singlecellanalysisin’a’multilayermicrofluidicdevice ... ·...

3
SINGLE CELL ANALYSIS IN A MULTILAYER MICROFLUIDIC DEVICE: MONITORING OF DRUGINDUCED GENE EXPRESSION C. Hanke 1 , S. Waide 2 , R. Kettler 2 and P. S. Dittrich 1* 1 Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland and 2 ISAS Dortmund, Germany ABSTRACT In this paper a multilayer microfluidic device is presented to monitor gene expression profiles of individual cells that can be stimulated by tetracycline. This microdevice enables positioning and culturing of adherent human embry onic kidney cells (HEK 293) over long periods of time. By introduction of a second fluidic layer, separated by a porous membrane, the additional supply of stimulating reagents towards the cells becomes possible, without perturbing the constant, weak flow of growth media. This allows addressing and systematically analyzing cells in parallel with high temporal and spatial resolution and high sensitivity on the single cell level. KEYWORDS: Multilayer microfluidic device, induced gene expression, single cell INTRODUCTION With the goal to investigate individual cells and reveal the origins of heterogeneities within cell populations, it is important to precisely control the microenvironment around cells, i.e., to keep it constant or create welldefined changes in its chemical composition. Most often, only a low amount of molecules induce already a cellular response, therefore it is crucial to handle small liquid volumes and low concentrations [1,2]. We report here on the development of an advanced microfluidic device by combining multilayer microfluidics with the concept of multilaminar streams (Figure 1). In the twolayer device it is possible to separate cell culturing and the supply of cell stimulating agents with high temporal and spatial resolution. A porous membrane separates the layers to allow diffusion of the stimulating agents to the cells. We extend the functionality of our former approaches [35] by implementing cell traps for fast and reliable mammalian cell positioning. In this device, up to 450 single cells can be investigated in parallel. Furthermore, semiautomatic analysis of high cell numbers is established. To demonstrate the performance of the device, we study the expression of a mutant of the Green Fluorescent Pro tein (GFP) as a model gene of interest. The gene expression is controlled by tetracycline as external effector, which is supplied to adherent mammalian cells in various concentrations. The increase in fluorescence due to the expression of GFP is observed over 15 hours. Figure 1: Sketch of the multilayer microfluidic device. The top channel is used for trapping of cells, the bottom channel for the supply of the soluble effector tetracycline. It is transported with high temporal and spatial resolution through a po- rous membrane below the traps that allows diffusion of tetracycline to the cells. EXPERIMENTAL The cell line HEK 293 (human embryonic kidney) is transfected with the TRExsystem. It consists of two plas mids: The first expresses tetracycline repressor proteins that form homodimers. Two of these homodimers can bind to two tetracycline operator sequences on the second plasmid and hence, the expression of the gene of interest (here: green fluorescent protein, GFP) on the second plasmid is inhibited. The target gene expression is induced by addition of tetracycline; it binds to the repressor homodimers and effects their conformational change, whereby the repressor is set free and gene expression is possible [6]. GFP expression is monitored online by timelapse fluorescence micros copy for 15 hours on an inverted fluorescence microscope (Olympus IX81), equipped with a longdistance objective and an incubation chamber. Images are recorded every 10 minutes using the Olympus CellR 3.0.x software with a digi tal camera (Hamamatsu Orca ER, exposure times: 40 ms). Data are processed using the ImageJ 1.43g software (NIH, USA). Thereby, only single cells that show a positive response after 900 min are considered and the fluorescence in cells, cell media porous membrane soluble effector Interfacial layer Cell positioning and transfer of molecules Top channel Cell handling Bottom channel Supply of reagents 978-0-9798064-4-5/μTAS 2011/$20©11CBMS-0001 151 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences October 2-6, 2011, Seattle, Washington, USA

Upload: others

Post on 22-May-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SINGLECELLANALYSISIN’A’MULTILAYERMICROFLUIDICDEVICE ... · SINGLECELLANALYSISIN’A’MULTILAYERMICROFLUIDICDEVICE: ’ MONITORING’OF’DRUG4INDUCEDGENEEXPRESSION’ C. Hanke1,

SINGLE  CELL  ANALYSIS  IN  A  MULTILAYER  MICROFLUIDIC  DEVICE:  MONITORING  OF  DRUG-­‐INDUCED  GENE  EXPRESSION  

C. Hanke1, S. Waide2, R. Kettler2 and P. S. Dittrich1*

1Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland and 2ISAS Dortmund, Germany ABSTRACT

In  this  paper  a  multilayer  microfluidic  device  is  presented  to  monitor  gene  expression  profiles  of  individual  cells  that  can  be  stimulated  by  tetracycline.  This  microdevice  enables  positioning  and  culturing  of  adherent  human  embry-­‐onic  kidney  cells  (HEK  293)  over  long  periods  of  time.  By  introduction  of  a  second  fluidic  layer,  separated  by  a  porous  membrane,  the  additional  supply  of  stimulating  reagents  towards  the  cells  becomes  possible,  without  perturbing  the  constant,  weak  flow  of  growth  media.  This  allows  addressing  and  systematically  analyzing  cells  in  parallel  with  high  temporal  and  spatial  resolution  and  high  sensitivity  on  the  single  cell  level. KEYWORDS: Multilayer  microfluidic  device,  induced  gene  expression,  single  cell

INTRODUCTION

With  the  goal  to  investigate  individual  cells  and  reveal  the  origins  of  heterogeneities  within  cell  populations,  it  is  important   to   precisely   control   the   microenvironment   around   cells,   i.e.,   to   keep   it   constant   or   create   well-­‐defined  changes  in  its  chemical  composition.  Most  often,  only  a  low  amount  of  molecules  induce  already  a  cellular  response,  therefore  it  is  crucial  to  handle  small  liquid  volumes  and  low  concentrations  [1,2].  We  report  here  on  the  development  of  an  advanced  microfluidic  device  by  combining  multilayer  microfluidics  with  the  concept  of  multilaminar  streams  (Figure  1).  In  the  two-­‐layer  device  it  is  possible  to  separate  cell  culturing  and  the  supply  of  cell  stimulating  agents  with  high   temporal  and  spatial   resolution.  A  porous  membrane  separates   the   layers   to  allow  diffusion  of   the  stimulating  agents  to  the  cells.  We  extend  the  functionality  of  our  former  approaches  [3-­‐5]  by  implementing  cell  traps  for  fast  and  reliable  mammalian  cell  positioning.  In  this  device,  up  to  450  single  cells  can  be  investigated  in  parallel.  Furthermore,  semi-­‐automatic  analysis  of  high  cell  numbers  is  established.    

To  demonstrate  the  performance  of  the  device,  we  study  the  expression  of  a  mutant  of  the  Green  Fluorescent  Pro-­‐tein  (GFP)  as  a  model  gene  of  interest.  The  gene  expression  is  controlled  by  tetracycline  as  external  effector,  which  is  supplied  to  adherent  mammalian  cells  in  various  concentrations.  The  increase  in  fluorescence  due  to  the  expression  of  GFP  is  observed  over  15  hours.    

Figure 1: Sketch of the multilayer microfluidic device. The top channel is used for trapping of cells, the bottom channel

for the supply of the soluble effector tetracycline. It is transported with high temporal and spatial resolution through a po-rous membrane below the traps that allows diffusion of tetracycline to the cells.

EXPERIMENTAL

The  cell   line  HEK  293  (human  embryonic  kidney)  is  transfected  with  the  T-­‐REx™  system.  It  consists  of  two  plas-­‐mids:  The  first  expresses  tetracycline  repressor  proteins  that  form  homodimers.  Two  of  these  homodimers  can  bind  to  two  tetracycline  operator  sequences  on  the  second  plasmid  and  hence,  the  expression  of  the  gene  of  interest  (here:  green  fluorescent  protein,  GFP)  on  the  second  plasmid  is  inhibited.  The  target  gene  expression  is  induced  by  addition  of  tetracycline;  it  binds  to  the  repressor  homodimers  and  effects  their  conformational  change,  whereby  the  repressor  is  set  free  and  gene  expression  is  possible  [6].  GFP  expression  is  monitored  online  by  time-­‐lapse  fluorescence  micros-­‐copy  for  15  hours  on  an  inverted  fluorescence  microscope  (Olympus  IX81),  equipped  with  a   long-­‐distance  objective  and  an  incubation  chamber.  Images  are  recorded  every  10  minutes  using  the  Olympus  CellR  3.0.x  software  with  a  digi-­‐tal  camera  (Hamamatsu  Orca  ER,  exposure  times:  40  ms).  Data  are  processed  using  the  ImageJ  1.43g  software  (NIH,  USA).  Thereby,  only  single  cells  that  show  a  positive  response  after  900  min  are  considered  and  the  fluorescence  in-­‐

cells, cell media

porousmembrane

soluble effector

Interfacial layerCell positioning and transfer of molecules

Top channelCell handling

Bottom channelSupply of reagents

978-0-9798064-4-5/µTAS 2011/$20©11CBMS-0001 151 15th International Conference onMiniaturized Systems for Chemistry and Life Sciences

October 2-6, 2011, Seattle, Washington, USA

Page 2: SINGLECELLANALYSISIN’A’MULTILAYERMICROFLUIDICDEVICE ... · SINGLECELLANALYSISIN’A’MULTILAYERMICROFLUIDICDEVICE: ’ MONITORING’OF’DRUG4INDUCEDGENEEXPRESSION’ C. Hanke1,

tensities  are  normalized  to  the  initial  fluorescence  intensity,  i.e.,  the  autofluorescence  of  the  cell.  The  cells  are  trapped  in  the  top  channel,  while  the  bottom  channel  is  filled  with  a  continuous  flow  of  tetracycline  in  buffer  at  different  con-­‐centrations.  Multilayer microchips made of poly(dimethylsiloxane) (PDMS) are prepared by standard processes described elsewhere [7]. Both channel structures are 20 µm in height; the bottom channel is 370 µm wide and the top channel has a width of 4830 µm at the crossing section. Microchannels and the porous polyester membrane (pore sizes 1.2 µm) are used without further treatment. The channels are connected  via  tubings  to  a  pressure  pump. RESULTS AND DISCUSSION

Directly  after  chip  assembly  the  channels  are  completely  prefilled  with  Millipore  water.  Cells  are  introduced  into  the  microdevice  (1.5x106  cells/ml,  in  DMEM  low  glucose  media  containing  10%  fetal  bovine  serum  (tetracycline  nega-­‐tive),  1%  MEM,  1%  Penicillin-­‐Streptomycin,  25  mM  HEPES  buffer  and  1  µg/ml  propidium  iodide)  and  trapped  at  the  microsized  hurdle   structures.  After  almost  all   traps  are  occupied,   the   cell   suspension   is  washed  out  and  a   constant  flow  of  medium  (200  nl/min)  is  applied  in  the  top  channel.  Staining  tests  confirmed  that  most  of  the  cells  (96%)  sus-­‐tain  these  flow  rates  over  at  least  15  hours.    

Tetracycline   is   supplied   in   the   bottom   channel   at   a   flow   rate   of   350  nl/min   and   in   concentrations   between  0.1  µg/ml  and  10  µg/ml.  Fluorescence  imaging  reveals  the  increase  of  intracellular  GFP  within  200  min  after  supply  of  tetracycline  (Figure  2A).  The  histogram  in  figure  2B  shows  the  distributions  at  three  time  points  (300/600/900  min)  for  a  tetracycline  concentration  of  0.5  µg/ml.  Although  the  cells  are  treated  equally,  the  increase  of  fluorescence  inten-­‐sity  is  very  heterogeneous,  and  the  heterogeneity  increases  further  within  time  indicating  that  GFP  is  expressed  in  dif-­‐ferent  levels  in  the  cells.  Frequently,  a  few  extraordinary  bright  cells  are  observed.  Without  addition  of  tetracycline,  no  increase  of  fluorescence  intensity  can  be  observed.  

Figure 2: A) Increase of fluorescence intensity in individual cells over time. Embedded: 8 fluorescent cells (green, GFP

fluorescence) and 1 dead cell (red) after 900 min (stained with propidium iodide). B) Histogram at three time points (300/600/900 min) exemplarily shown for a tetracycline concentration of 0.5 µg/ml. The distribution of fluorescence intensi-ties broadens over time. C) Normalized fluorescence intensity for various tetracycline concentrations at three different times after induction of the gene expression.  

The  average  increase  of  fluorescence  intensity  of  all  observed  cells  is  dependent  on  the  supplied  concentration  of  the   effector   (Figure  2C).  The  dependency   indicates   a   saturated   titration   curve   for   concentration  dependent   cell   re-­‐sponses,   as   theoretically   expected.   As   long   as   the   amount   of   effector  molecules   is   below   the   level   to   set   every   re-­‐pressor  protein  free  that  is  bound  to  the  inducible  expression  vector,  the  gene  expression  of  GFP  is  still  inducible  and  linearly  dependent  on  the  tetracycline  concentration.  Above  an  effector  concentration  (here:  10  µg/ml)  no  repressor  protein  can  bind  to  the  inducible  expression  vector  due  to  the  tetracycline-­‐caused  conformational  change.  In  this  case  the  GFP  expression  is  continuously  induced  and  the  fluorescence  intensity  is  dependent  of  the  equilibration  between  protein  expression  and  degradation.  Tetracycline  concentrations  above  10  µg/ml  result  in  delayed  and  reduced  gene  expression,  most  probably  due  to  the  harmful  effect  of  high  tetracycline  concentrations.  

Furthermore,  the  effect  of  transient  supply  of  tetracycline  is  studied.  For  an  exposure  time  of  40  minutes  of  tetra-­‐cycline  (1  µg/ml),  the  expression  of  GFP  is  monitored,  again  over  15  hours  (Figure  3).  In  this  experiment,  the  GFP  flu-­‐orescence  increases  initially  as  expected.  However,  after  600  minutes  only  little  further  increase  can  be  detected.  This  indicates   that  GFP  expression   is   repressed,  which   is   a   result   of   increasing   concentration  of   repressor  proteins   (ex-­‐pressed  constantly  by  the  first  plasmid  of  the  T-­‐REx™  system)  that  finally  bind  to  the  tetracycline  operator  sequence  on  the  second  plasmid  of  T-­‐REx™  expression  system.    

152

Page 3: SINGLECELLANALYSISIN’A’MULTILAYERMICROFLUIDICDEVICE ... · SINGLECELLANALYSISIN’A’MULTILAYERMICROFLUIDICDEVICE: ’ MONITORING’OF’DRUG4INDUCEDGENEEXPRESSION’ C. Hanke1,

Figure 3: Histogram at three time points (300/600/900 min) for a non-continuous induction (supply of tetracycline over

40 min) of gene expression. The initial increase of fluorescence intensities is decelerated after 600 min.

CONCLUSION The  results  demonstrate  the  applicability  of  the  multilayer  microchip  for  single  cell  studies.  In  the  experiments  de-­‐

scribed  herein  we  could  monitor  the  expression  of  the  green  fluorescent  protein  in  individual  cells  upon  tetracycline  supply  over  more  than  15  hours.  Further  research  is  required  to  obtain  detailed  information  on  the  mechanism  and  to  elucidate  the  reason  for  the  inhomogeneous  expression  of  GFP  in  the  cell  population.  We  believe  that  the  microfluidic  platform  will  be  of  general  use  for  applications  in  systems  biology,  pharmacy  or  biotechnology,  in  which  the  effect  of  perturbations  on  cells   induced  by  small  molecules  should  be  investigated.  The  device  is  particularly  useful   for   long-­‐term  investigations,  where  slow  processes  are  observed,  as  well  as  for  time-­‐resolved  stimulation,  where  the  cells  are  exposed  to  only  short  pulses  of  a  chemical  inducer. ACKNOWLEDGEMENTS

This  work   is   funded   from   the  European  Research  Council   (ERC  Starting  Grant  No.  203428,  nµ-­‐Lipids).  C.  Hanke  thanks  Novartis  for  the  Novartis  Doctoral  Fellowship  2010.  We  thank  B.  Z.  Cvetković  and  P.  Kuhn  for  fabrication  of  the  master  form  in  the  clean  room  facility  “First”  at  ETH,  and  the  light  microscopy  center  of  ETH  (LMC)  for  their  facilities. REFERENCES [1] J. El-Ali, P. K. Sorger, K. F. Jensen, “Cells on chips,” Nature, vol. 442, pp. 403-411, 2006. [2] A. Schmid, H. Kortmann, P. S. Dittrich, L. M. Blank, “Chemical and biological single cell analysis,” Curr.

Op. Biotechnol., vol. 21, pp. 12-20, 2010. [3] C. A. Schumann, A. Dörrenhaus, J. Franzke, P. Lampen, P. S. Dittrich, A. Manz, P. H. Roos, “Concomitant

detection of CYP1A1 enzymatic activity and CYP1A1 protein in individual cells of a human urothelial cell line using a bilayer microfluidic device,” Anal. Bioanal. Chem., vol. 392, pp. 1159-1166, 2008.

[4] C. A. Schumann, P. S. Dittrich, J. Franzke, A. Manz, “Towards multidimensional treatment of living cells,” Proc. of µTAS conference, vol. 1, pp. 766-768, 2007.

[5] F. Kurth, C. A. Schumann, L. M. Blank, A. Schmid, A. Manz, P. S. Dittrich, “Bilayer microfluidic chip for diffusion-controlled activation of yeast species,” J. Chromatogr. A, vol. 1206, pp. 77-82, 2008.

[6] W. Hillen and C. Berens, “Mechanisms underlying expression of Tn10 encoded tetracycline resistance,” An-nu. Rev. Microbiol., vol. 48, pp. 345-369, 1994.

[7] K. Fa, J. J. Tulock, J. V. Sweedler, P. W. Bohn, “Profiling pH gradients across nanocapillary array mem-branes connecting microfluidic channels,” JACS, vol. 127, pp. 13928-13933.

CONTACT *P.S.  Dittrich,  tel:  +41-­‐44-­‐6336893;  [email protected]  

153