common cause factor for dangerous and safe failuresTi in hrs 8760 Proof test interval

    MTTR in hrs 24 Mean time to detect and repair a detectable fault

    (1/3)*((1-)DU xTi)2 6.75E-04 Undetected Voting portion

    2((1-)DD2 x MTTR2) 1.18E-07 Detected voting portion

    (DU xTi/2) 2.50E-03 Undetected Common portion

    (DD)x MTTR 2.70E-05 Detected common portion

    PFD for 1oo2 subsystem 3.20E-03

    dd

    (1(1--)) dd

    (1(1--)) dd

    Safecalc: D = 1.71% safe =0 C=66%

    EIT EQO26: Unit 8 Reliability Analysis

    $ ! $

    dd(1(1--)) dd

  • 8/10/2019 Sis Slides v1

    79/100

    www.eit.edu.auSlide 79

    7: 4& -1

    Formula for calculating PFDavg for 2oo3

    PFDavg = ((1-)DU xTi)2 + 6((1-)DD x MTTR)2 +(DU xTi/2)+(DD)x MTTR

    Failures per yearParameter Value Notes

    DU 5.71E-06 Dangerous undetected failure rate for one channel

    DD 1.14 E-05 Dangerous detected failure rate for one channel

    0.1000 Common cause factor for dangerous and safe failures

    Ti in hrs 8760 Proof test interval

    MTTR in hrs 24 Mean time to detect and repair a detectable fault

    (1-)DU xTi)2 2.03E-03 Undetected Voting portion

    6((1-)DD x MTTR)2 3.54E-07 Detected voting portion

    (DU xTi/2) 2.50E-03 Undetected Common portion

    (DD)x MTTR 2.70E-05 Detected common portion

    PFD for 2oo3 subsystem 4.55E-03

    dd

    (( ))

    (1(1--)) dd

    (1(1--)) dd

    EIT EQO26: Unit 8 Reliability Analysis

    SIS Analysis Model Example

  • 8/10/2019 Sis Slides v1

    80/100

    www.eit.edu.auSlide 80

    Proof

    Testing

    Auto

    Diagnostics

    Proof

    Testing

    Sensor Logic ActuatorD H

    d1=0.2 d2=0.02 d3=0.1Failure Rates:

    5yrs 50yrs 10yrs

    0.01 0.005 0.01

    Overall PFD avg. = 0.025

    Qualifies for SIL 1 (E-1 to E-2)

    = 2.5 E-2

    Apply

    Testing or

    Diagnostics

    or MTTF

    PFD averages:

    Apply

    calculation

    + +

    EIT EQO26: Unit 8 Reliability Analysis

    SIS Analysis: Step 1

  • 8/10/2019 Sis Slides v1

    81/100

    www.eit.edu.auSlide 81

    (SIS)Hazard

    Demand Rate D

    Protective System

    H HazardEvent Rate

    Sensor Logic ActuatorD H

    SIL 2 SIL 1 SIL 1

    SIL 1

    EIT EQO26: Unit 8 Reliability Analysis

    SIS Analysis: Step 2, identify channels in each stage

  • 8/10/2019 Sis Slides v1

    82/100

    www.eit.edu.auSlide 82

    Sensor Logic ActuatorD H

    Sensor

    Logic

    ActuatorD H

    Sensor ActuatorD H

    Example:Dual channel sensors and actuators, single channel logic

    1oo2D

    1oo1D

    1oo2

    EIT EQO26: Unit 8 Reliability Analysis

    SIS Analysis: Step 3, expand details for each single channel

  • 8/10/2019 Sis Slides v1

    83/100

    www.eit.edu.au Slide 83

    Sensor

    Logic

    Sensor

    1oo2D

    1oo1D

    Process

    ConnectionTransmitter

    Cable and

    Power

    Expand detail of sensor sub system and apply fail rates for each item

    EIT EQO26: Unit 8 Reliability Analysis

    SIS Analysis:Step 4: Decide du, dd and s for the elements

  • 8/10/2019 Sis Slides v1

    84/100

    www.eit.edu.au Slide 84

    Step 5: Enter the values to table and totalize

    Process

    ConnectionTransmitter

    Cable and

    Power

    DU1 DU2 DU3DD1 DD2 DD3

    SD1 SD2 SD3

    SubsystemElement Device SD/hr SU/hr DD/hr DU/hr

    1 Process connection 1.14E-05 0.00E+00 5.71E-06 3.42E-06

    2 Transmitter 1.14E-05 0.00E+00 5.71E-06 5.71E-07

    3 Cable and Power 1.14E-05 0.00E+00 5.71E-06 3.42E-06

    4

    5

    Subsystem totals 3.42E-05 0.00E+00 1.71E-05 7.42E-06

    EIT EQO26: Unit 8 Reliability Analysis

    SIS Analysis: Step 6, find the PFDavg for the 1oo2 subsystem

  • 8/10/2019 Sis Slides v1

    85/100

    www.eit.edu.au Slide 85

    = common cause failure fraction

    1oo2 Failures common toCh1 and Ch2 sensors

    Logic

    1oo1 d

    Redundant section:

    PFDavg =

    2((1-).dd)2 . (MTTR)2

    + ((1-) .du .Ti)2)/3

    Common cause section

    PFDavg =

    .dd (MTTR)+ .du . Ti/2)

    +

    (1-) d

    (1-) d

    =PFDavg

    Break out the common cause failure fraction for the redundant channels and calculatePFD for each portion and add them together

    EIT EQO26: Unit 8 Reliability Analysis

    SIS Analysis: Step 7, repeat steps 3 to 6 for each stage

  • 8/10/2019 Sis Slides v1

    86/100

    www.eit.edu.au Slide 86

    Sensor

    Logic

    Actuator

    Sensor Actuator

    Example: Dual channel sensors and actuators, single channel logic

    1oo2

    1oo1

    1oo2

    PFDavgfor sensors

    + PFDavg forlogic solver

    + PFDavgfor actuators

    EIT EQO26: Unit 8 Reliability Analysis

    SIS Analysis: Example

    E l D l h l d i l h l l i 1

  • 8/10/2019 Sis Slides v1

    87/100

    www.eit.edu.au Slide 87

    Example: Dual channel sensors and actuators, single channel logic. 1yr test

    .045

    0.05

    .09

    .045 .09

    1oo2

    1oo1D

    1oo2

    Dual Sensors PFD

    = .00075 +.00125

    = .002

    Logic solver PFD

    = .00013 +.00125

    = .00138

    Dual Actuators PFD

    = .005 + .0027

    = .0077

    .0025 .01

    SIS PFD = .002 + .0014 +.0077

    = . 0111 or 1.11 E-2 = SIL 1

    = 5% = 10%C = 95%

    DU = 0.05 DU = 0.0025

    DD = 0.0475

    DU = 0.1

    EIT EQO26: Unit 8 Reliability Analysis

    SIS Analysis: Example using the EIT Calculator

    Data Input Table for Sensor Subsystem Fil EIT GP SIL C l l t l

  • 8/10/2019 Sis Slides v1

    88/100

    www.eit.edu.au Slide 88

    Data Input Table for Sensor SubsystemProof Test Interval in Hrs (Ti) 8760

    Common cause factor (B)% 5%

    Mean Time To Test & Repair (Hrs) (MTTR) 24

    Subsystem

    ElementDevice SD/hr SU/hr DD/hr DU/hr

    1 Sensor all components 1.14E-05 0.00E+00 0.00E+00 5.71E-06

    2

    3

    4

    5

    Subsystem totals 1.14E-05 0.00E+00 0.00E+00 5.71E-06

    Calculation results for Sensing

    Safe Failure Fraction 66.7%

    Diagnostic coverage 0.0%

    PFDavg for 1001 2.50E-02

    PFDavg for 1002 2.00E-03

    PFDavg for 20033.51E-03

    File name: EIT GP SIL Calculator .xls

    EIT EQO26: Unit 8 Reliability Analysis

    IEC Table of PFDs relevant to Figure 8.16

  • 8/10/2019 Sis Slides v1

    89/100

    www.eit.edu.au Slide 89

  • 8/10/2019 Sis Slides v1

    90/100

    EIT EQO26: Unit 8 Reliability Analysis

    SIS Analysis: Example Calculation for Spurious Trip

    E l D l h l d t t i l h l l i

  • 8/10/2019 Sis Slides v1

    91/100

    www.eit.edu.au Slide 91

    Example:Dual channel sensors and actuators, single channel logic

    Sensor MTTF = 5 years, 75% safe failure fraction. C=0%, = 10%, Ti = 0.5 yrs, MTTR = 8hrsLogic MTTF = 10 years, 50% safe failure fraction. C= 95%, = 10%, Ti = 1 yrauto diagnostics test interval = 2 secs, MTTR = 24hrs

    Actuator MTTF = 2 years, 80 % safe failure fraction. C= 0%, = 10%, Ti = 0.25 yrs, MTTR =24hrs

    Sensor: single channel s = 1/5 x .75 = .15/yrLogic: single channel s = 1/10 x .5 = .05 dd = (C xd ) =95% x 0.05 = .0475/yrActuator: single channel s = 1/2 x .8 = .4/yr

    EIT EQO26: Unit 8 Reliability Analysis

    SIS Analysis: Example Calculation for Spurious TripExample :Dual channel sensors and actuators, single channel logic

    Spurious Trip for 1oo1

  • 8/10/2019 Sis Slides v1

    92/100

    www.eit.edu.au Slide 92

    Spurious Trip for 1oo1

    ST = S + DD Logic solver 1oo1

    Parameter Sensor Logic Actuator Notes

    S 0.05 Fail safe rate

    DD 0.0475 DD rate added due to 95 coveragTotal for 1oo1 subsystem 0.0975 Spurious trip rate per yr

    Spurious Trip for 1oo2

    ST = 2x(1-B) (S + DD) +B(S + DD) Actuators: 1oo2

    Parameter Sensor Logic Actuator Notes

    S 0.15 0 0.4 Fail safe rate

    DD 0 0 0 DD rate added due to S

    Beta 0.1 0 0.1

    2x(1-B) (S + DD) 0.27 0 0.72

    B(S + DD) 0.015 0 0.04 Common portion

    Total for 1oo2 subsystem 0.285 0 0.76 Spurious trip rate per yr

    Overall Spurious Trip Rate

    1.1425 per yr

    EIT EQO26: Unit 8 Reliability Analysis

    SIS Analysis: Example, Spurious Trip Rate

    E l D l h l d i l h l l i

  • 8/10/2019 Sis Slides v1

    93/100

    www.eit.edu.au Slide 93

    Example: Dual channel sensors and actuators, single channel logic

    .05

    .36

    .0135.36

    1oo2

    1oo1

    1oo2

    Dual Sensors Spurious

    = .28 trips per yr

    Logic solver

    .097 trips per

    yr

    Dual Actuators PFD

    = (2x .36) + (1x.04)

    = .76 trips per yr

    .04

    Spurious trip rate = ..28 + .097 +.76

    = 1.14 trips per year

    ..0135

    .015

    EIT EQO26: Unit 8 Reliability Analysis

    Reducing Spurious Trip RateDesign Version B

  • 8/10/2019 Sis Slides v1

    94/100

    www.eit.edu.au Slide 94

    .135

    .135

    .015

    .135

    2oo3

    2oo3 Sensors Spurious

    = 6x s2 (MTTR)+ s= (6 x .1352x 8/8760) + .015

    = .0001 + .015. 015 trips per yr

    .15

    1oo2

    Dual Sensors Spurious

    = 2 x .15= .30 trips per yr

    .15

    From 0.3 per year to 0.015/yr

    If 1 trip costs AUD 50 000 the annual saving is

    What? .

    Design Version A

    EIT EQO26: Unit 8 Reliability Analysis

    Outcomes of a Reliability Study

  • 8/10/2019 Sis Slides v1

    95/100

    www.eit.edu.au Slide 95

    Show whether or not the SIS will satisfy the SIL target

    Overall SIS Probability of Failure on Demand (PFDavg)

    PFDavgs for each section of the SIS

    Show benefits of redundancy or voting schemes

    Decide the proof testing intervals

    Predict the accident rate

    EIT EQO26: Unit 8 Reliability Analysis

    Conclusions on Analysis Models

  • 8/10/2019 Sis Slides v1

    96/100

    www.eit.edu.au Slide 96

    Models help to visualise SIS performance

    Software speeds up analysis

    IEC 61508 part 6 - methods and tables

    Fault tree analysis for detailed systems

    EIT EQO26: Unit 8 Reliability Analysis

    && 0# 8 6 8

    9 :# ;

  • 8/10/2019 Sis Slides v1

    97/100

    www.eit.edu.au Slide 97

    9 :# ; Low demand mode applies when the demand on the SIS is equal to

    or less than once per year. ( IEC 61511) . Alternatively no more thantwo demands per proof test interval.

    Low demand calculations use PFDavg. Hazard event rate H = D x PFDavg

    High demand mode applies when the demand on the SIS is more

    than once per year. ( IEC 61511) . Alternatively more than twodemands per proof test interval.

    High demand mode calculations use PFH ( same as failure to dangerrate)

    Hazard event rate H = PFH

    EIT EQO26: Unit 8 Reliability Analysis

    PSHPump

  • 8/10/2019 Sis Slides v1

    98/100

    www.eit.edu.au Slide 98

    6 0#

    PFDavg = 0.05 x = 0.025. and

    PFH = 0.05 /8760 = 5.7E-06/hr

    Suppose the demand rate D is once per year and the overpressure event rate= H/yr

    In low demand mode calculation H = D x PFDavg so H = 1 x 0.025 = 0.025/yr

    In high demand mode calculation H = PFH so H = 5.7E-06/hr = 0.05/yr

    SISPower

    pd = 0.05 and Ti = 1/yr:

    Hp safety Trip

    EIT EQO26: Unit 8 Reliability Analysis

    6 0#PSHPump

  • 8/10/2019 Sis Slides v1

    99/100

    www.eit.edu.au Slide 99

    6 0#

    PFDavg = 0.05 x = 0.025. and

    PFH = 0.05 /8760 = 5.7E-06/hr

    Suppose the demand rate D is once per day ( 365/yr)

    And the overpressure event rate = H/yr

    In low demand mode: H = D x PFDavg so H = 365 x 0.025 = 9.1/yr

    In high demand mode :H = PFH so H = 5.7E-06/hr = 0.05/yr

    SIS

    Power

    pd = 0.05 and Ti = 1/yr:

    EIT EQO26: Unit 8 Reliability Analysis

    #

  • 8/10/2019 Sis Slides v1

    100/100

    www.eit.edu.au Slide 100

    SIS has failures at

    PFD = 0.01

    PFH = 0.02/yr (2.28 E-06/hr)

    Demand on SIS H = hazardous event

    D = 0.1/yr ..H = /yr ?

    D = 1.0/yr ..H = /yr ?

    D = 10.0/yr ..H = /yr ?

    D = 100 /yr ..H = /yr ?