singlebox (1)

Upload: welly-mahardhika

Post on 01-Mar-2016

222 views

Category:

Documents


0 download

DESCRIPTION

Dimensi box single

TRANSCRIPT

  • 1 / 114 276341623.xls/Summary

    SUMMARY OF STRUCTURAL CALCULATION OF 1-BARREL BOX CULVERT

    1 Design Dimensions and Bar Arrangements Class III Road (BM50)

    B2.0 x H2.0

    Clear width m 2.00Clear height m 2.00Height of fillet m 0.15

    Thickness Side wall cm 30.0Top slab cm 30.0Bottom slab cm 30.0

    Cover of reinforcement bar (between concrete surface and center of reinforcement bar)Side wall Outside cm 6.0

    Inside cm 6.0Top slab Upper cm 6.0

    Lower cm 6.0Bottom slab Lower cm 6.0

    Upper cm 6.0

    Bar arrangement (dia - spacing per unit length of 1.0 m)

    Side wall Lower outside Tensile bar mm 16@250Distribution bar mm 12@250

    Middle inside Tensile bar mm 12@250Distribution bar mm 12@250

    Upper outside Tensile bar mm 16@250Distribution bar mm 12@250

    Top slab Upper edge Tensile bar mm 16@250Distribution bar mm 12@250

    Lower middle Tensile bar mm 16@250Distribution bar mm 12@250

    Bottom slab Lower edge Tensile bar mm 16@250Distribution bar mm 12@250

    Upper middle Tensile bar mm 12@125Distribution bar mm 12@250

    Fillet Upper edge Fillet bar mm Err:504Lower edge Fillet bar mm Err:504

    2 Design Parameters

    Unit Weight Reinforced Concrete 2.4

    Backfill soil (wet) 1.8

    (submerged) 1.0

    Live Load Class of road Class III (BM50)Truck load at rear wheel P= 5.0 tfImpact coefficient (for Class I to IV road) Ci= 0.3

    0.0Pedestrian load (for Class V roads) 0

    Concrete Design Strength 175(K175) Allowable Compressive Stress 60

    Allowable Shearing Stress 5.5

    Reinforcement Bar Allowable Tensile Stress 1,400 (U24, deformed bar) Yielding Point of Reinforcement Bar 3,000

    Young's Modulus Ratio n= 24

    Coefficient of static earth pressure Ka= 0.5

    Type of box culvert

    c= tf/m3s= tf/m3s'= tf/m3

    (D4.0m)tf/m2

    ck= kgf/cm2

    ca= kgf/cm2

    a= kgf/cm2

    sa= kgf/cm2

    sy= kgf/cm2

  • 2 / 114 276341623.xls/Summary

  • 3/ 114 (1)276341623.xls, Load

    STRUCTURAL CALCULATION OF BOX CULVERT Type: B2.00m x H2.00mSoil Cover Depth:

    1 Dimensions and ParametersBasic ParametersKa: Coefficient of static earth pressure

    Unit weight of water (t/m3)Unit weight of soil (dry) (t/m3)Unit weight of soil (saturated) (t/m3)Unit weight of reinforced concrete (t/m3)Concrete Design StrengthAllowable Stress of ConcreteAllowable Stress of Reinforcement BarAllowable Stress of Shearing (Concrete)Yielding Point of Reinforcement Bar

    n: Young's Modulus RatioFa: Safety factor against uplift

    Basic DimensionsH: Internal Height of Box CulvertB: Internal Width of Box CulvertHf: Fillet Heightt1: Thickness of Side Wallt2: Thickness of Top Slabt3: Thickness of Invert (Bottom Slab)BT: Gross Width of Box CulvertHT: Gross Height of Box CulvertD: Covering DepthGwd: Underground Water Depth for Case 1, 2hiw: Internal Water Depth for Case 1, 2

    for Case 3, 4

    Cover of R-bar Basic ConditionsTop Slab d2 0.06 m Classification of Live load by truck ClassSide Wall d1 0.06 m PTM: Truck load of Middle TireBottom Slab d3 0.06 m Ii:

    am: Ground contact length of Middle Tirebm: Ground contact width of Middle TirePTR: Truck load of Rear Tirear: Ground contact length of Rear Tirebr: Ground contact width of Rear TirePTF: Truck load of Front wheelaf: Ground contact length of Front Tirebf: Ground contact width of Front Tireqp: Pedestrian load

    Dimension of frame

    H0: Height of frame t2/2 + H + t3/2B0: Width of frame B + t1

    D1: Covering depth at middle of top slab D + t2/2

    w:d:s:c:ck:casa:a:sy:

    Impact coefficient (D4.0m:0, D

  • 4/ 114 (1)276341623.xls, Load

    Load distribution of truck tire

    (1) Middle tire's acting point: center of the top slaba) distributed load of middle tire

    Pvtm: distributed load of middle tire 2PTM(1+Ii)/(am'bm') = 0.2664am': length of distributed load 2D+1.75+bm = 8.000bm': width of distributed load 2D+am = 6.100

    b) distributed load of rear tirePvtr: distributed load of rear tire not reach to top slab 0.0000ar': length of distributed load 2D+1.75+br = 8.000br': width of distributed load 2D+ar = 6.100

    c) distributed load of front tirePvtf: distributed load of front tire 2PTF(1+Ii)/(af'bf') 0.0666af': length of distributed load 2D+1.75+bf = 8.000bf': width of distributed load 2D+af = 6.100

    (2) Middle tire's acting point: on the side walla) distributed load of middle tire

    Pvtm: distributed load of middle tire 2PTM(1+Ii)/(am'bm') = 0.2664am': length of distributed load 2D+1.75+bm = 8.000bm': width of distributed load 2D+am = 6.100

    b) distributed load of rear tirePvtr: distributed load of rear tire 2PTR(1+Ii)/(ar'br') 0.2664ar': length of distributed load 2D+1.75+br = 8.000br': width of distributed load 2D+ar = 6.100

    c) distributed load of front tirePvtf: distributed load of front tire 2PTF(1+Ii)/(af'bf') 0.0666af': length of distributed load 2D+1.75+bf = 8.000bf': width of distributed load 2D+af = 6.100

    (3) Rear tire's acting point: on the side walla) distributed load of rear tire

    Pvtr: distributed load of rear tire 2PTR(1+Ii)/(ar'br') = 0.2664ar': length of distributed load 2D+1.75+br = 8.000br': width of distributed load 2D+ar = 6.100

    b) distributed load of middle tirePvtm: distributed load of middle tire 2PTM(1+Ii)/(am'bm') 0.2664am': length of distributed load 2D+1.75+bm = 8.000bm': width of distributed load 2D+am = 6.100

    c) distributed load of front tirePvtf: distributed load of front tire not reach to top slab 0.0000af': length of distributed load 2D+1.75+bf = 8.000bf': width of distributed load 2D+af = 6.100

    (4) Combination of load distribution of track tire

    Case.L1: Pvt1 = 0.2664 tf/m2, B = 2.300 m Combination for Case.L2Pvt2 = 0.0666 tf/m2, B = 2.300 m

    Case.L2: Pvt1 = 0.5328 tf/m2, B = 2.300 m Distributed load totalPvt2 = 0.0000 tf/m2, B = 0.000 m Select the combination case of

    for Case.L2, which is the largest load to the top slab.

    In case of covering depth (D) is over 3.0m, uniform load of 1.0 tf/m2 is applied on the top slab of culvert instead of live load calculated above.

    Distribution load by pedestrian load

    Pvt1 = 0.000 tf/m2

    2 Stability Analysis Against Uplift

    Analysis is made considering empty inside of box culvert.Fs=Vd/U > Fa Fs= 3.0728 > 1.2 ok

    where, Vd: Total dead weight (t/m) Vd= 20.772 tf/mU: Total uplift (t.m)

    U= 6.760 tf/m

    Ws: Weight of covering soil Ws = = 14.040Wc: Self weight of box culvert Wc = = 6.732Fa: Safety factor against uplift Fa= 1.2

    U=BT*HT*w

    BT*{(D-Gwd)*(sw)+Gwd*d}(HT*BT-H*B+2*Hf^2)*c

  • 5/ 114 (1)276341623.xls, Load

  • 6/ 114 (1)276341623.xls, Load

    3 Load calculation

    Case 1: Box Culvert Inside is Empty, Underground Water up to Top slab, Track load Case. L1

    1) vertical load against top slabActing Load (tf/m2)

    Wtop= 0.8374Pvd=Gwd*gd+(D-Gwd)*gs Pvd= 5.4000Pvt1 Pvt1= 0.2664Pvt2 Pvt2= 0.0666

    Pv1= 6.5704

    2) horizontal load at top of side wallActing Load (tf/m2) Horizontal pressure by track tireP1=Ka*we1 P1= 0.1332 we1= 0.2664 tf/m2P2=Ka*we2 P2= 0.0333 we2= 0.0666 tf/m2P3=Ka*gd*Gwd P3= 2.7000P4=Ka*gs*(D1-Gwd) P4= 0.1500P5=gw*(D1-Gwd) P5= 0.1500

    Ph1= 3.1665

    3) horizontal load at bottom of side wallActing Load (tf/m2)P1=Ka*we1 P1= 0.1332P2=Ka*we2 P2= 0.0333

    P3= 2.7000P4= 2.4500P5= 2.4500

    Ph2= 7.7665

    4) self weight of side wallActing Load (tf/m)

    Wsw= 1.4400

    5) ground reactionActing Load (tf/m2)

    Wbot= 0.8374Wtop Wtop= 0.8374Ws=Wsw*2/B0 Ws= 1.2522Pvd Pvd= 5.4000Pvt1 Pvt1= 0.2664Pvt2 Pvt2= 0.0666

    Wiw= 0.0000 hiw: internal water depthUp=-U/B0 U= -2.9391

    Q= 5.7208

    summary of resistance moment Item V H x y M

    (tf/m) (tf/m) (m) (m) (tf.m/m) acting point of resultant forceSelf weight top slab 1.9260 - 1.1500 - 2.2149 side wall (left) 1.4400 - 0.0000 - 0.0000 e = B0/2 - X =

    side wall (right) 1.4400 - 2.3000 - 3.3120invert 1.9260 - 1.1500 - 2.2149 ground reaction

    load on top slab Pvd 12.4200 - 1.1500 - 14.2830Pvt1 0.6127 - 1.1500 - 0.7046Pvt2 0.1532 - 1.1500 - 0.1762

    soil pressure side wall (left) - 12.5729 - 0.9887 12.4310side wall (right) - -12.5729 - 0.9887 -12.4310

    internal water 0.0000 - 1.1500 - 0.0000uplift -6.7600 - 1.1500 - -7.7740total 13.1579 15.1316

    6) load against invertActing Load (tf/m2)Pvd 5.4000Pvt1 0.2664Pvt2 0.0666Wtop 0.8374Ws 1.2522

    Pq= 7.8226

    Wtop= (t2*BT+Hf^2)*c/B0

    P3=Ka*d*GwdP4=Ka*s*(D1+H0-Gwd)P5=w*(D1+H0-Gwd)

    Wsw=t1*H*c

    Wbot=(t3*BT+Hf^2)*c/B0

    Wiw=(hiw*B-2Hf^2)*w/B0

    X = M/V =

    q1 = V/Bo + 6q2 = V/Bo - 6

  • 7/ 114 (1)276341623.xls, Load

    Case 2: Box Culvert Inside is Empty, Underground Water up to Top slab, Track load Case. L2

    1) vertical load against top slabActing Load (tf/m2)

    Wtop= 0.8374Pvd=Gwd*gd+(D-Gwd)*gs Pvd= 5.4000Pvt1 Pvt1= 0.5328Pvt2 Pvt2= 0.0000

    Pv1= 6.7702

    2) horizontal load at top of side wallActing Load (tf/m2) Horizontal pressure by track tireP1=Ka*we1 P1= 0.1332 we1= 0.2664 tf/m2P2=Ka*we2 P2= 0.1332 we2= 0.2664 tf/m2P3=Ka*gd*Gwd P3= 2.7000P4=Ka*gs*(D1-Gwd) P4= 0.1500P5=gw*(D1-Gwd) P5= 0.1500

    Ph1= 3.2664

    3) horizontal load at bottom of side wallActing Load (tf/m2)P1=Ka*we1 P1= 0.1332P2=Ka*we2 P2= 0.1332

    P3= 2.7000P4= 2.4500P5= 2.4500

    Ph2= 7.8664

    4) self weight of side wallActing Load (tf/m)

    Wsw= 1.4400

    5) ground reactionActing Load (tf/m2)

    Wbot= 0.8374Wtop Wtop= 0.8374Ws=Wsw*2/B0 Ws= 1.2522Pvd Pvd= 5.4000Pvt1 Pvt1= 0.5328Pvt2 Pvt2= 0.0000

    Wiw= 0.0000 hiw: internal water depthUp=-U/B0 U= -2.9391

    Q= 5.9206

    summary of resistance moment Item V H x y M

    (tf/m) (tf/m) (m) (m) (tf.m/m) acting point of resultant forceSelf weight top slab 1.9260 - 1.1500 - 2.2149 side wall (left) 1.4400 - 0.0000 - 0.0000 e = B0/2 - X =

    side wall (right) 1.4400 - 2.3000 - 3.3120invert 1.9260 - 1.1500 - 2.2149 ground reaction

    load on top slab Pvd 12.4200 - 1.1500 - 14.2830Pvt1 1.2254 - 1.1500 - 1.4092Pvt2 0.0000 - 1.1500 - 0.0000

    soil pressure side wall (left) - 12.8027 - 0.9916 12.6953side wall (right) - -12.8027 - 0.9916 -12.6953

    internal water 0.0000 - 1.1500 - 0.0000uplift -6.7600 - 1.1500 - -7.7740total 13.6174 15.6600

    6) load against invertActing Load (tf/m2)Pvd 5.4000Pvt1 0.5328Pvt2 0.0000Wtop 0.8374Ws 1.2522total Pq= 8.0224

    Wtop= (t2*BT+Hf^2)*c/B0

    P3=Ka*d*GwdP4=Ka*s*(D1+H0-Gwd)P5=w*(D1+H0-Gwd)

    Wsw=t1*H*c

    Wbot=(t3*BT+Hf^2)*c/B0

    Wiw=(hiw*B-2Hf^2)*w/B0

    X = M/V =

    q1 = V/Bo + 6q2 = V/Bo - 6

  • 8/ 114 (1)276341623.xls, Load

    Case 3: Box Culvert Inside is Full, Underground Water up to invert, Track load Case. L1

    1) vertical load against top slabActing Load (tf/m2)

    Wtop= 0.8374Pvd= 5.4000

    Pvt1 Pvt1= 0.2664Pvt2 Pvt2= 0.0666

    Pv1= 6.5704

    2) horizontal load at top of side wallActing Load (tf/m2) Horizontal pressure by track tireP1=Ka*we1 P1= 0.1332 we1= 0.2664 tf/m2P2=Ka*we2 P2= 0.0333 we2= 0.0666 tf/m2

    P3= 2.8350P4= 0.0000

    Ph1= 3.0015

    3) horizontal load at bottom of side wallActing Load (tf/m2)P1=Ka*we1 P1= 0.1332P2=Ka*we2 P2= 0.0333

    P3= 4.9050P4= -2.0000

    Ph2= 3.0715

    4) self weight of side wallActing Load (tf/m)

    Wsw= 1.4400

    5) ground reactionActing Load (tf/m2)

    Wbot= 0.8374Wtop Wtop= 0.8374Ws=Wsw*2/B0 Ws= 1.2522Pvd Pvd= 5.4000Pvt1 Pvt1= 0.2664Pvt2 Pvt2= 0.0666

    Wiw= 1.7196 hiw: internal water depthUp=0 U= 0.0000

    Q= 10.3795

    summary of resistance moment Item V H x y M

    (tf/m) (tf/m) (m) (m) (tf.m/m) acting point of resultant forceSelf weight top slab 1.9260 - 1.1500 - 2.2149 side wall (left) 1.4400 - 0.0000 - 0.0000 e = B0/2 - X =

    side wall (right) 1.4400 - 2.3000 - 3.3120invert 1.9260 - 1.1500 - 2.2149 ground reaction

    load on top slab Pvd 12.4200 - 1.1500 - 14.2830Pvt1 0.6127 - 1.1500 - 0.7046Pvt2 0.1532 - 1.1500 - 0.1762

    soil pressure side wall (left) - 6.9839 - 1.1456 8.0007side wall (right) - -6.9839 - 1.1456 -8.0007

    internal water 3.9550 - 1.1500 - 4.5483uplift 0.0000 - 1.1500 - 0.0000total 23.8729 27.4538

    6) load against invertActing Load (tf/m2)Pvd 5.4000Pvt1 0.2664Pvt2 0.0666Wtop 0.8374Ws 1.2522total Pq= 7.8226

    Wtop= (t2*BT+Hf^2)*c/B0Pvd=D*d

    P3=Ka*d*D1WP=-w*0

    P3=Ka*d*(D1+H0)WP=-w*H

    Wsw=t1*H*c

    Wbot=(t3*BT+Hf^2)*c/B0

    Wiw=(hiw*B-2Hf^2)*w/B0

    X = M/V =

    q1 = V/Bo + 6q2 = V/Bo - 6

  • 9/ 114 (1)276341623.xls, Load

    Case 4: Box Culvert Inside is Full, Underground Water up to invert, Track load Case. L2

    1) vertical load against top slabActing Load (tf/m2)

    Wtop= 0.8374Pvd= 5.4000

    Pvt1 Pvt1= 0.5328Pvt2 Pvt2= 0.0000

    Pv1= 6.7702

    2) horizontal load at top of side wallActing Load (tf/m2) Horizontal pressure by track tireP1=Ka*we1 P1= 0.1332 we1= 0.2664 tf/m2P2=Ka*we2 P2= 0.1332 we2= 0.2664 tf/m2

    P3= 2.8350P4= 0.0000

    Ph1= 3.1014

    3) horizontal load at bottom of side wallActing Load (tf/m2)P1=Ka*we1 P1= 0.1332P2=Ka*we2 P2= 0.1332

    P3= 4.9050P4= -2.0000

    Ph2= 3.1714

    4) self weight of side wallActing Load (tf/m)

    Wsw= 1.4400

    5) ground reactionActing Load (tf/m2)

    Wbot= 0.8374Wtop Wtop= 0.8374Ws=Wsw*2/B0 Ws= 1.2522Pvd Pvd= 5.4000Pvt1 Pvt1= 0.5328Pvt2 Pvt2= 0.0000

    Wiw= 1.7196 hiw: internal water depthUp=0 U= 0.0000

    Q= 10.5793

    summary of resistance moment Item V H x y M

    (tf/m) (tf/m) (m) (m) (tf.m/m) acting point of resultant forceSelf weight top slab 1.9260 - 1.1500 - 2.2149 side wall (left) 1.4400 - 0.0000 - 0.0000 e = B0/2 - X =

    side wall (right) 1.4400 - 2.3000 - 3.3120invert 1.9260 - 1.1500 - 2.2149 ground reaction

    load on top slab Pvd 12.4200 - 1.1500 - 14.2830Pvt1 1.2254 - 1.1500 - 1.4092Pvt2 0.0000 - 1.1500 - 0.0000

    soil pressure side wall (left) - 7.2137 - 1.1457 8.2649side wall (right) - -7.2137 - 1.1457 -8.2649

    internal water 3.9550 - 1.1500 - 4.5483uplift 0.0000 - 1.1500 - 0.0000total 24.3324 27.9823

    6) load against invertActing Load (tf/m2)Pvd 5.4000Pvt1 0.5328Pvt2 0.0000Wtop 0.8374Ws 1.2522total Pq= 8.0224

    Summary of Load Calculation

    Item Pv1 Ph1 Ph2 Pq Wsw q1

    Wtop= (t2*BT+Hf^2)*c/B0Pvd=D*d

    P3=Ka*d*D1WP=-w*0

    P3=Ka*d*(D1+H0)WP=-w*H

    Wsw=t1*H*c

    Wbot=(t3*BT+Hf^2)*c/B0

    Wiw=(hiw*B-2Hf^2)*w/B0

    X = M/V =

    q1 = V/Bo + 6q2 = V/Bo - 6

  • 10/ 114 (1)276341623.xls, Load

    Case (tf/m2) (tf/m2) (tf/m2) (tf/m2) (tf/m) (tf/m2)Case.1 6.5704 3.1665 7.7665 7.8226 1.4400 5.7208Case.2 6.7702 3.2664 7.8664 8.0224 1.4400 5.9206Case.3 6.5704 3.0015 3.0715 7.8226 1.4400 10.3795Case.4 6.7702 3.1014 3.1714 8.0224 1.4400 10.5793

  • 11/ 114 (1)276341623.xls, Load

    Class III Road3.0 m

    0.51.00 t/m31.80 t/m32.00 t/m32.40 t/m3175 kgf/m2

    60 kgf/m21400 kgf/m2

    5.5 kgf/m23000 kgf/m2

    241.2

    2.00 m2.00 m0.15 m0.30 m0.30 m0.30 m2.60 m2.60 m3.00 m3.00 m (= D)0.00 m2.00 m

    35.00 t

    0.30.10 m0.25 m5.00 t0.10 m0.25 m1.25 t0.10 m0.25 m0.00 t/m2

    t2/2 + H + t3/2 2.300 m2.300 m

    3.150 m

    (> 0.25m)(> 0.25m)(> 0.25m)

  • 12/ 114 (1)276341623.xls, Load

    tf/m2, B = 2.300 mmm

    tf/m2, B = 0.000 mmm

    tf/m2, B = 2.300 mmm

    tf/m2, B = 2.300 mmm

    tf/m2, B = 2.300 mmm

    tf/m2, B = 2.300 mmm

    tf/m2, B = 2.300 mmm

    tf/m2, B = 2.300 mmm

    tf/m2, B = 0.000 mmm

    (2) (2) (3) (3)a) + b) a) + c) a) + b) a) + c)

    0.5328 0.3330 0.5328 0.2664 0.5328 tf/m2,

    for Case.L2, which is the largest load to the top slab.

    tf/mtf/m

  • 13/ 114 (1)276341623.xls, Load

  • 14/ 114 (1)276341623.xls, Load

    hiw: internal water depth 0.00 m

    acting point of resultant force1.150 m

    e = B0/2 - X = 0.000 m

    ground reaction5.7208 tf/m25.7208 tf/m2

    X = M/V =

    q1 = V/Bo + 6Ve/Bo^2 =q2 = V/Bo - 6Ve/Bo^2 =

  • 15/ 114 (1)276341623.xls, Load

    hiw: internal water depth 0.00 m

    acting point of resultant force1.1500 m

    e = B0/2 - X = 0.0000 m

    ground reaction5.9206 tf/m25.9206 tf/m2

    X = M/V =

    q1 = V/Bo + 6Ve/Bo^2 =q2 = V/Bo - 6Ve/Bo^2 =

  • 16/ 114 (1)276341623.xls, Load

    hiw: internal water depth 2.000 m

    acting point of resultant force1.1500 m

    e = B0/2 - X = 0.0000 m

    ground reaction10.3795 tf/m210.3795 tf/m2

    X = M/V =

    q1 = V/Bo + 6Ve/Bo^2 =q2 = V/Bo - 6Ve/Bo^2 =

  • 17/ 114 (1)276341623.xls, Load

    hiw: internal water depth 2.000 m

    acting point of resultant force1.1500 m

    e = B0/2 - X = 0.0000 m

    ground reaction10.5793 tf/m210.5793 tf/m2

    X = M/V =

    q1 = V/Bo + 6Ve/Bo^2 =q2 = V/Bo - 6Ve/Bo^2 =

  • 18/ 114 (1)276341623.xls, Load

  • 19/114 (2)276341623.xlsMSN

    4 Analysis of Plane Frame

    Case 1: Box Culvert Inside is Empty, Underground Water up to Top slab, Track load Case. L1

    1) Calculation of Load TermPh1 Horizontal Pressure at top of side wall 3.166Ph2 Horizontal Pressure at bottom of side wall 7.766Pv1 Vertical Pressure(1) on top slab 6.570Pv2 Vertical Pressure(2) on top slab 0.000Pq Reaction to bottom slab 7.823a Distance from joint B to far end of Pv2 2.300 mb Distance from joint B to near end of Pv2 0.000 mH0 Height of plane frame 2.300 mB0 Width of plane frame 2.300 mt1 Thickness of side wall 0.300 mt2 Thickness of top slab 0.300 mt3 Thickness of invert (bottom slab) 0.300 m

    =

    =

    =

    =

    2) Calculation of Bending Moment at joint

    k1 = 1.0= 1.0000

    = 1.0000

    k1 0 k3 -3k1

    k1 k2 0 -3k1

    0 k2 k1 -3k1 =

    k3 0 k1 -3k1

    k1 k1 k1 k1 -4k1 R 0

    As load has bilateral symmetry, the equation shown below is formed.

    R =0

    2k1+k3 k1=

    k1 2k1+k2

    3.0000 1.0=

    -0.835846941.0 3.0000 0.68941361

    By solving above equation, the result is led as shown below.

    tf/m2

    tf/m2

    tf/m2

    tf/m2

    tf/m2

    CAB = CDC = (2Ph1+3Ph2)H02/60

    CBA = CCD = (3Ph1+2Ph2)H02/60

    CBC = CCB = Pv1B02/12 + {(a2-b2)B02/2 - 2B0(a3-b3)/3 + (a4-b4)/4}Pv2/B02

    CDA = CAD = PqB02/12

    k2 = H0t23/(B0t1

    3)

    k3 = H0t33/(B0t13)

    2(k1+k3) A CAB - CAD2(k1+k2) B CBC - CBA

    2(k1+k2) C CCD - CCB2(k1+k3) D CDA - CDC

    A = -D B = -C

    A CAB - CADB CBC - CBA

    AB

    B

    A

    (t1)H0

  • 20/114 (2)276341623.xlsMSN

    = -0.39962 = -0.36301= 0.36301 = 0.39962

    A CB D

  • 21/114 (2)276341623.xlsMSN

    = -3.0488

    = 2.5334

    = -2.5334

    = 2.5334

    = -2.5334

    = 3.0488

    = -3.0488

    = 3.0488

    2) Calculation of Design Force2-1) Side Wall in left

    a) Shearing Force at joint

    w1 Load at end A 7.766w2 Load at end B 3.166

    Bending moment at end A -3.0488

    Bending moment at end B 2.5334L Length of member (=H0) 2.300 mch Protective covering height 0.060 mt Thickness of member (height) 0.300 md Effective height of member 0.240 m

    = 7.392 tf= -5.181 tf

    b) Shearing Force at 2d point from jointShearing force at the point with a distance of 2d from joint is calculated by following equation.

    (i) In case of x1 = 0.480 mSx1 = 3.895 tf

    (ii) In case of x2 = 1.820 mSx2 = -3.430 tf

    c) Bending Moment= -3.049

    = -2.533

    The maximum bending moment occurs at the point of that shearing force equal to zero.

    = 7.3922 -7.7665 x + 1.0000 x2 , x =

    Bending moment at x = 1.1106 m is;

    = 0.828

    MAB = k1(2A +B) - CAB tfmMBA = k1(2B+A)+CBA tfmMBC = k2(2B+C) - CBC tfmMCB = k2(2C+B)+CCB tfmMCD = k1(2C+D) - CCD tfmMDC =k1 (2D+ C)+CDC tfmMDA = k3(2D+A) - CDA tfmMAD = k3(2A+D)+CAD tfm

    tf/m2

    tf/m2

    MAB tfmMBA tfm

    SAB = (2w1+w2)L/6 - (MAB+MBA)/L

    SBA = SAB - L(w1+w2)/2

    Sx = SAB - w1x - (w2 - w1)x2/(2L)

    MA = MAB tfmMB = -MBA tfm

    Sx = 0 = SAB - w1x - (w2 - w1)x2/(2L)

    Mmax = SABx - w1x2/2 - (w2-w1)x3/(6L) + MAB tfm

    w1w1w1

    w2w1w1

  • 22/114 (2)276341623.xlsMSN

  • 23/114 (2)276341623.xlsMSN

    2-2) Top Slaba) Shearing Force at joint

    w1 Uniform load 6.570w2 Uniform load 0.000a Distance from end B to near end of w2 0.000 mb Length of uniform load w2 2.300 m

    Bending moment at end B -2.5334Bending moment at end C 2.5334

    L Length of member (=Bo) 2.300 mch Protective covering height 0.060 mt Thickness of member (height) 0.300 md Effective height of member 0.240 m

    = 7.556 tf

    = -7.556 tf

    b) Shearing Force at 2d point from jointShearing force at the point with a distance of 2d from joint is calculated by following equation.

    in case of 0.000 m

  • 24/114 (2)276341623.xlsMSN

  • 25/114 (2)276341623.xlsMSN

    b) Shearing Force at 2d point from jointShearing force at the point with a distance of 2d from joint is calculated by following equation.

    (i) In case of x1 = 0.480 mSx1 = 3.430 tf

    (ii) In case of x2 = 1.820 mSx2 = -3.895 tf

    c) Bending Moment= -2.533

    = -3.049

    The maximum bending moment occurs at the point of that shearing force equal to zero.

    = 5.1807 -3.1665 x -1.0000 x2 , x =

    Bending moment at x = 1.1894 m is;

    = 0.82787

    2-4) Bottom Slaba) Shearing Force at joint

    w1 Reaction at end D 7.823w2 Reaction at end A 7.823

    Bending moment at end B -3.04882

    Bending moment at end C 3.04882L Length of member (=B0) 2.300 mch Protective covering height 0.060 mt Thickness of member (height) 0.300 md Effective height of member 0.240 m

    = 8.996 tf= -8.996 tf

    b) Shearing Force at 2d point from jointShearing force at the point with a distance of 2d from joint is calculated by following equation.

    (i) In case of x1 = 0.480 mSx1 = 5.241 tf

    (ii) In case of x2 = 1.820 mSx2 = -5.241 tf

    c) Bending Moment= -3.049= -3.049

    The maximum bending moment occurs at the point of that shearing force equal to zero.

    = 8.9959 -7.8226 x , x =

    Sx = SCD - w1x - (w2 - w1)x2/(2L)

    MC = MCD tfmMD = -MDC tfm

    Sx = 0 = SCD - w1x - (w2 - w1)x2/(2L)

    Mmax = SCDx - w1x2/2 - (w2-w1)x3/(6L) + MCD tfm

    tf/m2

    tf/m2

    MDA tfmMAD tfm

    SDA = (2w1+w2)L/6 - (MDA+MAD)/L

    SAD = SDA - L(w1+w2)/2

    Sx = SDA- w1x - (w2 - w1)x2/(2L)

    MD = MDA tfmMA = -MAD tfm

    Sx = 0 = SDA - w1x - (w2 - w1)x2/(2L)

    L

    x

    w2

    A

    MAD

  • 26/114 (2)276341623.xlsMSN

    Bending moment at x = 1.1500 m is;

    = 2.124Mmax = SDAx - w1x2/2 - (w2-w1)x3/(6L) + MDA tfm

  • 27/114 (2)276341623.xlsMSN

    Case 2: Box Culvert Inside is Empty, Underground Water up to Top slab, Track load Case. L2

    1) Calculation of Load TermPh1 Horizontal Pressure at top of side wall 3.266Ph2 Horizontal Pressure at bottom of side wall 7.866Pv1 Vertical Pressure(1) on top slab 6.770Pv2 Vertical Pressure(2) on top slab 0.000Pq Reaction to bottom slab 8.022a Distance from joint B to far end of Pv2 2.300 mb Distance from joint B to near end of Pv2 0.000 mH0 Height of plane frame 2.300 mB0 Width of plane frame 2.300 mt1 Thickness of side wall 0.300 mt2 Thickness of top slab 0.300 mt3 Thickness of invert (bottom slab) 0.300 m

    =

    =

    =

    =

    2) Calculation of Bending Moment at joint

    k1 = 1.0= 1.00000

    = 1.00000

    k1 0 k3 -3k1

    k1 k2 0 -3k1

    0 k2 k1 -3k1 =

    k3 0 k1 -3k1k1 k1 k1 k1 -4k1 R 0

    As load has bilateral symmetry, the equation shown below is formed.

    R =0

    2k1+k3 k1=

    k1 2k1+k2

    3.0000 1.0=

    -0.879885111.0 3.0000 0.73345178

    By solving above equation, the result is led as shown below.

    = -0.42164 = -0.38503

    = 0.38503 = 0.42164

    tf/m2

    tf/m2

    tf/m2

    tf/m2

    tf/m2

    CAB = CDC = (2Ph1+3Ph2)H02/60

    CBA = CCD = (3Ph1+2Ph2)H02/60

    CBC = CCB = Pv1B02/12 + {(a2-b2)B0

    2/2 - 2B0(a3-b3)/3 + (a4-b4)/4}Pv2/B0

    2

    CDA = CAD = PqB02/12

    k2 = H0t23/(B0t1

    3)

    k3 = H0t33/(B0t1

    3)

    2(k1+k3) A CAB - CAD2(k1+k2) B CBC - CBA

    2(k1+k2) C CCD - CCB2(k1+k3) D CDA - CDC

    A = -D B = -C

    A CAB - CADB CBC - CBA

    AB

    A CB D

    B

    A

    (t1)H0

  • 28/114 (2)276341623.xlsMSN

  • 29/114 (2)276341623.xlsMSN

    = -3.1149

    = 2.5995

    = -2.5995

    = 2.5995

    = -2.5995

    = 3.1149

    = -3.1149

    = 3.1149

    2) Calculation of Design Force2-1) Side Wall in left

    a) Shearing Force at joint

    w1 Load at end A 7.866w2 Load at end B 3.266

    Bending moment at end A -3.1149

    Bending moment at end B 2.5995L Length of member (=H0) 2.300 mch Protective covering height 0.060 mt Thickness of member (height) 0.300 md Effective height of member 0.240 m

    = 7.5071 tf= -5.2956 tf

    b) Shearing Force at 2d point from jointShearing force at the point with a distance of 2d from joint is calculated by following equation.

    (i) In case of x1 = 0.480 mSx1 = 3.962 tf

    (ii) In case of x2 = 1.82 mSx2 = -3.497 tf

    c) Bending Moment= -3.115

    = -2.599

    The maximum bending moment occurs at the point of that shearing force equal to zero.

    = 7.5071 -7.8664 x + 1.0000 x2 , x =

    Bending moment at x = 1.1113 m is;

    = 0.828

    MAB = k1(2A +B) - CAB tfmMBA = k1(2B+A)+CBA tfmMBC = k2(2B+C) - CBC tfmMCB = k2(2C+B)+CCB tfmMCD = k1(2C+D) - CCD tfmMDC =k1 (2D+ C)+CDC tfmMDA = k3(2D+A) - CDA tfmMAD = k3(2A+D)+CAD tfm

    tf/m2

    tf/m2

    MAB tfmMBA tfm

    SAB = (2w1+w2)L/6 - (MAB+MBA)/L

    SBA = SAB - L(w1+w2)/2

    Sx = SAB - w1x - (w2 - w1)x2/(2L)

    MA = MAB tfmMB = -MBA tfm

    Sx = 0 = SAB - w1x - (w2 - w1)x2/(2L)

    Mmax = SABx - w1x2/2 - (w2-w1)x3/(6L) + MAB tfm

    w1w1w1

    w2w1w1

  • 30/114 (2)276341623.xlsMSN

  • 31/114 (2)276341623.xlsMSN

    2-2) Top Slaba) Shearing Force at joint

    w1 Uniform load 6.770w2 Uniform load 0.000a Distance from end B to near end of w2 0.000 mb Length of uniform load w2 2.300 m

    Bending moment at end B -2.5995

    Bending moment at end C 2.5995L Length of member (=Bo) 2.300 mch Protective covering height 0.060 mt Thickness of member (height) 0.300 md Effective height of member 0.240 m

    = 7.786 tf

    = -7.786 tf

    b) Shearing Force at 2d point from jointShearing force at the point with a distance of 2d from joint is calculated by following equation.

    in case of 0.000 m

  • 32/114 (2)276341623.xlsMSN

    = -7.507 tfSDC = SCD - L(w1+w2)/2

  • 33/114 (2)276341623.xlsMSN

    b) Shearing Force at 2d point from jointShearing force at the point with a distance of 2d from joint is calculated by following equation.

    (i) In case of x1 = 0.480 mSx1 = 3.497 tf

    (ii) In case of x2 = 1.820 mSx2 = -3.962 tf

    c) Bending Moment= -2.599

    = -3.115

    The maximum bending moment occurs at the point of that shearing force equal to zero.

    = 5.2956 -3.2664 x -1.0000 x2 , x =

    Bending moment at x = 1.1887 m is;

    = 0.8278

    2-4) Bottom Slaba) Shearing Force at joint

    w1 Reaction at end D 8.022w2 Reaction at end A 8.022

    Bending moment at end B -3.1149

    Bending moment at end C 3.1149L Length of member (=B0) 2.300 mch Protective covering height 0.060 mt Thickness of member (height) 0.300 md Effective height of member 0.240 m

    = 9.226 tf= -9.226 tf

    b) Shearing Force at 2d point from jointShearing force at the point with a distance of 2d from joint is calculated by following equation.

    (i) In case of x1 = 0.480 mSx1 = 5.375 tf

    (ii) In case of x2 = 1.820 mSx2 = -5.375 tf

    c) Bending Moment= -3.115

    = -3.115The maximum bending moment occurs at the point of that shearing force equal to zero.

    = 9.2257 -8.0224 x , x =

    Sx = SCD - w1x - (w2 - w1)x2/(2L)

    MC = MCD tfmMD = -MDC tfm

    Sx = 0 = SCD - w1x - (w2 - w1)x2/(2L)

    Mmax = SCDx - w1x2/2 - (w2-w1)x3/(6L) + MCD tfm

    tf/m2

    tf/m2

    MDA tfmMAD tfm

    SDA = (2w1+w2)L/6 - (MDA+MAD)/L

    SAD = SDA - L(w1+w2)/2

    Sx = SDA- w1x - (w2 - w1)x2/(2L)

    MD = MDA tfmMA = -MAD tfm

    Sx = 0 = SDA - w1x - (w2 - w1)x2/(2L)

    L

    x

    w2

    A

    MAD

  • 34/114 (2)276341623.xlsMSN

    Bending moment at x = 1.1500 m is;

    = 2.190Mmax = SDAx - w1x2/2 - (w2-w1)x3/(6L) + MDA tfm

  • 35/114 (2)276341623.xlsMSN

    Case 3: Box Culvert Inside is Full, Underground Water up to invert, Track load Case. L1

    1) Calculation of Load TermPh1 Horizontal Pressure at top of side wall 3.001Ph2 Horizontal Pressure at bottom of side wall 3.071Pv1 Vertical Pressure(1) on top slab 6.570Pv2 Vertical Pressure(2) on top slab 0.000Pq Reaction to bottom slab 7.823a Distance from joint B to far end of Pv2 2.300 mb Distance from joint B to near end of Pv2 0.000 mH0 Height of plane frame 2.300 mB0 Width of plane frame 2.300 mt1 Thickness of side wall 0.300 mt2 Thickness of top slab 0.300 mt3 Thickness of invert (bottom slab) 0.300 m

    =

    =

    =

    =

    2) Calculation of Bending Moment at joint

    k1 = 1.0= 1.00000

    = 1.00000

    k1 0 k3 -3k1

    k1 k2 0 -3k1

    0 k2 k1 -3k1 =

    k3 0 k1 -3k1k1 k1 k1 k1 -4k1 R 0

    As load has bilateral symmetry, the equation shown below is formed.

    R =0

    2k1+k3 k1=

    k1 2k1+k2

    3.0000 1.0=

    -2.106769441.0 3.0000 1.56094111

    By solving above equation, the result is led as shown below.

    = -0.98516 = -0.84870= 0.84870 = 0.98516

    tf/m2

    tf/m2

    tf/m2

    tf/m2

    tf/m2

    CAB = CDC = (2Ph1+3Ph2)H02/60

    CBA = CCD = (3Ph1+2Ph2)H02/60

    CBC = CCB = Pv1B02/12 + {(a2-b2)B0

    2/2 - 2B0(a3-b3)/3 + (a4-b4)/4}Pv2/B0

    2

    CDA = CAD = PqB02/12

    k2 = H0t23/(B0t1

    3)

    k3 = H0t33/(B0t1

    3)

    2(k1+k3) A CAB - CAD2(k1+k2) B CBC - CBA

    2(k1+k2) C CCD - CCB2(k1+k3) D CDA - CDC

    A = -D B = -C

    A CAB - CADB CBC - CBA

    AB

    A CB D

    B

    A

    (t1)H0

  • 36/114 (2)276341623.xlsMSN

  • 37/114 (2)276341623.xlsMSN

    = -2.46329

    = 2.04774

    = -2.04774

    = 2.04774

    = -2.04774

    = 2.46329

    = -2.46329

    = 2.46329

    2) Calculation of Design Force2-1) Side Wall in left

    a) Shearing Force at joint

    w1 Load at end A 3.071w2 Load at end B 3.001

    Bending moment at end A -2.4633

    Bending moment at end B 2.0477L Length of member (=H0) 2.300 mch Protective covering height 0.060 mt Thickness of member (height) 0.300 md Effective height of member 0.240 m

    = 3.686 tf= -3.298 tf

    b) Shearing Force at 2d point from jointShearing force at the point with a distance of 2d from joint is calculated by following equation.

    (i) In case of x1 = 0.480 mSx1 = 2.215 tf

    (ii) In case of x2 = 1.820 mSx2 = -1.854 tf

    c) Bending Moment= -2.463

    = -2.048

    The maximum bending moment occurs at the point of that shearing force equal to zero.

    = 3.6861 -3.0715 x + 0.0152 x2 , x =

    Bending moment at x = 1.2073 m is;

    = -0.243

    MAB = k1(2A +B) - CAB tfmMBA = k1(2B+A)+CBA tfmMBC = k2(2B+C) - CBC tfmMCB = k2(2C+B)+CCB tfmMCD = k1(2C+D) - CCD tfmMDC =k1 (2D+ C)+CDC tfmMDA = k3(2D+A) - CDA tfmMAD = k3(2A+D)+CAD tfm

    tf/m2

    tf/m2

    MAB tfmMBA tfm

    SAB = (2w1+w2)L/6 - (MAB+MBA)/L

    SBA = SAB - L(w1+w2)/2

    Sx = SAB - w1x - (w2 - w1)x2/(2L)

    MA = MAB tfmMB = -MBA tfm

    Sx = 0 = SAB - w1x - (w2 - w1)x2/(2L)

    Mmax = SABx - w1x2/2 - (w2-w1)x3/(6L) + MAB tfm

    w1w1w1

    w2w1w1

  • 38/114 (2)276341623.xlsMSN

  • 39/114 (2)276341623.xlsMSN

    2-2) Top Slaba) Shearing Force at joint

    w1 Uniform load 6.570w2 Uniform load 0.000a Distance from end B to near end of w2 0.000 mb Length of uniform load w2 2.300 m

    Bending moment at end B -2.048

    Bending moment at end C 2.048L Length of member (=Bo) 2.300 mch Protective covering height 0.060 mt Thickness of member (height) 0.300 md Effective height of member 0.240 m

    = 7.556 tf

    = -7.556 tf

    b) Shearing Force at 2d point from jointShearing force at the point with a distance of 2d from joint is calculated by following equation.

    in case of 0.000 m

  • 40/114 (2)276341623.xlsMSN

    = -3.686 tfSDC = SCD - L(w1+w2)/2

  • 41/114 (2)276341623.xlsMSN

    b) Shearing Force at 2d point from jointShearing force at the point with a distance of 2d from joint is calculated by following equation.

    (i) In case of x1 = 0.480 mSx1 = 1.854 tf

    (ii) In case of x2 = 1.820 mSx2 = -2.215 tf

    c) Bending Moment= -2.048

    = -2.463

    The maximum bending moment occurs at the point of that shearing force equal to zero.

    = 3.2979 -3.0015 x -0.0152 x2 , x =

    Bending moment at x = 1.0927 m is;

    = -0.243

    2-4) Bottom Slaba) Shearing Force at joint

    w1 Reaction at end D 7.823w2 Reaction at end A 7.823

    Bending moment at end B -2.463

    Bending moment at end C 2.463L Length of member (=B0) 2.300 mch Protective covering height 0.060 mt Thickness of member (height) 0.300 md Effective height of member 0.240 m

    = 8.996 tf= -8.996 tf

    b) Shearing Force at 2d point from jointShearing force at the point with a distance of 2d from joint is calculated by following equation.

    (i) In case of x1 = 0.480 mSx1 = 5.241 tf

    (ii) In case of x2 = 1.820 mSx2 = -5.241 tf

    c) Bending Moment= -2.463

    = -2.463The maximum bending moment occurs at the point of that shearing force equal to zero.

    = 8.9959 -7.8226 x , x =

    Sx = SCD - w1x - (w2 - w1)x2/(2L)

    MC = MCD tfmMD = -MDC tfm

    Sx = 0 = SCD - w1x - (w2 - w1)x2/(2L)

    Mmax = SCDx - w1x2/2 - (w2-w1)x3/(6L) + MCD tfm

    tf/m2

    tf/m2

    MDA tfmMAD tfm

    SDA = (2w1+w2)L/6 - (MDA+MAD)/L

    SAD = SDA - L(w1+w2)/2

    Sx = SDA- w1x - (w2 - w1)x2/(2L)

    MD = MDA tfmMA = -MAD tfm

    Sx = 0 = SDA - w1x - (w2 - w1)x2/(2L)

    L

    x

    w2

    A

    MAD

  • 42/114 (2)276341623.xlsMSN

    Bending moment at x = 1.1500 m is;

    = 2.709Mmax = SDAx - w1x2/2 - (w2-w1)x3/(6L) + MDA tfm

  • 43/114 (2)276341623.xlsMSN

    Case 4: Box Culvert Inside is Full, Underground Water up to invert, Track load Case. L2

    1) Calculation of Load TermPh1 Horizontal Pressure at top of side wall 3.101

    Ph2 Horizontal Pressure at bottom of side wall 3.171

    Pv1 Vertical Pressure(1) on top slab 6.770

    Pv2 Vertical Pressure(2) on top slab 0.000

    Pq Reaction to bottom slab 8.022a Distance from joint B to far end of Pv2 2.300 mb Distance from joint B to near end of Pv2 0.000 mH0 Height of plane frame 2.300 mB0 Width of plane frame 2.300 mt1 Thickness of side wall 0.300 mt2 Thickness of top slab 0.300 mt3 Thickness of invert (bottom slab) 0.300 m

    =

    =

    =

    =

    2) Calculation of Bending Moment at joint

    k1 = 1.0= 1.00000= 1.00000

    k1 0 k3 -3k1

    k1 k2 0 -3k1

    0 k2 k1 -3k1 =

    k3 0 k1 -3k1k1 k1 k1 k1 -4k1 R 0

    As load has bilateral symmetry, the equation shown below is formed.

    R =0

    2k1+k3 k1=

    k1 2k1+k2

    3.0000 1.0=

    -2.150807611.0 3.0000 1.60497928

    By solving above equation, the result is led as shown below.

    = -1.00718 = -0.87072= 0.87072 = 1.00718

    tf/m2

    tf/m2

    tf/m2

    tf/m2

    tf/m2

    CAB = CDC = (2Ph1+3Ph2)H02/60

    CBA = CCD = (3Ph1+2Ph2)H02/60

    CBC = CCB = Pv1B02/12 + {(a2-b2)B0

    2/2 - 2B0(a3-b3)/3 + (a4-b4)/4}Pv2/B0

    2

    CDA = CAD = PqB02/12

    k2 = H0t23/(B0t13) k3 = H0t33/(B0t13)

    2(k1+k3) A CAB - CAD2(k1+k2) B CBC - CBA

    2(k1+k2) C CCD - CCB2(k1+k3) D CDA - CDC

    A = -D B = -C

    A CAB - CADB CBC - CBA

    AB

    A CB D

    B

    A

    (t1)H0

  • 44/114 (2)276341623.xlsMSN

  • 45/114 (2)276341623.xlsMSN

    = -2.52934

    = 2.11380

    = -2.11380

    = 2.11380

    = -2.11380

    = 2.52934

    = -2.52934

    = 2.52934

    2) Calculation of Design Force2-1) Side Wall in left

    a) Shearing Force at joint

    w1 Load at end A 3.171w2 Load at end B 3.101

    Bending moment at end A -2.529

    Bending moment at end B 2.114L Length of member (=H0) 2.300 mch Protective covering height 0.060 mt Thickness of member (height) 0.300 md Effective height of member 0.240 m

    = 3.801 tf= -3.413 tf

    b) Shearing Force at 2d point from jointShearing force at the point with a distance of 2d from joint is calculated by following equation.

    (i) In case of x1 = 0.480 mSx1 = 2.282 tf

    (ii) In case of x2 = 1.82 mSx2 = -1.921 tf

    c) Bending Moment= -2.529

    = -2.114

    The maximum bending moment occurs at the point of that shearing force equal to zero.

    = 3.8009 -3.1714 x + 0.0152 x2 , x =

    Bending moment at x = 1.2055 m is;

    = -0.243

    MAB = k1(2A +B) - CAB tfmMBA = k1(2B+A)+CBA tfmMBC = k2(2B+C) - CBC tfmMCB = k2(2C+B)+CCB tfmMCD = k1(2C+D) - CCD tfmMDC =k1 (2D+ C)+CDC tfmMDA = k3(2D+A) - CDA tfmMAD = k3(2A+D)+CAD tfm

    tf/m2

    tf/m2

    MAB tfmMBA tfm

    SAB = (2w1+w2)L/6 - (MAB+MBA)/L

    SBA = SAB - L(w1+w2)/2

    Sx = SAB - w1x - (w2 - w1)x2/(2L)

    MA = MAB tfmMB = -MBA tfm

    Sx = 0 = SAB - w1x - (w2 - w1)x2/(2L)

    Mmax = SABx - w1x2/2 - (w2-w1)x3/(6L) + MAB tfm

    w1w1w1

    w2w1w1

  • 46/114 (2)276341623.xlsMSN

  • 47/114 (2)276341623.xlsMSN

    2-2) Top Slaba) Shearing Force at joint

    w1 Uniform load 6.770w2 Uniform load 0.000a Distance from end B to near end of w2 0.000 mb Length of uniform load w2 2.300 m

    Bending moment at end B -2.114

    Bending moment at end C 2.114L Length of member (=Bo) 2.300 mch Protective covering height 0.060 mt Thickness of member (height) 0.300 md Effective height of member 0.240 m

    = 7.786 tf

    = -7.786 tf

    b) Shearing Force at 2d point from jointShearing force at the point with a distance of 2d from joint is calculated by following equation.

    in case of 0.000 m

  • 48/114 (2)276341623.xlsMSN

    = -3.801 tfSDC = SCD - L(w1+w2)/2

  • 49/114 (2)276341623.xlsMSN

    b) Shearing Force at 2d point from jointShearing force at the point with a distance of 2d from joint is calculated by following equation.

    (i) In case of x1 = 0.480 mSx1 = 1.9206 tf

    (ii) In case of x2 = 1.820 mSx2 = -2.2822 tf

    c) Bending Moment= -2.114

    = -2.529

    The maximum bending moment occurs at the point of that shearing force equal to zero.

    = 3.4128 -3.1014 x -0.0152 x2 , x =

    Bending moment at x = 1.0945 m is;

    = -0.243

    2-4) Bottom Slaba) Shearing Force at joint

    w1 Reaction at end D 8.022w2 Reaction at end A 8.022

    Bending moment at end B -2.529

    Bending moment at end C 2.529L Length of member (=B0) 2.300 mch Protective covering height 0.060 mt Thickness of member (height) 0.300 md Effective height of member 0.240 m

    = 9.226 tf= -9.226 tf

    b) Shearing Force at 2d point from jointShearing force at the point with a distance of 2d from joint is calculated by following equation.

    (i) In case of x1 = 0.480 mSx1 = 5.375 tf

    (ii) In case of x2 = 1.820 mSx2 = -5.375 tf

    c) Bending Moment= -2.529

    = -2.529The maximum bending moment occurs at the point of that shearing force equal to zero.

    = 9.2257 -8.0224 x , x =

    Sx = SCD - w1x - (w2 - w1)x2/(2L)

    MC = MCD tfmMD = -MDC tfm

    Sx = 0 = SCD - w1x - (w2 - w1)x2/(2L)

    Mmax = SCDx - w1x2/2 - (w2-w1)x3/(6L) + MCD tfm

    tf/m2

    tf/m2

    MDA tfmMAD tfm

    SDA = (2w1+w2)L/6 - (MDA+MAD)/L

    SAD = SDA - L(w1+w2)/2

    Sx = SDA- w1x - (w2 - w1)x2/(2L)

    MD = MDA tfmMA = -MAD tfm

    Sx = 0 = SDA - w1x - (w2 - w1)x2/(2L)

    L

    x

    w2

    A

    MAD

  • 50/114 (2)276341623.xlsMSN

    Bending moment at x = 1.1500 m is;

    = 2.775Mmax = SDAx - w1x2/2 - (w2-w1)x3/(6L) + MDA tfm

  • 51/114 (2)276341623.xlsMSN

    2.61260

    2.20703

    2.89644

    3.44844

    tfm

    tfm

    tfm

    tfm

    (t2)

    (t1)

    B0

    (t3)

    C

    D

  • 52/114 (2)276341623.xlsMSN

  • 53/114 (2)276341623.xlsMSN

    6.6561.111

    A

    Bw1w1

    Lxw1w1

    MAB

    MBAw1w1

  • 54/114 (2)276341623.xlsMSN

  • 55/114 (2)276341623.xlsMSN

    w2

    MCBx

    L

    C

    w1

    w2

    MCD

    MDC

    C

    D

  • 56/114 (2)276341623.xlsMSN

  • 57/114 (2)276341623.xlsMSN

    -4.3561.189

    1.150

    L

    x

    D

    MDA

    w1

  • 58/114 (2)276341623.xlsMSN

  • 59/114 (2)276341623.xlsMSN

    2.65664

    2.25107

    2.98452

    3.53652

    tfm

    tfm

    tfm

    tfm

    (t2)

    (t1)

    B0

    (t3)

    C

    D

  • 60/114 (2)276341623.xlsMSN

  • 61/114 (2)276341623.xlsMSN

    6.7551.111

    A

    Bw1w1

    Lxw1w1

    MAB

    MBAw1w1

  • 62/114 (2)276341623.xlsMSN

  • 63/114 (2)276341623.xlsMSN

    w2

    MCBx

    L

    C

    w1

    w2

    MCD

    MDC

    C

    D

  • 64/114 (2)276341623.xlsMSN

  • 65/114 (2)276341623.xlsMSN

    -4.45511.1887

    1.1500

    L

    x

    D

    MDA

    w1

  • 66/114 (2)276341623.xlsMSN

  • 67/114 (2)276341623.xlsMSN

    1.34167

    1.33550

    2.89644

    3.44844

    tfm

    tfm

    tfm

    tfm

    (t2)

    (t1)

    B0

    (t3)

    C

    D

  • 68/114 (2)276341623.xlsMSN

  • 69/114 (2)276341623.xlsMSN

    200.6341.207

    A

    Bw1w1

    Lxw1w1

    MAB

    MBAw1w1

  • 70/114 (2)276341623.xlsMSN

  • 71/114 (2)276341623.xlsMSN

    w2

    MCBx

    L

    C

    w1

    w2

    MCD

    MDC

    C

    D

  • 72/114 (2)276341623.xlsMSN

  • 73/114 (2)276341623.xlsMSN

    -198.331.093

    1.150

    L

    x

    D

    MDA

    w1

  • 74/114 (2)276341623.xlsMSN

  • 75/114 (2)276341623.xlsMSN

    1.38571

    1.37954

    2.98452

    3.53652

    tfm

    tfm

    tfm

    tfm

    (t2)

    (t1)

    B0

    (t3)

    C

    D

  • 76/114 (2)276341623.xlsMSN

  • 77/114 (2)276341623.xlsMSN

    207.2001.205

    A

    Bw1w1

    Lxw1w1

    MAB

    MBAw1w1

  • 78/114 (2)276341623.xlsMSN

  • 79/114 (2)276341623.xlsMSN

    w2

    MCBx

    L

    C

    w1

    w2

    MCD

    MDC

    C

    D

  • 80/114 (2)276341623.xlsMSN

  • 81/114 (2)276341623.xlsMSN

    -204.91.095

    1.150

    L

    x

    D

    MDA

    w1

  • 82/114 (2)276341623.xlsMSN

  • 83/114 (3)276341623.xlsSum MSN

    Summary of Internal forces

    Member Case M N S (tf)(tf) at joint at 2dSide wall A -3.049 8.996 7.392 3.895 (left) Case.1 Middle 0.828 8.301 0.000 -

    B -2.533 7.556 -5.181 -3.430A -3.115 9.226 7.507 3.962

    Case.2 Middle 0.828 8.530 0.000 -B -2.599 7.786 -5.296 -3.497A -2.463 8.996 3.686 2.215

    Case.3 Middle -0.243 8.240 0.000 -B -2.048 7.556 -3.298 -1.854A -2.529 9.226 3.801 2.282

    Case.4 Middle -0.243 8.471 0.000 -B -2.114 7.786 -3.413 -1.921

    Top slab B -2.533 5.181 7.556 4.402Case.1 Middle 1.811 5.181 0.000 -

    C -2.533 5.181 -7.556 -4.402B -2.599 5.296 7.786 4.536

    Case.2 Middle 1.877 5.296 0.000 -C -2.599 5.296 -7.786 -4.536B -2.048 3.298 7.556 4.402

    Case.3 Middle 2.297 3.298 0.000 -C -2.048 3.298 -7.556 -4.402B -2.114 3.413 7.786 4.536

    Case.4 Middle 2.363 3.413 0.000 -C -2.114 3.413 -7.786 -4.536

    Side wall C -2.533 7.556 5.181 3.430 (right) Case.1 Middle 0.828 8.301 0.000 -

    D -3.049 8.996 -7.392 -3.895C -2.599 7.786 5.296 3.497

    Case.2 Middle 0.828 8.530 0.000 -D -3.115 9.226 -7.507 -3.962C -2.048 7.556 3.298 1.854

    Case.3 Middle -0.243 8.240 0.000 -D -2.463 8.996 -3.686 -2.215C -2.114 7.786 3.413 1.921

    Case.4 Middle -0.243 8.471 0.000 -D -2.529 9.226 -3.801 -2.282

    Invert D -3.049 7.392 8.996 5.241Case.1 Middle 2.124 7.392 0.000 -

    A -3.049 7.392 -8.996 -5.241D -3.115 7.507 9.226 5.375

    Case.2 Middle 2.190 7.507 0.000 -A -3.115 7.507 -9.226 -5.375D -2.463 3.686 8.996 5.241

    Case.3 Middle 2.709 3.686 0.000 -A -2.463 3.686 -8.996 -5.241D -2.529 3.801 9.226 5.375

    Case.4 Middle 2.775 3.801 0.000 -A -2.529 3.801 -9.226 -5.375

    Check Point (tfm)

  • 84/114 (3)276341623.xlsSum MSN

  • 85/114 (3)276341623.xlsSum MSN

  • 86/114 (3)276341623.xlsSum MSN

  • 87/ 114 (4)276341623.xls, R-bar req

    5 Calculation of Required Reinforcement Bar5-1 Calculation of Required Reinforcement Bar1)

    Case.1M= 3.0488 60 kgf/m2 h = 30 cm (height of member)N= 8.9959 1400 kgf/m2 d = 24 cm (effective height of member)S0= 7.3922 tf n = 24 d' = 6 cm (protective covering depth)S2d= 3.8947 tf c = 9.00 cm (distance from neutral axis)

    b = 100 cme = M/N = 33.89 cm

    38.729 kgf/cm2 ( 0 kgf/cm2) o.k.

    +67.4 -2344.55 -68382.700.39906.8199 cm2

    Case.2M= 3.1149 60 kgf/m2 h = 30 cm (height of member)N= 9.2257 1400 kgf/m2 d = 24 cm (effective height of member)S0= 7.5071 tf n = 24 d' = 6 cm (protective covering depth)S2d= 3.9616 tf c = 9.00 cm (distance from neutral axis)

    b = 100 cme = M/N = 33.76 cm

    39.304 kgf/cm2 ( 4.11E-006 kgf/cm2) o.k.

    +66.95 -2397.25 -69919.910.40266.9718 cm2

    Case.3M= 2.4633 60 kgf/m2 h = 30 cm (height of member)N= 8.9959 1400 kgf/m2 d = 24 cm (effective height of member)S0= 3.6861 tf n = 24 d' = 6 cm (protective covering depth)S2d= 2.2152 tf c = 9.00 cm (distance from neutral axis)

    b = 100 cme = M/N = 27.38 cm

    34.762 kgf/cm2 ( 0 kgf/cm2) o.k.

    +70.45 -1988.75 -58005.350.37344.7003 cm2

    Case.4M= 2.5293 60 kgf/m2 h = 30 cm (height of member)N= 9.2257 1400 kgf/m2 d = 24 cm (effective height of member)S0= 3.8009 tf n = 24 d' = 6 cm (protective covering depth)S2d= 2.2822 tf c = 9.00 cm (distance from neutral axis)

    b = 100 cme = M/N = 27.42 cm

    35.359 kgf/cm2 ( 0 kgf/cm2) o.k.

    +70 -2041.46 -59542.560.37744.8482 cm2

    The maximum requirement of reinforcement bar is 6.9718 cm2 in Case. 2 from above calculation.

    Case. 1 2 3 4Requirement 6.8199 6.9718 4.7003 4.8482 (cm2)

    2)Case.1

    M= 2.5334 60 kgf/m2 h = 30 cm (height of member)N= 7.5559 1400 kgf/m2 d = 24 cm (effective height of member)S0= 5.1807 tf n = 24 d' = 6 cm (protective covering depth)S2d= 3.4304 tf c = 9.00 cm (distance from neutral axis)

    b = 100 cme = M/N = 33.53 cm

    34.350 kgf/cm2 ( 0 kgf/cm2) o.k.

    +70.76 -1952.63 -56951.650.37065.5151 cm2

    Case.2M= 2.5995 60 kgf/m2 h = 30 cm (height of member)N= 7.7857 1400 kgf/m2 d = 24 cm (effective height of member)S0= 5.2956 tf n = 24 d' = 6 cm (protective covering depth)S2d= 3.4973 tf c = 9.00 cm (distance from neutral axis)

    At Joint "A"of side wall

    tfm ca =tf sa =

    Solving the formula shown below, c = c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0 0 = c^3 c^2 cs = nc/(nc+sa) =Asreq = (c*s/2 - N/(bd))bd/sa =

    tfm ca =tf sa =

    Solving the formula shown below, c = c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0 0 = c^3 c^2 cs = nc/(nc+sa) =Asreq = (c*s/2 - N/(bd))bd/sa =

    tfm ca =tf sa =

    Solving the formula shown below, c = c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0 0 = c^3 c^2 cs = nc/(nc+sa) =Asreq = (c*s/2 - N/(bd))bd/sa =

    tfm ca =tf sa =

    Solving the formula shown below, c = c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0 0 = c^3 c^2 cs = nc/(nc+sa) =Asreq = (c*s/2 - N/(bd))bd/sa =

    At Joint "B"of side wall

    tfm ca =tf sa =

    Solving the formula shown below, c = c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0 0 = c^3 c^2 cs = nc/(nc+sa) =Asreq = (c*s/2 - N/(bd))bd/sa =

    tfm ca =tf sa =

    d1h d

    d1h d

  • 88/ 114 (4)276341623.xls, R-bar req

    b = 100 cme = M/N = 33.39 cm

    34.950 kgf/cm2 ( 0 kgf/cm2) o.k.

    +70.31 -2005.33 -58488.850.37475.6627 cm2

    Solving the formula shown below, c = c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0 0 = c^3 c^2 cs = nc/(nc+sa) =Asreq = (c*s/2 - N/(bd))bd/sa =

  • 89/ 114 (4)276341623.xls, R-bar req

    Case.3M= 2.0477 60 kgf/m2 h = 30 cm (height of member)N= 7.5559 1400 kgf/m2 d = 24 cm (effective height of member)S0= 3.2979 tf n = 24 d' = 6 cm (protective covering depth)S2d= 1.8537 tf c = 9.00 cm (distance from neutral axis)

    b = 100 cme = M/N = 27.10 cm

    30.914 kgf/cm2 ( 0 kgf/cm2) o.k.

    +73.29 -1657.5 -48343.890.34643.7812 cm2

    Case.4M= 2.1138 60 kgf/m2 h = 30 cm (height of member)N= 7.7857 1400 kgf/m2 d = 24 cm (effective height of member)S0= 3.4128 tf n = 24 d' = 6 cm (protective covering depth)S2d= 1.9206 tf c = 9.00 cm (distance from neutral axis)

    b = 100 cme = M/N = 27.15 cm

    31.538 kgf/cm2 ( 0 kgf/cm2) o.k.

    +72.84 -1710.21 -49881.100.35093.9250 cm2

    The maximum requirement of reinforcement bar is 5.6627 cm2 in Case. 2 from above calculation.

    Case. 1 2 3 4Requirement 5.5151 5.6627 3.7812 3.9250 (cm2)

    3)Case.1

    M= 2.5334 60 kgf/m2 h = 30 cm (height of member)N= 5.1807 1400 kgf/m2 d = 24 cm (effective height of member)S0= 7.5559 tf n = 24 d' = 6 cm (protective covering depth)S2d= 4.4022 tf c = 9.00 cm (distance from neutral axis)

    b = 100 cme = M/N = 48.90 cm

    32.854 kgf/cm2 ( 0 kgf/cm2) o.k.

    +71.88 -1822.73 -53163.050.36036.4454 cm2

    Case.2M= 2.5995 60 kgf/m2 h = 30 cm (height of member)N= 5.2956 1400 kgf/m2 d = 24 cm (effective height of member)S0= 7.7857 tf n = 24 d' = 6 cm (protective covering depth)S2d= 4.5360 tf c = 9.00 cm (distance from neutral axis)

    b = 100 cme = M/N = 49.09 cm

    33.391 kgf/cm2 ( 0 kgf/cm2) o.k.

    +71.48 -1869.15 -54517.010.36406.6367 cm2

    Case.3M= 2.0477 60 kgf/m2 h = 30 cm (height of member)N= 3.2979 1400 kgf/m2 d = 24 cm (effective height of member)S0= 7.5559 tf n = 24 d' = 6 cm (protective covering depth)S2d= 4.4022 tf c = 9.00 cm (distance from neutral axis)

    b = 100 cme = M/N = 62.09 cm

    28.090 kgf/cm2 ( 0 kgf/cm2) o.k.

    +75.29 -1424.64 -41552.070.32505.4700 cm2

    Case.4M= 2.1138 60 kgf/m2 h = 30 cm (height of member)N= 3.4128 1400 kgf/m2 d = 24 cm (effective height of member)S0= 7.7857 tf n = 24 d' = 6 cm (protective covering depth)S2d= 4.5360 tf c = 9.00 cm (distance from neutral axis)

    b = 100 cme = M/N = 61.94 cm

    28.662 kgf/cm2 ( 0.0002919 kgf/cm2) o.k.

    +74.89 -1471.06 -42906.03

    tfm ca =tf sa =

    Solving the formula shown below, c = c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0 0 = c^3 c^2 cs = nc/(nc+sa) =Asreq = (c*s/2 - N/(bd))bd/sa =

    tfm ca =tf sa =

    Solving the formula shown below, c = c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0 0 = c^3 c^2 cs = nc/(nc+sa) =Asreq = (c*s/2 - N/(bd))bd/sa =

    At Joint "B"of top slab

    tfm ca =tf sa =

    Solving the formula shown below, c = c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0 0 = c^3 c^2 cs = nc/(nc+sa) =Asreq = (c*s/2 - N/(bd))bd/sa =

    tfm ca =tf sa =

    Solving the formula shown below, c = c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0 0 = c^3 c^2 cs = nc/(nc+sa) =Asreq = (c*s/2 - N/(bd))bd/sa =

    tfm ca =tf sa =

    Solving the formula shown below, c = c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0 0 = c^3 c^2 cs = nc/(nc+sa) =Asreq = (c*s/2 - N/(bd))bd/sa =

    tfm ca =tf sa =

    Solving the formula shown below, c = c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0 0 = c^3 c^2 c

    d1h d

  • 90/ 114 (4)276341623.xls, R-bar req

    0.32955.6565 cm2

    The maximum requirement of reinforcement bar is 6.6367 cm2 in Case. 2 from above calculation.

    Case. 1 2 3 4Requirement 6.4454 6.6367 5.4700 5.6565 (cm2)

    s = nc/(nc+sa) =Asreq = (c*s/2 - N/(bd))bd/sa =

  • 91/ 114 (4)276341623.xls, R-bar req

    4)Case.1

    M= 3.0488 60 kgf/m2 h = 30 cm (height of member)N= 7.3922 1400 kgf/m2 d = 24 cm (effective height of member)S0= 8.9959 tf n = 24 d' = 6 cm (protective covering depth)S2d= 5.2411 tf c = 9.00 cm (distance from neutral axis)

    b = 100 cme = M/N = 41.24 cm

    37.763 kgf/cm2 ( 5.85E-005 kgf/cm2) o.k.

    +68.16 -2256.85 -65824.690.39307.4396 cm2

    Case.2M= 3.1149 60 kgf/m2 h = 30 cm (height of member)N= 7.5071 1400 kgf/m2 d = 24 cm (effective height of member)S0= 9.2257 tf n = 24 d' = 6 cm (protective covering depth)S2d= 5.3750 tf c = 9.00 cm (distance from neutral axis)

    b = 100 cme = M/N = 41.49 cm

    38.275 kgf/cm2 ( 0 kgf/cm2) o.k.

    +67.76 -2303.27 -67178.650.39627.6354 cm2

    Case.3M= 2.4633 60 kgf/m2 h = 30 cm (height of member)N= 3.6861 1400 kgf/m2 d = 24 cm (effective height of member)S0= 8.9959 tf n = 24 d' = 6 cm (protective covering depth)S2d= 5.2411 tf c = 9.00 cm (distance from neutral axis)

    b = 100 cme = M/N = 66.83 cm

    31.398 kgf/cm2 ( 0 kgf/cm2) o.k.

    +72.94 -1698.37 -49535.810.34996.7842 cm2

    Case.4M= 2.5293 60 kgf/m2 h = 30 cm (height of member)N= 3.8009 1400 kgf/m2 d = 24 cm (effective height of member)S0= 9.2257 tf n = 24 d' = 6 cm (protective covering depth)S2d= 5.3750 tf c = 9.00 cm (distance from neutral axis)

    b = 100 cme = M/N = 66.55 cm

    31.945 kgf/cm2 ( 2.75E-006 kgf/cm2) o.k.

    +72.54 -1744.79 -50889.770.35396.9741 cm2

    The maximum requirement of reinforcement bar is 7.6354 cm2 in Case. 2 from above calculation.

    Case. 1 2 3 4Requirement 7.4396 7.6354 6.7842 6.9741 (cm2)

    5) At Middle of side wallCase.1

    M= 0.8279 60 kgf/m2 h = 30 cm (height of member)N= 8.3006 1400 kgf/m2 d = 24 cm (effective height of member)

    n = 24 d' = 6 cm (protective covering depth)c = 9.00 cm (distance from neutral axis)b = 100 cm

    e = M/N = 9.97 cm21.9840 kgf/cm2 ( 0 kgf/cm2) o.k.

    +79.3 -956.98 -27912.010.27370.0000 cm2 Tensile is on inside of member

    Case.2M= 0.8278 60 kgf/m2 h = 30 cm (height of member)N= 8.5299 1400 kgf/m2 d = 24 cm (effective height of member)

    n = 24 d' = 6 cm (protective covering depth)c = 9.00 cm (distance from neutral axis)b = 100 cm

    e = M/N = 9.70 cm

    At Joint "A"of invert

    tfm ca =tf sa =

    Solving the formula shown below, c = c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0 0 = c^3 c^2 cs = nc/(nc+sa) =Asreq = (c*s/2 - N/(bd))bd/sa =

    tfm ca =tf sa =

    Solving the formula shown below, c = c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0 0 = c^3 c^2 cs = nc/(nc+sa) =Asreq = (c*s/2 - N/(bd))bd/sa =

    tfm ca =tf sa =

    Solving the formula shown below, c = c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0 0 = c^3 c^2 cs = nc/(nc+sa) =Asreq = (c*s/2 - N/(bd))bd/sa =

    tfm ca =tf sa =

    Solving the formula shown below, c = c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0 0 = c^3 c^2 cs = nc/(nc+sa) =Asreq = (c*s/2 - N/(bd))bd/sa =

    tfm ca =tf sa =

    Solving the formula shown below, c = c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0 0 = c^3 c^2 cs = nc/(nc+sa) =Asreq = (c*s/2 - N/(bd))bd/sa =

    tfm ca =tf sa =

    d1h d

    d1h d

  • 92/ 114 (4)276341623.xls, R-bar req

    22.158 kgf/cm2 ( 0.0 kgf/cm2) o.k.

    +79.19 -969.48 -28276.460.27530.0000 cm2 Tensile is on inside of member

    Solving the formula shown below, c = c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0 0 = c^3 c^2 cs = nc/(nc+sa) =Asreq = (c*s/2 - N/(bd))bd/sa =

  • 93/ 114 (4)276341623.xls, R-bar req

    Case.3M= 0.2426 60 kgf/m2 h = 30 cm (height of member)N= 8.2401 1400 kgf/m2 d = 24 cm (effective height of member)

    n = 24 d' = 6 cm (protective covering depth)c = 9.00 cm (distance from neutral axis)b = 100 cm

    e = M/N = 2.94 cm16.634 kgf/cm2 ( 0 kgf/cm2) o.k.

    +82.37 -598.07 -17443.750.22190.0000 cm2 Tensile is on outside of member

    Case.4M= 0.2428 60 kgf/m2 h = 30 cm (height of member)N= 8.4710 1400 kgf/m2 d = 24 cm (effective height of member)

    n = 24 d' = 6 cm (protective covering depth)c = 9.00 cm (distance from neutral axis)b = 100 cm

    e = M/N = 2.87 cm16.839 kgf/cm2 ( 0 kgf/cm2) o.k.

    +82.26 -610.8 -17814.870.22400.0000 cm2 Tensile is on outside of member

    The maximum requirement of reinforcement bar is 0.0000 cm2 in Case. 1 from above calculation.

    Case. 1 2 3 4Requirement 0.0000 0.0000 - - (cm2)Side inside inside outside outside

    6) At Middle of top slabCase.1

    M= 1.8112 60 kgf/m2 h = 30 cm (height of member)N= 5.1807 1400 kgf/m2 d = 24 cm (effective height of member)

    n = 24 d' = 6 cm (protective covering depth)c = 9.00 cm (distance from neutral axis)b = 100 cm

    e = M/N = 34.96 cm27.583 kgf/cm2 ( 0 kgf/cm2) o.k.

    +75.64 -1383.9 -40363.640.32103.8899 cm2 Tensile is on inside of member

    Case.2M= 1.8773 60 kgf/m2 h = 30 cm (height of member)N= 5.2956 1400 kgf/m2 d = 24 cm (effective height of member)

    n = 24 d' = 6 cm (protective covering depth)c = 9.00 cm (distance from neutral axis)b = 100 cm

    e = M/N = 35.45 cm28.160 kgf/cm2 ( 0 kgf/cm2) o.k.

    +75.24 -1430.32 -41717.600.32564.0759 cm2 Tensile is on inside of member

    Case.3M= 2.2969 60 kgf/m2 h = 30 cm (height of member)N= 3.2979 1400 kgf/m2 d = 24 cm (effective height of member)

    n = 24 d' = 6 cm (protective covering depth)c = 9.00 cm (distance from neutral axis)b = 100 cm

    e = M/N = 69.65 cm29.939 kgf/cm2 ( 0 kgf/cm2) o.k.

    +73.99 -1576.05 -45968.170.33926.3478 cm2 Tensile is on inside of member

    Case.4M= 2.3630 60 kgf/m2 h = 30 cm (height of member)N= 3.4128 1400 kgf/m2 d = 24 cm (effective height of member)

    n = 24 d' = 6 cm (protective covering depth)c = 9.00 cm (distance from neutral axis)b = 100 cm

    e = M/N = 69.24 cm30.496 kgf/cm2 ( 1.84E-005 kgf/cm2) o.k.

    +73.59 -1622.47 -47322.13

    tfm ca =tf sa =

    Solving the formula shown below, c = c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0 0 = c^3 c^2 cs = nc/(nc+sa) =Asreq = (c*s/2 - N/(bd))bd/sa =

    tfm ca =tf sa =

    Solving the formula shown below, c = c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0 0 = c^3 c^2 cs = nc/(nc+sa) =Asreq = (c*s/2 - N/(bd))bd/sa =

    tfm ca =tf sa =

    Solving the formula shown below, c = c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0 0 = c^3 c^2 cs = nc/(nc+sa) =Asreq = (c*s/2 - N/(bd))bd/sa =

    tfm ca =tf sa =

    Solving the formula shown below, c = c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0 0 = c^3 c^2 cs = nc/(nc+sa) =Asreq = (c*s/2 - N/(bd))bd/sa =

    tfm ca =tf sa =

    Solving the formula shown below, c = c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0 0 = c^3 c^2 cs = nc/(nc+sa) =Asreq = (c*s/2 - N/(bd))bd/sa =

    tfm ca =tf sa =

    Solving the formula shown below, c = c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0 0 = c^3 c^2 c

    d1h d

  • 94/ 114 (4)276341623.xls, R-bar req

    0.34336.5363 cm2 Tensile is on inside of member

    The maximum requirement of reinforcement bar is 6.5363 cm2 in Case. 4 from above calculation.

    Case. 1 2 3 4Requirement 3.8899 4.0759 6.3478 6.5363 (cm2)Side inside inside inside inside

    s = nc/(nc+sa) =Asreq = (c*s/2 - N/(bd))bd/sa =

  • 95/ 114 (4)276341623.xls, R-bar req

    7) At Middle of invertCase.1

    M= 2.1238 60 kgf/m2 h = 30 cm (height of member)N= 7.3922 1400 kgf/m2 d = 24 cm (effective height of member)

    n = 24 d' = 6 cm (protective covering depth)c = 9.00 cm (distance from neutral axis)b = 100 cm

    e = M/N = 28.73 cm31.3560 kgf/cm2 ( 0 kgf/cm2) o.k.

    +72.97 -1694.79 -49431.390.34964.1161 cm2 Tensile is on inside of member

    Case.2M= 2.1899 60 kgf/m2 h = 30 cm (height of member)N= 7.5071 1400 kgf/m2 d = 24 cm (effective height of member)

    n = 24 d' = 6 cm (protective covering depth)c = 9.00 cm (distance from neutral axis)b = 100 cm

    e = M/N = 29.17 cm31.902 kgf/cm2 ( 0 kgf/cm2) o.k.

    +72.58 -1741.21 -50785.350.35354.3051 cm2 Tensile is on inside of member

    Case.3M= 2.7094 60 kgf/m2 h = 30 cm (height of member)N= 3.6861 1400 kgf/m2 d = 24 cm (effective height of member)

    n = 24 d' = 6 cm (protective covering depth)c = 9.00 cm (distance from neutral axis)b = 100 cm

    e = M/N = 73.50 cm33.146 kgf/cm2 ( 4.80E-007 kgf/cm2) o.k.

    +71.66 -1847.9 -53897.220.36237.6614 cm2 Tensile is on inside of member

    Case.4M= 2.7754 60 kgf/m2 h = 30 cm (height of member)N= 3.8009 1400 kgf/m2 d = 24 cm (effective height of member)

    n = 24 d' = 6 cm (protective covering depth)c = 9.00 cm (distance from neutral axis)b = 100 cm

    e = M/N = 73.02 cm33.682 kgf/cm2 ( 0 kgf/cm2) o.k.

    +71.26 -1894.33 -55251.190.36607.8531 cm2 Tensile is on inside of member

    The maximum requirement of reinforcement bar is 7.8531 cm2 in Case. 4 from above calculation.

    Case. 1 2 3 4Requirement 4.1161 4.3051 7.6614 7.8531 (cm2)Side inside inside inside inside

    8) Summary of required reinforcement

    Required reinforcement for design is the maximum required reinforcement calculated above in 1) - 4).

    Item Side wall Side wall Top slab Invert Side wall Top slab InvertPoint bottom top end end middle middle middleSide outside outside outside outside inside inside insideCalculation 1) 2) 3) 4) 5) 6) 7)Requirement 6.972 5.663 6.637 7.635 0.000 6.536 7.853 (cm2)

    tfm ca =tf sa =

    Solving the formula shown below, c = c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0 0 = c^3 c^2 cs = nc/(nc+sa) =Asreq = (c*s/2 - N/(bd))bd/sa =

    tfm ca =tf sa =

    Solving the formula shown below, c = c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0 0 = c^3 c^2 cs = nc/(nc+sa) =Asreq = (c*s/2 - N/(bd))bd/sa =

    tfm ca =tf sa =

    Solving the formula shown below, c = c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0 0 = c^3 c^2 cs = nc/(nc+sa) =Asreq = (c*s/2 - N/(bd))bd/sa =

    tfm ca =tf sa =

    Solving the formula shown below, c = c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0 0 = c^3 c^2 cs = nc/(nc+sa) =Asreq = (c*s/2 - N/(bd))bd/sa =

    d1h d

  • 96/ 114 (4)276341623.xls, R-bar req

  • 97/ 114 (4)276341623.xls, R-bar req

  • 98/ 114 (4)276341623.xls, R-bar req

  • 99/ 114 (4)276341623.xls, R-bar req

  • 100/ 114 (4)276341623.xls, R-bar req

  • 101/ 114 (4)276341623.xls, R-bar req

  • 102/ 114 (4)276341623.xls, R-bar req

  • 103/ 114 (4)276341623.xls, R-bar req

  • 104/ 114 (4)276341623.xls, R-bar req

  • 105/114 (5)276341623.xlsR-bar stress

    6 Bar Arrangement and Calculation of Stress Type: B2.00m x H2.00m

    Side wall Top slabbottom middle top end middleoutside inside outside outside inside

    Bending moment M kgfcm 311,488 82,787 259,949 259,949 236,298 Shearing force (joint) S kgf 7,507 0 5,296 7,786 0 Shearing force (2d) S2d kgf 3,962 - 3,497 4,536 -Axial force N kgf 9,226 8,301 7,786 5,296 3,413 Height of member h cm 30 30 30 30 30Covering depth d' cm 6 6 6 6 6Effective height d cm 24 24 24 24 24Effective width b cm 100 100 100 100 100Effective area bd cm2 2400 2400 2400 2400 2400Young's modulus ratio n - 24 24 24 24 24

    Required R-bar Asreq cm2 6.97 0.00 5.66 6.64 6.54

    R-bar arrangement 16@250 12@250 16@250 16@250 16@250

    Reinforcement As cm2 8.04 4.52 8.04 8.04 8.04Perimeter of R-bar U 20.11 15.08 20.11 20.11 20.11M/N e cm 33.763 9.974 33.388 49.088 69.239Dist. from neutral axis c cm 9.00 9.00 9.00 9.00 9.00

    a' 56.3 -15.1 55.2 102.3 162.7b' 495.1 123.5 490.8 672.5 905.8c' -11882.3 -2963.9 -11778.0 -16140.4 -21739.8x 10.16 17.62 10.19 9.38 8.92

    0.000 0.000 0.000 0.000 0.000(check) ok ok ok ok ok

    Compressive stress kgf/cm2 37.7 9.9 31.5 31.4 28.5Allowable stress kgf/cm2 60.0 60.0 60.0 60.0 60.0

    ok ok ok ok okTensile stress kgf/cm2 1232.9 85.7 1023.7 1174.4 1155.0Allowable stress kgf/cm2 1400.0 1400.0 1400.0 1400.0 1400.0

    ok ok ok ok okShearing stress at joint kgf/cm2 3.13 0.00 2.21 3.24 0.00Allowable stress kgf/cm2 11.00 11.00 11.00 11.00 11.00

    ok ok ok ok okShearing stress at 2d kgf/cm2 1.65 - 1.46 1.89 -Allowable stress kgf/cm2 5.50 - 5.50 5.50 -

    ok - ok ok -

    Resisting Moment Mr kgfcm 496,869 362,613 497,615 459,243 408,023 Mr for compression Mrc kgfcm 496,869 410,229 497,615 499,428 501,254 x for Mrc cm 9.240 7.521 9.013 8.634 8.359

    kgf/cm2 2300.3 3155.3 2394.6 2562.9 2694.5 Mr for tensile Mrs kgfcm 577,461 362,613 532,234 459,243 408,023 x for Mrs cm 12.982 10.971 12.517 11.670 10.986

    kgf/cm2 68.7 49.1 63.6 55.2 49.2

    Distribution bar (>As/6 and >Asmin) 12@250 12@250 12@250 12@250 12@250Reinforcement As cm2 4.52 4.52 4.52 4.52 4.52

    ok ok ok ok okReinforcement bar for fillet Err:504 Err:504Reinforcement As cm2 Err:504 Err:504

    cca

    ssa

    a

    2d2da

    s for Mrc

    c for Mrs

  • 106/114 (5)276341623.xlsR-bar stress

    Minimum requirement of reinforcement bar As min = 4.5 cm2

  • 107/114 (5)276341623.xlsR-bar stress

    Invertend middle

    outside inside311,488 277,544

    9,226 0 5,375 -7,507 3,801

    30 306 6

    24 24100 100

    2400 240024 24

    7.64 7.85

    16@250 12@125

    8.04 9.0520.11 30.16

    41.492 73.0209.00 9.0079.5 174.1

    584.6 1068.9-14030.0 -25653.1

    9.69 9.27 0.000 0.000

    ok ok

    37.7 32.260.0 60.0

    ok ok1336.1 1227.41400.0 1400.0

    ok ok3.84 0.00

    11.00 11.00ok ok

    2.24 -5.50 -

    ok -

    497,785 469,708 497,785 521,262

    8.969 8.7872413.1 2492.9

    523,749 469,708 12.426 11.642

    62.6 55.0

    12@250 [email protected] 4.52

    ok ok

  • 108/114 (5)276341623.xlsR-bar stress

  • DATA PLOT PEMBESIAN

    Section of Culvert

    1. Design Datab1 = 0.300 m b2 = 2.000 mh1 = 0.300 m h2 = 2.000 m h3 = 0.300 m d =Bb = 2.600 m Ha = 2.600 m Fillet = 0.15 m

    2. Data PembesianBottom slab : Tumpuan Lapangan Tulangan bagi :

    : O 16 @ 250 O 12 @ 125 O 12 @: O 12 @ 125 O 16 @ 250

    Side wall : Tumpuan Lapangan Tulangan bagi :: O 16 @ 250 O 12 @ 250 O 12 @: O 12 @ 250 O 16 @ 250

    Top slab : Tumpuan Lapangan Tulangan bagi :

    : O 16 @ 250 O 16 @ 250 O 12 @: O 16 @ 250 O 16 @ 250

    3. Tulangan Miring (fillet) :Bottom slab : O ### @ Err:504Top slab : O ### @ Err:504

    4. Nama Bangunan : Culvert Type 1 (2 m x 2 m)Lokasi : . Irrigation Project

    As1 (cm2)As2 (cm2)

    As1 (cm2)As2 (cm2)

    As1 (cm2)As2 (cm2)

    b1b1 b2

    h3

    h2

    h1

    Bb

    Ha

  • Section of Culvert

    0.06 m

    Tulangan bagi :250

    Tulangan bagi :250

    Tulangan bagi :250

  • DATA PLOT MOMENT AND SHEAR FORCE DIAGRAM

    Section of Culvert

    1. Design Datab1 = 0.300 m b2 = 2.000 mh1 = 0.300 m h2 = 2.000 m h3 = 0.300 mBb = 2.300 m Ha = 2.300 m

    2. Result CalculationSide wall (left) Ma Mmax Mb Sa Sb NaCase 1 -3.049 0.828 -2.533 7.392 -5.181 8.996Case 2 -2.463 -0.243 -2.048 3.686 -3.298 8.996

    Side wall (right) Mc Mmax Md Sd Sc NdCase 1 -2.533 0.828 -3.049 -7.392 5.181 8.996Case 2 -2.048 -0.243 -2.463 -3.686 3.298 8.996

    Top slab Mb Mmax Mc Sb Sc NbCase 1 -2.533 1.811 -2.533 7.556 -7.556 5.181Case 2 -2.048 2.297 -2.048 7.556 -7.556 3.298

    Bottom slab Ma Mmax Md Sa Sd NaCase 1 -3.049 2.124 -3.049 -8.996 8.996 7.392Case 2 -2.463 2.709 -2.463 -8.996 8.996 3.686

    3. Nama Bangunan : Culvert Type 1 (2 m x 2 m)

    b1b1 b2

    h3

    h2

    h1

    Bb

    Ha

  • Lokasi : . Irrigation Project

    Case 1Mmax x x1 x2 x3 x4 x5 x6Mab = 1.1106 -1.24 -0.02 0.65 0.82 0.54 -0.14Mcd = 1.1894 -1.24 -0.02 0.65 0.82 0.54 -0.14Mmax y1 y2 y3 y4 y5 y6Mbc = 1.15 -0.63 0.73 1.54 1.81 1.54 0.73Mad = 1.15 -0.79 0.83 1.80 2.12 1.80 0.83

    Ha = 2.300 0.288 0.575 0.863 1.150 1.438 1.725

    Bb = 2.300 0.288 0.575 0.863 1.150 0.863 0.575

    x x1 x2 x3 x4 x5 x6Sab 2.300 5.24 3.26 1.44 -0.22 -1.71 -3.03

    Case 2Mmax x x1 x2 x3 x4 x5 x6Mab = 1.1106 -1.53 -0.85 -0.42 -0.25 -0.32 -0.65Mcd = 1.1894 -1.53 -0.85 -0.42 -0.25 -0.32 -0.65Mmax y1 y2 y3 y4 y5 y6Mbc = 1.15 -0.15 1.21 2.03 2.30 2.03 1.21Mad = 1.15 -0.20 1.42 2.39 2.71 2.39 1.42

    Ha = 2.300 0.288 0.575 0.863 1.150 1.438 1.725

    Bb = 2.300 0.288 0.575 0.863 1.150 0.863 0.575

    x x1 x2 x3 x4 x5 x6Sab 2.300 2.80 1.92 1.05 0.17 -0.70 -1.57

  • Section of Culvert

    Na Nb MAB MBA8.996 7.556 -3.049 2.5338.996 7.556 -2.463 2.048

    Nd Nc MCD MDC8.996 7.556 -2.533 3.0498.996 7.556 -2.048 2.463

    Nb Nc MBC MCB5.181 5.181 -2.533 2.5333.298 3.298 -2.048 2.048

    Na Nd MAD MDA7.392 7.392 3.049 -3.0493.686 3.686 2.463 -2.463

    h3

    h2

    h1

  • x6 x7 q1 q2-0.14 -1.18 7.766 3.166-0.14 -1.18 3.166 7.766

    y6 y7 q10.73 -0.63 6.5700.83 -0.79 7.823

    1.725 2.013

    0.575 0.288

    x6 x7-3.03 -4.19

    x6 x7 q1 q2-0.65 -1.22 3.071 3.001-0.65 -1.22 3.001 3.071

    y6 y7 q11.21 -0.15 6.5701.42 -0.20 7.823

    1.725 2.013

    0.575 0.288

    x6 x7-1.57 -2.43

    SummaryLoadMSNSum MSNR-bar reqR-bar stressPlotRebarPlotMoment