simultaneous analysis of catecholamines and metanephrines ......xavier rodriguez piró ©2015 waters...

37
Simultaneous Analysis of Catecholamines and Metanephrines by Mixed-mode SPE and and Metanephrines by Mixed mode SPE and HILIC UPLC/MS/MS Xavier Rodriguez Piró ©2015 Waters Corporation 1

Upload: others

Post on 31-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Simultaneous Analysis of Catecholamines and Metanephrines by Mixed-mode SPE and and Metanephrines by Mixed mode SPE and

    HILIC UPLC/MS/MS

    Xavier Rodriguez Piróg

    ©2015 Waters Corporation 1

  • Outline

    Background & ChallengesM th d lMethodology

    Results Conclusions Conclusions

    ©2015 Waters Corporation 2

  • Backgroundg

    Indicators of pheochromocytomas, neuroblastomas, ganglioblastomas, ganglioneuromasg g , g g

    Norepinephrine Epinephrine DopaminelogP =-0.68 logP =-0.43 logP =-0.03

    ©2015 Waters Corporation 3

    NormetanephrinelogP =-0.39

    MetanephrinelogP = 0.00

    3-methoxytyraminelogP = 0.68

  • Typical catecholamine and metanephrine analysis methodsp y

    Reversed-phase HPLC with ion-pairing Electrochemical Detection Electrochemical Detection Separate methods for catecholamines and metanephrines Sample prep often including SPE with Alumina Long LC methods

    ©2015 Waters Corporation 4

  • Challengesg

    Very polar compounds– Elute very early under reversed-phase conditionsy y p– Subject to Matrix Effects in urine (lots of early eluting salts and low

    MW components) Basic Compoundsp

    – Unstable at high pH Endogenous compounds Must separate EP from NMT Must separate EP from NMT

    – Isobaric molecules which share MRM transitions Urine is acidified at collection

    Needs to be buffered for extraction– Needs to be buffered for extraction– Capacity issues for IEX sorbent

    Plasma: very low concentrations/ L

    ©2015 Waters Corporation 5

    – pg/mL

  • Outline

    Background & ChallengesM th d lMethodology

    Results Conclusions Conclusions

    ©2015 Waters Corporation 6

  • Chromatography - HILICg p y

    HILIC - Hydrophilic Interaction Chromatography— Term coined in 1990 by Alpert to distinguish from normal-phase*

    HILIC is a variation of normal-phase chromatography without the disadvantages of using solvents that are not miscible in water— “Reverse reversed-phase” or “aqueous normal-phase” Reverse reversed phase or aqueous normal phase

    chromatography

    Designed to retain extremely polar analytes

    Stationary phase is a POLAR material— Silica, hybrid, cyano, amino, diol, amide

    ©2015 Waters Corporation 7

  • Multi-modal Retention Mechanisms in HILIC

    Combination of partitioning, ion‐exchange and hydrogen bondingand hydrogen bonding 

    • Polar analyte partitions between bulk mobile phase and partially immobilized polar layer on material surface

    • Secondary interactions b t f il lbetween surface silanols and/or functional groups with the charged analyte leading to ion‐exchange

    • Hydrogen bonding between positively charged analyte and negatively charged surface silanols

    ©2015 Waters Corporation 8

    gD.V. McCalley, U. D. Neue, J. Chromatogr. A 1192 (2008) 225‐229

    E.S. Grumbach, D.M. Diehl, U.D. Neue, J. Sep. Sci. 31 (2008), 1511‐1518

    A. Méndez, E. Bosch, M. Rosés, U. D. Neue, J. Chromatogr. A 986 (2003), 33‐44

  • ACQUITY BEH AmideQ

    ©2015 Waters Corporation 9

  • Instrument Parameters in urine

    ACQUITY I-Class MPA: 5:95 ACN:H2O with 50 mM NH4COOH (pH 3.0)

    Time Flow %A %BMPB: 85:15 ACN:H2O with 30 mM NH4COOH (pH 3.0)Column: ACQUITY UPLC BEH Amide 1.7 μm; 2.1 x

    100 mmSNW: MPB

    Time Flow %A %B0.0 0.6 0.0 100.0

    1.0 0.6 0.0 100.0

    2.0 0.6 10.0 90.0WNW: MPB

    Instrument: Xevo® TQDIonization: ESI+

    2.1 1.0 10.0 90.0

    2.5 1.0 30.0 70.0

    2.6 1.0 0.0 100.0Ionization: ESI+

    Capillary voltage: 0.5 kVDesolvation Gas: 900 L/hrCone Gas: 0 L/hr

    3.9 1.0 0.0 100.0

    4.0 0.6 0.0 100.0

    Desolvation Temp: 550 ˚CSource Temp: 150 ˚C

    ©2015 Waters Corporation 10

    High concentration of NH4COOH in MPB helps with peak shapeNeeds to be balanced with 15% H2O to maintain solubility

  • 100

    MPB Salt Concentration

    %

    100

    5-HT

    DA

    EP NE

    100

    0.50 1.00 1.50 2.00 2.500

    10 mMDA% 20 mM

    100

    0.50 1.00 1.50 2.00 2.500

    %

    30 mM

    ©2015 Waters Corporation 11

    Time0.50 1.00 1.50 2.00 2.500

    Danaceau et al., Bionanalysis 4(7) 783-794 (2012)

  • Column Temperature

    %

    10020 oCDA

    EP

    NE5-HT

    %

    100

    0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.400

    30 oC

    %

    100

    0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.400

    40 oC

    %

    100

    0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.400

    50 oC

    100

    0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40

    %

    0

    60 oC

    ©2015 Waters Corporation 12

    Time0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40

    %

    0

    Danaceau et al., Bionanalysis 4(7) 783-794 (2012)

  • TQD Conditions Q

    Analyte RT (min)MRM

    transitionsm/z

    Cone Voltage

    (V)

    CollisionEnergy

    (eV)

    3-methoxytyramine 0.83168.1>91.0168 1>119 0

    2222

    2418168.1>119.0 22 18

    Metanephrine 0.89198.1>180.0198.1>165.

    1818

    818

    Normetanephrine 1.16184.1>166.0184 1>134 1

    2012

    818184.1>134.1 12 18

    Dopamine 1.24154.0>91.0154.0>119.0

    2222

    2018

    Epinephrine 1.38184.1>166.0184.1>107.0

    2020

    820

    Norepinephrine 1.93170.0>152.0170.0>107.0

    1414

    620

    Compounds with matched colors share common precursors

    ©2015 Waters Corporation 13

    Compounds with matched colors share common precursorsSome share common fragments as well

  • Cats/Mets in urine ChromatographyChromatography

    Cal Std 50 ng/mLCal_50_131216_003 Sm (SG, 2x2) 2: MRM of 5 Channels ES+

    168 068 > 90 985 (3 MT)0 83

    100

    0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40

    %

    0

    100 168.068 > 90.985 (3-MT)1.17e60.83

    Cal_50_131216_003 Sm (SG, 2x2) 2: MRM of 5 Channels ES+ 198.068 > 180 (Metanephrine)0.89

    3-MT

    100

    0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40

    %

    0

    100 8.62e6

    Cal_50_131216_003 Sm (SG, 2x2) 1: MRM of 8 Channels ES+ 154.004 > 91.044 (Dopamine)

    9.49e41.22

    MTN

    DA

    100

    0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40

    %

    0

    Cal_50_131216_003 Sm (SG, 2x2) 1: MRM of 8 Channels ES+ 184.068 > 166.04 (Epi/Normet)

    8.34e51.16

    1.38 EpiNMT

    DA

    %

    100

    0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40

    %

    0

    Cal_50_131216_003 Sm (SG, 2x2) 3: MRM of 3 Channels ES+ 170.004 > 152.042 (Norepinephrine)

    7.00e41.92

    NE

    ©2015 Waters Corporation 14

    Time0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40

    02.04

    Column: BEH Amide, 2.1 x 100 mm; 1.7 μm

  • Instrument Parameters in plasmap

    ACQUITY UPLC MPA: 5:95 ACN:H2O with 30 mM NH4COOH (pH 3.0)

    Time Flow %A %BMPB: 85:15 ACN:H2O with 30 mM NH4COOH (pH 3.0)Column: ACQUITY UPLC BEH Amide 1.7 μm; 2.1 x

    100 mmSNW: MPB

    Time Flow %A %B0.0 0.6 0.0 100.0

    1.0 0.6 0.0 100.0

    2.0 0.6 10.0 90.0WNW: MPB

    Instrument: Xevo® TQ-SIonization: ESI+

    2.1 1.0 10.0 90.0

    2.5 1.0 30.0 70.0

    2.6 1.0 0.0 100.0Ionization: ESI+

    Capillary voltage: 0.5 kVDesolvation Gas: 900 L/hrCone Gas: 150 L/hr

    3.9 1.0 0.0 100.0

    4.0 0.6 0.0 100.0

    Desolvation Temp: 550 ˚CSource Temp: 150 ˚C

    ©2015 Waters Corporation 15

    High concentration of NH4COOH in MPB helps with peak shapeNeeds to be balanced with 15% H2O to maintain solubility

  • MS transitions and compound specific parameters - plasmap p

    Analyte RT (min)MRM

    transitionsCone

    Voltage CollisionEnergy

    m/z (V) (eV)

    3-Methoxytyramine 0.84151.1>91.16151.1>119.2

    1717

    2218

    Metanephrine 0.91180>165.1180>148.1

    3535

    1620

    Normetanephrine 1.17166.1>134.1166.1>149.1

    5050

    1610

    Dopamine 1.25137.1>91.1154.1>137.2

    5029

    1810

    Epinephrine 1 40184.1>166.1 15 8

    Epinephrine 1.40166.1>107 15 18

    Norepinephrine 1.98152>135.2152>79.2

    4620

    1420

    ©2015 Waters Corporation 16

  • ChromatographyEndogenous plasma Cats/Metsg p

    3 MT DA3-MT DA

    MTN EP

    NMT NE

    ©2015 Waters Corporation 17

    Compound 3-MT MTN NMT DA EP NE

    Conc. (pg/mL) 7 32 71 0 29 361

  • Oasis Family of Sorbents:Reversed-Phase and Mixed Modes

    ©2015 Waters Corporation 18

  • Oasis® 2x4 MethodSelect Sorbents

    Characterize your Analyte and Select the Sorbent

    For Strong AcidspKa 10S l

    For AcidspKa 2-8

    For BasespKa 2-10

    SelectOasis® WAX

    SelectOasis® WCX

    SelectOasis® MAX

    Select Oasis® MCX

    *also quatsalso quats

    Neutralsare Retained on

    all Sorbents

    ©2015 Waters Corporation 19

    all Sorbents

  • Oasis® 2x4 Method:

    For Bases:pKa 2-10Use Oasis® MCX

    For Strong AcidspKa 10Use Oasis® WCX

    For AcidspKa 2-8Use Oasis® MAXUse Oasis MCX Use Oasis WAX Use Oasis WCX Use Oasis MAX

    P S l

    Protocol 2P S l

    Protocol 1Prepare Sample

    Condition/EquilibrateLoad Sample

    W h

    Prepare Sample

    Condition/EquilibrateLoad Sample

    W h

    Neutrals

    Wash:5% NH4OH

    Elute 1:100% MeOH

    Wash:2% Formic acid

    Elute 1:100% MeOH 100% MeOH

    Elute 2:2% Formic Acid in MeOH

    100% MeOH

    Elute 2:5% NH4OH in MeOH

    ©2015 Waters Corporation 20

    Bases Strong AcidsStrong Bases Acids

  • Oasis® WCX Ion Exchange Retention Map for Weak Basesp

    maxOasis® WCX SORBENT CHARGE

    (N) ( )

    n

    max (N) (-)Sorbent (N)

    entio

    n Weak Base (N)Unonized

    Weak Base (+)Ionized

    Sorbent (N)Unionized Sorbent (-)

    Ionized

    Ret

    e IonizedWeak Base (+)Ionized

    0 2 4 6 8 10 12 14

    minpKa of analytepKa of sorbent

    ©2015 Waters Corporation 21

    Maximum Retention When Sorbent and analyte are IonizedpH0 2 4 6 8 10 12 14

  • WCX Extraction Procedurefor Urinary Cats and Mets

    Condition WCX 30 mg Plate1 mL MeOH then 1 mL Water

    y

    Sample Pretreatment400 µL urine

    Add 1 mL of 500 mM NH4CH3COO + 40 µL IS (1000 ng/mL)(1000 ng/mL)

    Load Entire pretreated sample

    Wash1 mL of 20 mM NH4CH3COOfollowed by 1 mL of MeOH

    Elute2 x 250 µL

    (85:15 ACN:H2O+ 2% formic acid)

    ©2015 Waters Corporation 22

    Inject 10 µL

  • WCX Extraction Procedurefor Urinary Cats and Mets

    Condition WCX 30 mg Plate1 mL MeOH then 1 mL Water

    y

    Sample Pretreatment400 µL urine

    Add 1 mL of 500 mM NH4CH3COO + 40 µL IS (1000 ng/mL)(1000 ng/mL)

    Load Entire pretreated sample

    WCX enables loading, retention and elution at pH

  • Sample PreparationOasis µElution Plate Technologyµ gy

    Patented plate design Ideal for SPE cleanup and analyte enrichment of Ideal for SPE cleanup and analyte enrichment of

    small sample volumes (10 µL to 375 µL) Elute in as little as 25µL; up to 15X concentration No evaporation and reconstitution required

    –Eluates can be directly injected –Saves time–No evaporative loss

    Speed 96 well plate in

  • WCX μElution Extraction Procedurefor Plasma Cats and Mets

    Condition WCX μElution Plate200 μL MeOH then 200 μL Water

    Sample Pretreatment250 µL plasma

    Add 250 µL of 50 mM NH4CH3COO + 50 µL IS (2 5 ng/mL)(2.5 ng/mL)

    Load Entire pretreated sample

    Wash200 μL of 20 mM NH4CH3COO

    followed by 200 μL 50:50 ACN:IPA

    Elute2 x 25 µL

    (85:15 ACN:H2O+ 2% formic acid)

    ©2015 Waters Corporation 25

    Inject 15 µL

  • WCX μElution Extraction Procedurefor Plasma Cats and Mets

    Condition WCX μElution Plate200 μL MeOH then 200 μL Water

    Sample Pretreatment250 µL plasma

    Add 250 µL of 50 mM NH4CH3COO + 50 µL IS (2 5 ng/mL)(2.5 ng/mL)

    Load Entire pretreated sample

    WCX enables loading andelution at pH

  • Outline

    Background & ChallengesM th d lMethodology

    Results Conclusions Conclusions

    ©2015 Waters Corporation 27

  • Cats & Mets in urineRecovery and Matrix Effectsy

    100%

    40%

    60%

    80%

    0%

    20%

    40%

    -40%

    -20%

    -80%

    -60% Recovery

    Matrix Effects

    ©2015 Waters Corporation 28

  • Matrix Effect improvement vs.Reversed-Phase Chromatographyg p y

    100%

    40%

    60%

    80%

    0%

    20%

    40%

    -40%

    -20%

    Recovery

    -80%

    -60% Matrix Effects

    Matrix Effects (RP)

    ©2015 Waters Corporation 29

  • Cats & Mets in urineLinearityy

    Res

    pons

    e

    100

    200 NormetanephrineR2 = 0.999

    ng/mL-0 50 100 150 200 250 300 350 400 450 500

    -0

    nse 300

    400

    EpinephrineR2 = 0.999

    ng/mL

    Res

    pon

    -0

    100

    200

    R 0.999

    ©2015 Waters Corporation 30

    ng/mL-0 50 100 150 200 250 300 350 400 450 500

    -0

  • Cats & Mets in urineQC ResultsQ

    3‐MT Metanephrine Normetanephrine

    QC Spike Conc. Acc Bias %CV Acc Bias %CV Acc Bias %CV

    1.6 94.4% ‐5.6% ‐2.6% 98.9% ‐1.1% ‐2.9% 98.8% ‐1.2% ‐3.9%

    8 95.9% ‐4.1% ‐3.0% 100.5% 0.5% ‐1.7% 101.0% 1.0% ‐4.2%

    80 101.8% 1.8% ‐4.3% 104.0% 4.0% ‐0.9% 103.4% 3.4% ‐1.6%

    400 109.8% 9.8% ‐5.0% 101.9% 1.9% ‐2.1% 100.8% 0.8% ‐0.5%

    Mean 100.5% 101.3% 101.0%

    Dopamine Epinephrine Norepinephrine

    QC Spike Conc. Acc Bias %CV Acc Bias %CV Acc Bias %CV

    1.6 92.1% ‐7.9% ‐9.5% 95.6% ‐4.4% ‐6.2% 94.0% ‐6.0% ‐7.2%

    8 96.5% ‐3.5% ‐11.0% 95.4% ‐4.6% ‐3.2% 98.7% ‐1.3% ‐3.3%

    80 102.8% 2.8% ‐2.0% 103.4% 3.4% ‐1.5% 99.2% ‐0.8% ‐14.8%

    400 103.4% 3.4% ‐2.4% 103.0% 3.0% ‐1.9% 98.3% ‐1.7% ‐12.9%

    Mean 98.7% 99.4% 97.5%

    ©2015 Waters Corporation 31

    Mean 98.7% 99.4% 97.5%

  • Cats & Mets in plasmaRecovery and Matrix Effectsy

    Recovery and Matrix Effects

    80%

    100%

    120% RecME

    40%

    60%

    80%

    0%

    20%

    -40%

    -20%

    ©2015 Waters Corporation 32

  • Cats & Mets in plasmaCalibration summaryy

    R2 Mean % Dev. Max % Dev. Endogenous(pg/mL)

    Corrected Calibration Range

    3‐MT 0.9993 0.25% 2.89% 7 17‐2007

    Metanephrine 0.9997 0.00% 2.50% 32 42‐2042

    Normetanephrine 0 9998 0 00% 1 72% 71 81 2081Normetanephrine 0.9998 0.00% 1.72% 71 81‐2081

    Dopamine 0.9994 ‐0.33% 4.57% 0 10‐2000

    Epinephrine 0.9990 0.84% 11.83% 29 79‐10079

    Norepinephrine 0.9995 0.00% 2.59% 361 411‐10411

    ©2015 Waters Corporation 33

  • Calibration Curves in plasmaDopamine and Metanephrinep p

    DopamineR2 = 0.9994

    MetanephrineR2 = 0.9997

    ©2015 Waters Corporation 34

  • Cats & Mets in plasmaQuality Control ResultsQ y

    QC spike concentration

    40 pg/mL 100 pg/mL 400 pg/mL 800 pg/mL

    Mean S.D. %CV Mean S.D. %CV Mean S.D. %CV Mean S.D. %CV

    3‐MT 99.9% 7.4% 7.4% 99.2% 3.0% 3.1% 105.9% 1.8% 1.7% 93.9% 2.6% 2.8%

    Metanephrine 99.9% 2.0% 2.0% 97.6% 0.8% 0.8% 107.3% 1.2% 1.1% 94.6% 1.7% 1.7%

    Normetanephrine 99.8% 1.6% 1.6% 96.8% 1.7% 1.8% 104.6% 0.4% 0.4% 93.4% 1.0% 1.1%

    Dopamine 97.0% 7.2% 7.4% 91.2% 3.4% 3.7% 103.7% 3.1% 3.0% 95.6% 2.7% 2.8%

    200 pg/mL 500 pg/mL 2000 pg/mL 4000 pg/mL

    Mean S.D. %CV Mean S.D. %CV Mean S.D. %CV Mean S.D. %CV

    Epinephrine 97.3% 4.3% 4.4% 98.8% 2.2% 2.2% 100.8% 1.4% 1.4% 97.0% 2.6% 2.6%

    Norepinephrine 105.1% 7.7% 7.4% 102.6% 8.2% 8.0% 96.7% 1.3% 1.3% 97.1% 4.2% 4.3%

    ©2015 Waters Corporation 35

    All accuracies and all %CV’s

  • Conclusions

    Rapid, robust chromatography with baseline separation of epinephrine and normetanephrine– BEH Amide UPLC– Reduction in matrix effects vs. RP chromatography for urine

    Efficient extraction in 96-well formatWCX bl t ti t H 7 0– WCX enables extraction at pH

  • Questions ?Q

    ©2015 Waters Corporation 37