sine, cosine and area rules - brettonwood high school

42
Grade 11 CAPS Mathematics Series Sine, Cosine and Area Rules

Upload: others

Post on 18-Dec-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Grade 11

CAPS

Mathematics

Series

Sine, Cosine

and Area Rules

Apply the Sine and the Cosine rules to solve

problems in 2-dimensions. Unit 4

In this topic we will:

Calculate the area of a triangle given an angle and the two

adjacent sides. Unit 1

Apply the Sine Rule for triangles to calculate an unknown

side or an unknown angle of a given triangle. Unit 2

Outcomes for this Topic

Apply the Cosine Rule for triangles to calculate an unknown

side or an unknown angle of a given triangle. Unit 3

Grade 11

CAPS

Mathematics

Series

Unit 1

The Area Rule

sin opposite

hypotenuse

oppositehypotenuse

Trigonometric Ratios

In a , the 3 trigonometric ratios for an angle

are defined as follows:

right angled triangle

cos adjacent

hypotenuse

adjacent

tan opposite

adjacent

Some basic definitions – a reminder

Consider a non-right angled triangle ABC.

, and are the sides opposite angles , and respectively.

( This is the conventional way of labelling a triangle ).

a b c A B C

A B

C

b a

c N

h

1Area of base height

2

12

A re a c h --- (1)

In ,A C N sin Ah

bs in b A h

Substituting for h in (1)

12

A re a c s in b A12

s inA re a b c A

The area formula of a triangle

Draw the perpendicular, , from to . h C BA

Any angle can be used as such in

area formula, so

12

sin Bca12

sinab C 12

sinbc AArea = = =

90

A similar argument gives the same formula for the area

if is obtuse i.e. B B

The formula always uses

2 sides and the

angle formed by those sides (Included )

AB

C

b

a

c N

h

90

Different forms of the area formula

c

baa

C

BA

c

baa

C

BA

c

baa

C

BA

Three possible approaches to find

the area of a triangle

12

Area sin ab C

Any angle can be used in the formula, so

12

Area sin bc A

12

Area sin Bca

r

B

A

C

r

21sin

2 Area r

Find the area of in circle .ABC CA useful application of the area formula occurs when we

have a triangle formed by a radius and a chord of a c ircle.

The area of a triangle – Example 1

1

Area sin2

CA CB C

But CA CB r

Find the area of PQR.

We know PQ and RQ so use the included angle Q

The area of a triangle – Example 2

Solution: We must use the angle formed by the

2 sides with the given lengths.

64

1Area of sin

2PQR QP QR Q

218 7 sin 64 cm

2

225,2 cm

T u to r ia l 1 : A re a o f a T r ia n g leFind the areas of the triangles shown in the diagrams.

Give your answers accurate to 2 decimal digits

PAUSE

• Do Tutorial 1

• Then View Solutions

radius 6 cm

120AOB

1. 2.

radius 6 cm

120AOB

212. Area sin

2AOB r O

21

6 cm sin1202

215,59 cm

Given:

T u to r i a l 1 : P r o b le m 1 : A r e a o f a T r i a n g le : S o lu t io n

40

308 cm

10 cm

11. Area sin

2XYZ XY YZ Y

180 40 30 110Y

1sin

2z x Y

218 10 sin 110 cm

2

237,59 cm

T u to r i a l 1 : P r o b le m 2 : A r e a o f a T r i a n g le : S o lu t io n

Grade 11

CAPS

Mathematics

Series

Unit 2

The Sine Rule

One way to find unknown sides and angles in

is by using the :

non - right angled

triang Sine Rs ulele

T h e S in e R u le f o r T r ia n g le s

In ACN, sinh

Ab

sinh b A

Suppose is a scalene triangleABC

In , sinh

BCN Ba

sinh a B sin sinb A a B

sin sinor

A B

a b

ab

c N

Drop CN AB

h

C

A B

b a

c

A

B C

b

a

c

h

Now sin sin

sin sin

h c B b C

B C

b c

can be turned so that is the base.

We then get

ABC BC

T h e C o m p le te S in e R u le f o r T r i a n g le s

sin sin sinSo

A B C

a b c

W h e n d o w e u s e t h e S in e R u le ?The sine rule can be used in a triangle when:

Two angles and a side are given•

Two sides and the non-included angle are given•

• To calculate second side

To calculate second angle

sin sinSolution: Use

A B

a b

sinsin

a BA

b10 sin 62

sin12

A

1 8 0 6 2 4 7 , 4 7 0 , 6 CT h u s

A p p li c a t io n o f t h e S in e R u le - E x a m p le 1

ABC A CIn , find the size of angles and .

47,4 A is opposite the shorter of the 2 given sides.

62 must be an acute angle.

(Only one possibility as can be seen from sketch)

A

A A

sin 5 sin 48sin

4

p QP

q

2

1

68, 3

180 68, 3 111, 7

or

P

P

A p p li c a t io n o f t h e S in e R u le - E x a m p le 2

is opposite the longer of the 2 given sides.

48 can be an acute or obtuse angle.

( Two possibilities as can be seen from sketch below)

P

P P

1P

2Psin sin Use Solution :

Q P

q p

5, 4 48 .

.

PQR

QR PR Q

P

In it is given that:

and

Determine

13 sin 55

sin 29

z

2 2 , 0 z

sin sin

z y

Z Y

In , find the length .XYZ XY

A p p li c a t io n o f t h e S in e R u le - E x a m p le 3

As the unknown is a side, we use the sine rule in

its reciprocal form. The unknown side is then at the top.

Solution :

sin

sin

y Zz

Y

2. In , find and the area of PQR QR PQR

1. In , find .

(Correct to two decimal places)

ABC B

PAUSE

• Do Tutorial 2

• Then View Solutions

T u to r i a l 2 : S in e R u le

T u t o r i a l 2 : P r o b le m 1 : S i n e r u le : S o lu t i o nFind .

(2 decimal places)

B

10sin 35sin

7B

1 55,02B

2or 180 55,02 124,98B

Given:

35 acute or obtuseB B

sin sin sin 35 sin

7 10

A B B

a b

Two Possible Answers!!

T u to r i a l 2 : P r o b le m 1 : W h y tw o s o lu t io n s ?

1

2

Obtained: 55,02

or 124,98

B

B

Given:

35 acute or obtuseB B

1 (Obtuse)B 2 (Acute)B

2. Find and the area of .QR PQR

67

sin 64 sin 80

QR

T u t o r i a l 2 : P r o b le m 2 : S i n e r u le : S o lu t i o n

Given:

80R

67sin 64

sin 80QR

61,15 cm

1Area of sin 36

2PQR QP QR

167 61,15 sin 36

2

21 204,09 cm

Grade 11

CAPS

Mathematics

Series

Unit 3

The Cosine Rule

2 2 2

2 2 2

2 cos

or

2 sin

b a c ac B

c a b ab C

c

baa

C

BA

The Cosine Rule for is given by:ABC

T h e C o s in e R u le f o r T r i a n g le s

2 2 2 2 cosa b c bc A

We use this form to find the third side when

two sides and included angle are given.

Symmetry also implies that:

P r o o f o f t h e C o s in e R u le

b a

In :CAD

2 2 2cos and x

A b x hb

In :BCD

22 2 2 2 22a h c x h c cx x

x c x

h

2 22 2 2cos2a c xb x c b A

2 2 2 cosb c bc A Proofs for symmetrical results are similar.

A s e c o n d f o r m o f t h e C o s in e R u le 2 2 2 2 cos a b c bc AKnow:

2 2 22 cos bc A b c a 2 2 2

cos2

b c aA

bc

We use this form to find any angle of

a triangle when we know all 3 sides.

7PR

Q

6

p

120

Find in the p PQR

A p p li c a t io n s o f t h e C o s in e R u le - E x a m p l e 1

Apply the Cosine Rule

2 2 2 2 cosp q r qr P

2 2 27 6 2 7 6 cos120p 127 11,3 1 decimal accuracyp

6

Y

Z8

4

X

2 2 28 6 4cos

2(8)(6)

X

Find in the X XYZ

Solution: Use the Cosine Rule

A p p li c a t io n s o f t h e C o s in e R u le - E x a m p l e 2

29,0 ( 1 dec )X

2 2 2

cos2

y z xX

yz

2 2 2 2 c o s c b a b a C

A

BC

c

30

Sine rule:sin sin

B C

b c

Find side and in the given . c B ABC

15b

19a

Cosine rule:

A p p li c a t io n s o f t h e C o s in e R u le E x a m p le 3

2 2 215 19 2(15)(19)cos30 c

9,61 c ( 2 decimal places )

15 sin 30sin

9,61

B

51,3 B ( 1 dec. )

T u to r i a l 3 : C o s in e R u le

2. Find all the angles in , giving your

answers to one decimal place accuracy.

XYZ

1. Given with 6 cm; 4 cm and

60 . Find correct to 2 decimal digits.

ABC AB BC

ABC AC

PAUSE

• Do Tutorial 3

• Then View Solutions

T u t o r i a l 3 : P r o b le m 1 : C o s i n e R u le : S o lu t i o n

2 2 2 2 cosAC BC AB BC AB ABC

Given:Find (2 dec accuracy):AC

2 24 6 2 4 6 cos60

28

28 5, 29 cmAC

T u t o r i a l 3 : P r o b le m 2 : C o s i n e R u le : S o lu t i o n

sin sin sin 4sin 48.2Now sin

7

X Y y XY

x y x

Given:

Determine all angle measures of XYZ.

2 2 2

cos2

y z xX

yz

2 2 24 9 7Hence cos

2 4 9X

48,2X

25, 2Y

Then 180 106,6Z X Y

CAPS

Mathematics

Series

Unit 4

Basic Applications:

Problems in 2-D

42 65

Problems in 2 dimensions: Example 1 1. Points and are in the same horizontal plane as ,

the foot of a vertical tower . 42 ; 65

and 25 . Calculate .

A B C

PC B PAC

AB m PC

P

CAB25 m

65 42 23BPA

25

sin 42 sin 23

AP

25sin 4242,81 m

sin 23AP

sin 65PC

AP

sin 65 42,81sin 65PC AP 38,8 m

23

Sine rule:

is unknown and needed to

find ( PAC is known)

AP

PC

2. In the figure represents a proposed tunnel.

and are visible from a point .

The three points are in the same plane.

QR

Q R P

Q R

P

Given:

100 m; 60 m

and 110

QP PR

QPR

Calculate the length of tunnel.

100 60110

2 2 2100 60 2 100 60 cos110QR

133 mQR

Problems in 2 dimensions: Example 2

T u to r i a l 4 : P a r t 1 : P r o b le m s i n 2 D

1. From the ends of a bridge , 101 metres long,

the angles of depression of a point on the ground

directly under the bridge is 42,2 and 70,1 .

Find the height, , of the bridge und

AB

P

h

er this point.

42,2 70,1A B101 m

P

h PAUSE

• Do Tutorial 4 Part 1

• Then View Solutions

T u to r i a l 4 : P a r t 1 : S u g g e s t e d S o lu t io n

42,2 70,1A B101 m

P

h

Question: Find h

180 42,2 70,1 67,7APB

101

sin 70,1 sin 67,7

AP

101 m sin 70,1

sin 67,7AP

102,65 mAP But sin 42,2102,65

h

102,65 sin 42,2 68,95 mh

T u to r i a l 4 : P a r t 2 : P r o b le m s i n 2 -D2. is a wall of a room, being the

line of the ceiling. is a picture rail,

with being directly below .

= 2 metres; and

2cos(a) Prove that

sin( )

(b)

ABCD AD

EF

E A

AE ACB x ECB y

xEC

x y

Find the length and height

of the wall if 33

and 20 .

x

y

2 m

xy

PAUSE

• Do Tutorial 4 Part 2

• Then View Solutions

T u to r i a l 4 : P a r t 2 ( a ) S o lu t io n

2 m

xy

Now and ACE x y CAD x

x

Hence, 90CAE x

From :AEC

2

sin 90 sin

EC

x x y

2sin 90

sin

xEC

x y

2cos

sin

x

x y

2.(a) Prove that

2cos

sin( )

xEC

x y

2 m

xy

Know:

2cos

sin

33 and 20

xEC

x y

x y

2cos337,46 m

sin13EC

cos cosBC

y BC EC yEC

Length of room 7,46 m cos20 7,01 mBC

Tutorial 4: Part 2: Length & Height of Room

Height of room:

2 sin 2 2 7,46 sin33 6,06 mEB EC y

End of the Topic Slides on

Sine, Cosine and Area Rules

REMEMBER!

•Consult text-books and past exam papers and

memos for additional examples.

•Attempt as many as possible other similar examples

on your own.

•Compare your methods with those that were

discussed in these Topic slides.

•Repeat this procedure until you are confident.

•Do not forget: Practice makes perfect!