simulation of light profiles of meteors and its

27
1 SIMULATION OF LIGHT PROFILES OF METEORS AND ITS APPLICATIONS TO THE JEM-EUSO PROJECT Candidata: Martina-Francesca Casonato Relatore: Mario Edoardo Bertaina Tutor aziendale: Alberto Cellino Tesi di laurea triennale a.a 2012/2013 Painting of a Leonid shower in the year 1833 Painting of a Leonid shower in the year 1833

Upload: others

Post on 02-Dec-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SIMULATION OF LIGHT PROFILES OF METEORS AND ITS

1

SIMULATION OF LIGHT PROFILES OF METEORS AND

ITS APPLICATIONS TO THE JEM-EUSO PROJECT

Candidata Martina-Francesca CasonatoRelatore Mario Edoardo BertainaTutor aziendale Alberto Cellino

Tesi di laurea triennaleaa 20122013

Painting of a Leonid shower in the year 1833Painting of a Leonid shower in the year 1833

2

EExtreme UUniverse SSpace OObservatory

3

FoV on Earth

1)Nadir1)Nadir2)Tilted (38deg)2)Tilted (38deg)

What is JEM-EUSOMISSION amp INSTRUMENT

PARAMETERS

Time of launch year 2017Duration 3 years (+2 years)Height of the Orbit ~ 400 km Latitude amp longitude 516deg N - 516deg S (for all longitudes)Period of the Orbit 90 mins

Field of view plusmn 30degObservational aperture on the ground area ~ circle of 250 km radiusAngular resolution 007degPixel size at ground 560 mPixel size 29 mmNumber of pixels ~ 3 times 105

Event time sampling 25 micros = 1GTUFocal surface area 45 m2

ISS orbitISS orbit

1)2)

4

Optics and electronicsOptics and electronics

33 Fresnel lenses Detector Focal Surfacesingle KI pixel

MAPMTpixel

Working modesDIGITAL (MAPMT

pixel)1 ndash 30 phepixGTUANALOG (charge

integration)KI pixels = 4 Χ 2 MAPMT pixels

10 ndash 106 phepixGTUGate Time Unit (GTU) = 25 micros

1122

33

5

Meteor of the Perseids observed from ISS (Aug 2011)

JEM-EUSO on ISS

bull Beginning point ~ 75 divide 120 kmbull End point ~ 30 divide 70 kmbull Duration ~ 05 divide 3 sbull Length ~ 10 divide 20 kmbull Type sporadic showers (~ 25 obs meteors)bull Frequency ~ 5 divide 100 per hour

(up to thousands during meteor storms)bull Velocity ~ 12 divide 70 kms bull Light spectrum violet to red

6

M = absolute magnitude in the zenith of the observer at a height of 100 km

-5 lt M lt 7 meteor (mass 100 g divide 2mg)

M lt - 8 bolide or fireball (meteoroid mass 10divide100 kg)

M lt -17 superbolide ((meteoroid mass gt 1000 kg)

The Peekskill fireball (Oct 9 1992)

Leonid meteor swarm in 2001 taken by Hivison camera

Meteor shower the LeonidsMeteor shower the Leonids(from Leo constellation)(from Leo constellation)

Different types of lightcurvesDifferent types of lightcurves

Meteor shower the LeonidsMeteor shower the Leonids(from Leo constellation)(from Leo constellation)

Different types of lightcurvesDifferent types of lightcurves

From the article of L Shrbeny and P Spurny ldquoPrecise data on Leonid fireballs from all-sky photographic recordsrdquo Astronomy amp Astrophysics vol 506 1445-1454 (2009)

8

Meteor amp Nuclearite simulationMeteor amp Nuclearite simulationMeteor amp Nuclearite simulationMeteor amp Nuclearite simulation

ISSISS

height of flight

velocity

LIGHT CURVELIGHT CURVE

Meteor yesno secondary burstpolynomial coefficients

Nuclearite M(mass) dependence (only) emission for h lt hmax

METEORMETEOR beginning height

yesno random generationdurationv

x v

y v

z

absolute magnitudex0y0 of ISS

METEOR METEOR NUCLEARITENUCLEARITE

SIMULATORSIMULATOR

NUCLEARITENUCLEARITE hmax

yesno random generationabsolute magnitude (mass)

x0y0 of ISSvx vy vz (any vz possible)

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

INPUTINPUTOUTPUTOUTPUT

9

Computation of the fluxComputation of the fluxComputation of the fluxComputation of the flux

TABLE from ldquoJEM-EUSOMeteor and Nuclearite observationsrdquo submitted to experimental astronomy (JEM-EUSO collaborations)

Data for a meteor in the zenith at a height of 100 km from the ground (300 km from the ISS)The flux of phe (ph) is on the ISS

Absolute magnitude M = - 25 x log10

[Flux(h=100)] + C

Apparent magnitude m = - 25 x log10

(Flux(h)) + C

For distance = 100 km (from the ground) m = M = -25 log

10[Flux(h)Flux(h=100)]

Flux(Flux(h)) = Flux(= Flux(h=100) x 10 ) x 10 - 04(m-M)- 04(m-M)

Absolutemagnitude

(M)

U-band flux(ergscm2A)

photons(s-1)

photo-electrons(GTU=25 μs)-1

mass(g)

collisions in JEM-EUSO

FoV

7 67 10 -12 43 10 7 4 210 -3 1s

5 42 10 -11 27 10 8 23 10 -2 6min

0 42 10 -9 27 10 10 2300 1 027orbit

-5 42 10 -7 27 10 12 23 10 5 100 63year

10

Leonids SimulationsLeonids Simulations

Meteor No

vin (kms) M

max

LEO18 7130 -119

LEO19 7163 -118

LEO21 7145 -115

LEO27 7159 -138

LEO50 7166 -101

LEO51 70 -129

Physical data on the 199920012002 and 2006 Leonid fireballs

Table taken from the article of L Shrbeny and P Spurny Astronomy amp Astrophysics vol 506 1445-1454 (2009)

vin = initial velocity

Mmax

= maximum absolute magnitude

Equation of the light profileIntensity = function of time

I(t) = p0+p1t+p2t2+p3t3+polinomy of degree 88

11

12

13

Meteors out of cone of visibilityMeteors out of cone of visibilityMeteors out of cone of visibilityMeteors out of cone of visibility

Random generator numerical program75 lt zin lt 120 km30 lt zfin lt 70 km11 lt v lt 70 kmsviss = 78 kmsduration lt 4 szin

zfin

rin (zin)rfin (zfin)(radius)

xin (rin)yin (rin)

θφxfin (xinzinzfinθφ)yfin (yinzinzfinθφ)

vvx x ((θθφφ))vvyy ( (θθφφ))vvzz ( (θθ))

duration

v(module)

= random

= from data

5443 samples of (xinyinzin)

14

Meteor entering the cone of visibility

Meteor going out from the cone

15

THE LIGHT TRACKTHE LIGHT TRACKpersistence of the signal in the atmospherepersistence of the signal in the atmosphere

THE LIGHT TRACKTHE LIGHT TRACKpersistence of the signal in the atmospherepersistence of the signal in the atmosphere

Sequence of a 1999 Leonid fireball captured from an observing site in the Italian AlpsThe meteor was brighter than the full moon and left a smoke trail that was visible for more than 20 minutes Features of this kind should be observable by the JEM-Euso IR camera

16Time(s)

The decrease of intensity is an exponential function of time

I asymp eI asymp eAtAt

A = negative damping coefficient[countssec]

A (countss)

LEO18 -122

LEO27 -469

LEO51 -1952

Sky background

10 pheGTU10 pheGTU

no signal persistence for flux below this value(~full moon)

Beforeonly one

moving point

Now ldquostripesrdquo groups of

fading pointsFrom the article of L Shrbeny and P Spurny Astronomy amp Astrophysics vol 506 1445-1454 (2009)

17

LIGHT TRACK LIGHT TRACK SIMULATORSIMULATOR

INPUT INPUT = output files of the meteornuclearite simulator

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

OUTPUT OUTPUT

LIGHT TRACK FROM THE GROUNDFROM THE GROUND

STRIPES OFtimestepx y z fluxx y z of the ISS

LIGHT TRACK FROM THE GROUNDFROM THE GROUND

STRIPES OFtimestepx y z fluxx y z of the ISS

LIGHT TRACKFROM ISSFROM ISS

STRIPES OFtimestep

x y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

LIGHT TRACKFROM ISSFROM ISS

STRIPES OFtimestep

x y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

First point the most brightful OLD SIMULATOR DATA

Other points flux RECEIVED ON THE GROUND

I asymp eAt

Flux(ISS)=Flux(ground) x dist(ground)2dist(ISS)2

First point the most brightful OLD SIMULATOR DATA

Other points flux RECEIVED ON THE GROUND

I asymp eAt

Flux(ISS)=Flux(ground) x dist(ground)2dist(ISS)2

Choice ofthe exponential

coefficient A A

Choice ofthe exponential

coefficient A A

18

Beginning of an output Beginning of an output file from ISSfile from ISSthe data are not the data are not grouped in stripesgrouped in stripes

Time(s) x(km) y(km) z(km) Flux(pheGTU)

Θ(arcsec)

Φ(deg)

x(pix) y(pix)

1a

2a

First 4 First 4 stripesstripes

Abs mag 3

~ eAt

A= -1

0028000 -10064 -9668 -300132 1009877 95841 -1362 -2560 -2459 0029000 -10066 -9656 -300137 1043528 95792 -1362 -2560 -2456 0030000 -10074 -9656 -300137 1022863 95830 -1362 -2562 -2456 0031000 -10082 -9656 -300137 1002608 95869 -1362 -2564 -2456 0030000 -10069 -9644 -300142 1077082 95747 -1362 -2561 -2453 0031000 -10077 -9644 -300142 1055753 95786 -1363 -2563 -2453 0032000 -10085 -9644 -300142 1034846 95824 -1363 -2565 -2453 0033000 -10092 -9644 -300142 1014352 95863 -1363 -2567 -2453 0031000 -10071 -9633 -300146 1110570 95702 -1363 -2561 -2450 0032000 -10079 -9633 -300146 1088578 95741 -1363 -2563 -2450 0033000 -10086 -9633 -300146 1067021 95780 -1363 -2565 -2450 0034000 -10094 -9633 -300146 1045890 95818 -1363 -2567 -2450 0035000 -10102 -9633 -300146 1025179 95857 -1364 -2569 -2450 0036000 -10110 -9633 -300146 1004877 95896 -1364 -2571 -2450

3a

4a

with persistence(train)NO persistence(head)

19

~ e At

A= - 4 A= - 20

Abs mag 3

NO persistence

with persistence

20

Abs mag 3Abs mag 3

A= -1 A= -4

A= -10 A= -20

with persistence NO persistence

X (PIXELS) IN FUNCTION OF TIME

21

Abs mag 0Abs mag 0A= -1

A= -4

A= -10 A= -20

with persistence NO persistence

22

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere Divide the output file into

groups of stripes

Find zfor each stripes

with this formula using

the first term (ldquo1rdquo) fixed

and changingthe others(ldquo2rdquo)

Find x yvx vy vz

(with their errors)

z = 400 ndash vmiddott tg[θ2]radic(1+tan[φ2]2) ndash tg[θ1]radic(1+tan[φ1]2)

y = yiss(t0)+tan(φ)[x-xiss(t0) - vt]

x = xiss+vt+(z-400)middottan(θ)radic1+tan(φ)2

0

y

z

400 km

ISS (xissyiss400)

(xyz)

xφ1

θ2

φ2

θ1

Development of another numerical program

23

ResultsResultsResultsResults Font light track output file with A= -1 and abs mag = 3 Total stripes 4717 There are selected three samples from three different stripes of the output file

NdegNdegx

(km)plusmnσ

x

(km)

x expected

(km)

y(km)

plusmnσy

(km)

y expected

(km)

z(km)

plusmnσz

(km)

z expected

(km)

11 -12 15 -01 62 07 62 967 16 975

22 -35 10 -21 176 08 175 910 21 930

33 -60 09 -54 287 12 286 869 36 886

kmsplusmnσplusmnσ

vv

(kms)(kms)

Expectedvalue

(kms)

vxvx 21 17 55

vyvy 105 10 119

vz -52 24 -42

Time error = 05 ms Angle φ error given by the propagation formula where φ = arctan(ypixxpix) σxpix σypix = plusmn 1 pixel Angle θ error = 0075deg = 270 arcsec = 1pixel The associate errors are all calculated using the propagation formula

Expected value of x y and z refers to the most brightful point of each stripe Expected value of velocity

is given by the input file

vmodule (kms)

plusmnσplusmnσvv

(kms)(kms)

Expectedvalue

(kms)

119 31 138

24

ConclusionsConclusions

A simulation of different meteors light profiles as seen from JEM-EUSO has been performed on the evidence coming from ground based photographic records

Starting from ISS measurements of θ amp φ angles and taking profit of the persistence of the signal in the atmosphere it is possible to find position and velocity vectors of a meteor during its passage in the JEM-EUSO field of view

A study of the answer in pixels of JEM-EUSO focal detector can be done in future using these data

25

Thank you

26

bull SpeedSpeed meteor up to 70 kmsec Dark Matter nuclearites ~ 300kmsec (nuclearite max velocity value 570 kms meteor max value 72 kms)

bull Light profileLight profile in meteors the light starts immediately and then decreases due to the mass ablation most of the meteors doesnrsquot reach earth

On the contrary nuclearites are very compact objects the energy loss is similar to the one of an elementary particle No mass ablation The light emission is constant at h hle max (very low altitudes)hmax = 27middot ln (m 12 middot 10-5 g) km (m 01 ndash 100 g hmax 24 ndash 60 km)

M = 158 ndash 167 middot log10 (m 1 microg) (m 01 ndash 100 g M 75 ndash 25)

A nuclearite of mass gt 01 g should cross the entire earth and can move upwardJEM-EUSO could detect also upward going nuclearites

Criteria to identify Nuclearites in Jem-Euso

and differences with meteors

27

Nuclearites and meteors comparisonNuclearites and meteors comparison

1

2

3

1) up-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

h = 40 km 00001 km

2) down-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

3) Meteor v = 70 kms θ = 45deg h = 100 km

Abs mag = 17 Abs mag sec burst = -1

Light profile

Apparent motion

1

2

3

time(s)

ph

oto

ns

time(s)

θ (a

rcse

c )

Nuclearites are much faster than meteors

Graphics done in collaboration with Giulia Bruno

  • Pagina 1
  • Slide 2
  • Slide 3
  • Pagina 4
  • Slide 7
  • Pagina 6
  • Pagina 7
  • Meteor amp Nuclearite simulation
  • Pagina 9
  • Pagina 10
  • Pagina 11
  • Pagina 12
  • Pagina 13
  • Pagina 14
  • Pagina 15
  • Pagina 16
  • Pagina 17
  • Pagina 18
  • Pagina 19
  • Pagina 20
  • Pagina 21
  • Pagina 22
  • Pagina 23
  • Pagina 24
  • Pagina 25
Page 2: SIMULATION OF LIGHT PROFILES OF METEORS AND ITS

2

EExtreme UUniverse SSpace OObservatory

3

FoV on Earth

1)Nadir1)Nadir2)Tilted (38deg)2)Tilted (38deg)

What is JEM-EUSOMISSION amp INSTRUMENT

PARAMETERS

Time of launch year 2017Duration 3 years (+2 years)Height of the Orbit ~ 400 km Latitude amp longitude 516deg N - 516deg S (for all longitudes)Period of the Orbit 90 mins

Field of view plusmn 30degObservational aperture on the ground area ~ circle of 250 km radiusAngular resolution 007degPixel size at ground 560 mPixel size 29 mmNumber of pixels ~ 3 times 105

Event time sampling 25 micros = 1GTUFocal surface area 45 m2

ISS orbitISS orbit

1)2)

4

Optics and electronicsOptics and electronics

33 Fresnel lenses Detector Focal Surfacesingle KI pixel

MAPMTpixel

Working modesDIGITAL (MAPMT

pixel)1 ndash 30 phepixGTUANALOG (charge

integration)KI pixels = 4 Χ 2 MAPMT pixels

10 ndash 106 phepixGTUGate Time Unit (GTU) = 25 micros

1122

33

5

Meteor of the Perseids observed from ISS (Aug 2011)

JEM-EUSO on ISS

bull Beginning point ~ 75 divide 120 kmbull End point ~ 30 divide 70 kmbull Duration ~ 05 divide 3 sbull Length ~ 10 divide 20 kmbull Type sporadic showers (~ 25 obs meteors)bull Frequency ~ 5 divide 100 per hour

(up to thousands during meteor storms)bull Velocity ~ 12 divide 70 kms bull Light spectrum violet to red

6

M = absolute magnitude in the zenith of the observer at a height of 100 km

-5 lt M lt 7 meteor (mass 100 g divide 2mg)

M lt - 8 bolide or fireball (meteoroid mass 10divide100 kg)

M lt -17 superbolide ((meteoroid mass gt 1000 kg)

The Peekskill fireball (Oct 9 1992)

Leonid meteor swarm in 2001 taken by Hivison camera

Meteor shower the LeonidsMeteor shower the Leonids(from Leo constellation)(from Leo constellation)

Different types of lightcurvesDifferent types of lightcurves

Meteor shower the LeonidsMeteor shower the Leonids(from Leo constellation)(from Leo constellation)

Different types of lightcurvesDifferent types of lightcurves

From the article of L Shrbeny and P Spurny ldquoPrecise data on Leonid fireballs from all-sky photographic recordsrdquo Astronomy amp Astrophysics vol 506 1445-1454 (2009)

8

Meteor amp Nuclearite simulationMeteor amp Nuclearite simulationMeteor amp Nuclearite simulationMeteor amp Nuclearite simulation

ISSISS

height of flight

velocity

LIGHT CURVELIGHT CURVE

Meteor yesno secondary burstpolynomial coefficients

Nuclearite M(mass) dependence (only) emission for h lt hmax

METEORMETEOR beginning height

yesno random generationdurationv

x v

y v

z

absolute magnitudex0y0 of ISS

METEOR METEOR NUCLEARITENUCLEARITE

SIMULATORSIMULATOR

NUCLEARITENUCLEARITE hmax

yesno random generationabsolute magnitude (mass)

x0y0 of ISSvx vy vz (any vz possible)

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

INPUTINPUTOUTPUTOUTPUT

9

Computation of the fluxComputation of the fluxComputation of the fluxComputation of the flux

TABLE from ldquoJEM-EUSOMeteor and Nuclearite observationsrdquo submitted to experimental astronomy (JEM-EUSO collaborations)

Data for a meteor in the zenith at a height of 100 km from the ground (300 km from the ISS)The flux of phe (ph) is on the ISS

Absolute magnitude M = - 25 x log10

[Flux(h=100)] + C

Apparent magnitude m = - 25 x log10

(Flux(h)) + C

For distance = 100 km (from the ground) m = M = -25 log

10[Flux(h)Flux(h=100)]

Flux(Flux(h)) = Flux(= Flux(h=100) x 10 ) x 10 - 04(m-M)- 04(m-M)

Absolutemagnitude

(M)

U-band flux(ergscm2A)

photons(s-1)

photo-electrons(GTU=25 μs)-1

mass(g)

collisions in JEM-EUSO

FoV

7 67 10 -12 43 10 7 4 210 -3 1s

5 42 10 -11 27 10 8 23 10 -2 6min

0 42 10 -9 27 10 10 2300 1 027orbit

-5 42 10 -7 27 10 12 23 10 5 100 63year

10

Leonids SimulationsLeonids Simulations

Meteor No

vin (kms) M

max

LEO18 7130 -119

LEO19 7163 -118

LEO21 7145 -115

LEO27 7159 -138

LEO50 7166 -101

LEO51 70 -129

Physical data on the 199920012002 and 2006 Leonid fireballs

Table taken from the article of L Shrbeny and P Spurny Astronomy amp Astrophysics vol 506 1445-1454 (2009)

vin = initial velocity

Mmax

= maximum absolute magnitude

Equation of the light profileIntensity = function of time

I(t) = p0+p1t+p2t2+p3t3+polinomy of degree 88

11

12

13

Meteors out of cone of visibilityMeteors out of cone of visibilityMeteors out of cone of visibilityMeteors out of cone of visibility

Random generator numerical program75 lt zin lt 120 km30 lt zfin lt 70 km11 lt v lt 70 kmsviss = 78 kmsduration lt 4 szin

zfin

rin (zin)rfin (zfin)(radius)

xin (rin)yin (rin)

θφxfin (xinzinzfinθφ)yfin (yinzinzfinθφ)

vvx x ((θθφφ))vvyy ( (θθφφ))vvzz ( (θθ))

duration

v(module)

= random

= from data

5443 samples of (xinyinzin)

14

Meteor entering the cone of visibility

Meteor going out from the cone

15

THE LIGHT TRACKTHE LIGHT TRACKpersistence of the signal in the atmospherepersistence of the signal in the atmosphere

THE LIGHT TRACKTHE LIGHT TRACKpersistence of the signal in the atmospherepersistence of the signal in the atmosphere

Sequence of a 1999 Leonid fireball captured from an observing site in the Italian AlpsThe meteor was brighter than the full moon and left a smoke trail that was visible for more than 20 minutes Features of this kind should be observable by the JEM-Euso IR camera

16Time(s)

The decrease of intensity is an exponential function of time

I asymp eI asymp eAtAt

A = negative damping coefficient[countssec]

A (countss)

LEO18 -122

LEO27 -469

LEO51 -1952

Sky background

10 pheGTU10 pheGTU

no signal persistence for flux below this value(~full moon)

Beforeonly one

moving point

Now ldquostripesrdquo groups of

fading pointsFrom the article of L Shrbeny and P Spurny Astronomy amp Astrophysics vol 506 1445-1454 (2009)

17

LIGHT TRACK LIGHT TRACK SIMULATORSIMULATOR

INPUT INPUT = output files of the meteornuclearite simulator

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

OUTPUT OUTPUT

LIGHT TRACK FROM THE GROUNDFROM THE GROUND

STRIPES OFtimestepx y z fluxx y z of the ISS

LIGHT TRACK FROM THE GROUNDFROM THE GROUND

STRIPES OFtimestepx y z fluxx y z of the ISS

LIGHT TRACKFROM ISSFROM ISS

STRIPES OFtimestep

x y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

LIGHT TRACKFROM ISSFROM ISS

STRIPES OFtimestep

x y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

First point the most brightful OLD SIMULATOR DATA

Other points flux RECEIVED ON THE GROUND

I asymp eAt

Flux(ISS)=Flux(ground) x dist(ground)2dist(ISS)2

First point the most brightful OLD SIMULATOR DATA

Other points flux RECEIVED ON THE GROUND

I asymp eAt

Flux(ISS)=Flux(ground) x dist(ground)2dist(ISS)2

Choice ofthe exponential

coefficient A A

Choice ofthe exponential

coefficient A A

18

Beginning of an output Beginning of an output file from ISSfile from ISSthe data are not the data are not grouped in stripesgrouped in stripes

Time(s) x(km) y(km) z(km) Flux(pheGTU)

Θ(arcsec)

Φ(deg)

x(pix) y(pix)

1a

2a

First 4 First 4 stripesstripes

Abs mag 3

~ eAt

A= -1

0028000 -10064 -9668 -300132 1009877 95841 -1362 -2560 -2459 0029000 -10066 -9656 -300137 1043528 95792 -1362 -2560 -2456 0030000 -10074 -9656 -300137 1022863 95830 -1362 -2562 -2456 0031000 -10082 -9656 -300137 1002608 95869 -1362 -2564 -2456 0030000 -10069 -9644 -300142 1077082 95747 -1362 -2561 -2453 0031000 -10077 -9644 -300142 1055753 95786 -1363 -2563 -2453 0032000 -10085 -9644 -300142 1034846 95824 -1363 -2565 -2453 0033000 -10092 -9644 -300142 1014352 95863 -1363 -2567 -2453 0031000 -10071 -9633 -300146 1110570 95702 -1363 -2561 -2450 0032000 -10079 -9633 -300146 1088578 95741 -1363 -2563 -2450 0033000 -10086 -9633 -300146 1067021 95780 -1363 -2565 -2450 0034000 -10094 -9633 -300146 1045890 95818 -1363 -2567 -2450 0035000 -10102 -9633 -300146 1025179 95857 -1364 -2569 -2450 0036000 -10110 -9633 -300146 1004877 95896 -1364 -2571 -2450

3a

4a

with persistence(train)NO persistence(head)

19

~ e At

A= - 4 A= - 20

Abs mag 3

NO persistence

with persistence

20

Abs mag 3Abs mag 3

A= -1 A= -4

A= -10 A= -20

with persistence NO persistence

X (PIXELS) IN FUNCTION OF TIME

21

Abs mag 0Abs mag 0A= -1

A= -4

A= -10 A= -20

with persistence NO persistence

22

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere Divide the output file into

groups of stripes

Find zfor each stripes

with this formula using

the first term (ldquo1rdquo) fixed

and changingthe others(ldquo2rdquo)

Find x yvx vy vz

(with their errors)

z = 400 ndash vmiddott tg[θ2]radic(1+tan[φ2]2) ndash tg[θ1]radic(1+tan[φ1]2)

y = yiss(t0)+tan(φ)[x-xiss(t0) - vt]

x = xiss+vt+(z-400)middottan(θ)radic1+tan(φ)2

0

y

z

400 km

ISS (xissyiss400)

(xyz)

xφ1

θ2

φ2

θ1

Development of another numerical program

23

ResultsResultsResultsResults Font light track output file with A= -1 and abs mag = 3 Total stripes 4717 There are selected three samples from three different stripes of the output file

NdegNdegx

(km)plusmnσ

x

(km)

x expected

(km)

y(km)

plusmnσy

(km)

y expected

(km)

z(km)

plusmnσz

(km)

z expected

(km)

11 -12 15 -01 62 07 62 967 16 975

22 -35 10 -21 176 08 175 910 21 930

33 -60 09 -54 287 12 286 869 36 886

kmsplusmnσplusmnσ

vv

(kms)(kms)

Expectedvalue

(kms)

vxvx 21 17 55

vyvy 105 10 119

vz -52 24 -42

Time error = 05 ms Angle φ error given by the propagation formula where φ = arctan(ypixxpix) σxpix σypix = plusmn 1 pixel Angle θ error = 0075deg = 270 arcsec = 1pixel The associate errors are all calculated using the propagation formula

Expected value of x y and z refers to the most brightful point of each stripe Expected value of velocity

is given by the input file

vmodule (kms)

plusmnσplusmnσvv

(kms)(kms)

Expectedvalue

(kms)

119 31 138

24

ConclusionsConclusions

A simulation of different meteors light profiles as seen from JEM-EUSO has been performed on the evidence coming from ground based photographic records

Starting from ISS measurements of θ amp φ angles and taking profit of the persistence of the signal in the atmosphere it is possible to find position and velocity vectors of a meteor during its passage in the JEM-EUSO field of view

A study of the answer in pixels of JEM-EUSO focal detector can be done in future using these data

25

Thank you

26

bull SpeedSpeed meteor up to 70 kmsec Dark Matter nuclearites ~ 300kmsec (nuclearite max velocity value 570 kms meteor max value 72 kms)

bull Light profileLight profile in meteors the light starts immediately and then decreases due to the mass ablation most of the meteors doesnrsquot reach earth

On the contrary nuclearites are very compact objects the energy loss is similar to the one of an elementary particle No mass ablation The light emission is constant at h hle max (very low altitudes)hmax = 27middot ln (m 12 middot 10-5 g) km (m 01 ndash 100 g hmax 24 ndash 60 km)

M = 158 ndash 167 middot log10 (m 1 microg) (m 01 ndash 100 g M 75 ndash 25)

A nuclearite of mass gt 01 g should cross the entire earth and can move upwardJEM-EUSO could detect also upward going nuclearites

Criteria to identify Nuclearites in Jem-Euso

and differences with meteors

27

Nuclearites and meteors comparisonNuclearites and meteors comparison

1

2

3

1) up-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

h = 40 km 00001 km

2) down-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

3) Meteor v = 70 kms θ = 45deg h = 100 km

Abs mag = 17 Abs mag sec burst = -1

Light profile

Apparent motion

1

2

3

time(s)

ph

oto

ns

time(s)

θ (a

rcse

c )

Nuclearites are much faster than meteors

Graphics done in collaboration with Giulia Bruno

  • Pagina 1
  • Slide 2
  • Slide 3
  • Pagina 4
  • Slide 7
  • Pagina 6
  • Pagina 7
  • Meteor amp Nuclearite simulation
  • Pagina 9
  • Pagina 10
  • Pagina 11
  • Pagina 12
  • Pagina 13
  • Pagina 14
  • Pagina 15
  • Pagina 16
  • Pagina 17
  • Pagina 18
  • Pagina 19
  • Pagina 20
  • Pagina 21
  • Pagina 22
  • Pagina 23
  • Pagina 24
  • Pagina 25
Page 3: SIMULATION OF LIGHT PROFILES OF METEORS AND ITS

3

FoV on Earth

1)Nadir1)Nadir2)Tilted (38deg)2)Tilted (38deg)

What is JEM-EUSOMISSION amp INSTRUMENT

PARAMETERS

Time of launch year 2017Duration 3 years (+2 years)Height of the Orbit ~ 400 km Latitude amp longitude 516deg N - 516deg S (for all longitudes)Period of the Orbit 90 mins

Field of view plusmn 30degObservational aperture on the ground area ~ circle of 250 km radiusAngular resolution 007degPixel size at ground 560 mPixel size 29 mmNumber of pixels ~ 3 times 105

Event time sampling 25 micros = 1GTUFocal surface area 45 m2

ISS orbitISS orbit

1)2)

4

Optics and electronicsOptics and electronics

33 Fresnel lenses Detector Focal Surfacesingle KI pixel

MAPMTpixel

Working modesDIGITAL (MAPMT

pixel)1 ndash 30 phepixGTUANALOG (charge

integration)KI pixels = 4 Χ 2 MAPMT pixels

10 ndash 106 phepixGTUGate Time Unit (GTU) = 25 micros

1122

33

5

Meteor of the Perseids observed from ISS (Aug 2011)

JEM-EUSO on ISS

bull Beginning point ~ 75 divide 120 kmbull End point ~ 30 divide 70 kmbull Duration ~ 05 divide 3 sbull Length ~ 10 divide 20 kmbull Type sporadic showers (~ 25 obs meteors)bull Frequency ~ 5 divide 100 per hour

(up to thousands during meteor storms)bull Velocity ~ 12 divide 70 kms bull Light spectrum violet to red

6

M = absolute magnitude in the zenith of the observer at a height of 100 km

-5 lt M lt 7 meteor (mass 100 g divide 2mg)

M lt - 8 bolide or fireball (meteoroid mass 10divide100 kg)

M lt -17 superbolide ((meteoroid mass gt 1000 kg)

The Peekskill fireball (Oct 9 1992)

Leonid meteor swarm in 2001 taken by Hivison camera

Meteor shower the LeonidsMeteor shower the Leonids(from Leo constellation)(from Leo constellation)

Different types of lightcurvesDifferent types of lightcurves

Meteor shower the LeonidsMeteor shower the Leonids(from Leo constellation)(from Leo constellation)

Different types of lightcurvesDifferent types of lightcurves

From the article of L Shrbeny and P Spurny ldquoPrecise data on Leonid fireballs from all-sky photographic recordsrdquo Astronomy amp Astrophysics vol 506 1445-1454 (2009)

8

Meteor amp Nuclearite simulationMeteor amp Nuclearite simulationMeteor amp Nuclearite simulationMeteor amp Nuclearite simulation

ISSISS

height of flight

velocity

LIGHT CURVELIGHT CURVE

Meteor yesno secondary burstpolynomial coefficients

Nuclearite M(mass) dependence (only) emission for h lt hmax

METEORMETEOR beginning height

yesno random generationdurationv

x v

y v

z

absolute magnitudex0y0 of ISS

METEOR METEOR NUCLEARITENUCLEARITE

SIMULATORSIMULATOR

NUCLEARITENUCLEARITE hmax

yesno random generationabsolute magnitude (mass)

x0y0 of ISSvx vy vz (any vz possible)

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

INPUTINPUTOUTPUTOUTPUT

9

Computation of the fluxComputation of the fluxComputation of the fluxComputation of the flux

TABLE from ldquoJEM-EUSOMeteor and Nuclearite observationsrdquo submitted to experimental astronomy (JEM-EUSO collaborations)

Data for a meteor in the zenith at a height of 100 km from the ground (300 km from the ISS)The flux of phe (ph) is on the ISS

Absolute magnitude M = - 25 x log10

[Flux(h=100)] + C

Apparent magnitude m = - 25 x log10

(Flux(h)) + C

For distance = 100 km (from the ground) m = M = -25 log

10[Flux(h)Flux(h=100)]

Flux(Flux(h)) = Flux(= Flux(h=100) x 10 ) x 10 - 04(m-M)- 04(m-M)

Absolutemagnitude

(M)

U-band flux(ergscm2A)

photons(s-1)

photo-electrons(GTU=25 μs)-1

mass(g)

collisions in JEM-EUSO

FoV

7 67 10 -12 43 10 7 4 210 -3 1s

5 42 10 -11 27 10 8 23 10 -2 6min

0 42 10 -9 27 10 10 2300 1 027orbit

-5 42 10 -7 27 10 12 23 10 5 100 63year

10

Leonids SimulationsLeonids Simulations

Meteor No

vin (kms) M

max

LEO18 7130 -119

LEO19 7163 -118

LEO21 7145 -115

LEO27 7159 -138

LEO50 7166 -101

LEO51 70 -129

Physical data on the 199920012002 and 2006 Leonid fireballs

Table taken from the article of L Shrbeny and P Spurny Astronomy amp Astrophysics vol 506 1445-1454 (2009)

vin = initial velocity

Mmax

= maximum absolute magnitude

Equation of the light profileIntensity = function of time

I(t) = p0+p1t+p2t2+p3t3+polinomy of degree 88

11

12

13

Meteors out of cone of visibilityMeteors out of cone of visibilityMeteors out of cone of visibilityMeteors out of cone of visibility

Random generator numerical program75 lt zin lt 120 km30 lt zfin lt 70 km11 lt v lt 70 kmsviss = 78 kmsduration lt 4 szin

zfin

rin (zin)rfin (zfin)(radius)

xin (rin)yin (rin)

θφxfin (xinzinzfinθφ)yfin (yinzinzfinθφ)

vvx x ((θθφφ))vvyy ( (θθφφ))vvzz ( (θθ))

duration

v(module)

= random

= from data

5443 samples of (xinyinzin)

14

Meteor entering the cone of visibility

Meteor going out from the cone

15

THE LIGHT TRACKTHE LIGHT TRACKpersistence of the signal in the atmospherepersistence of the signal in the atmosphere

THE LIGHT TRACKTHE LIGHT TRACKpersistence of the signal in the atmospherepersistence of the signal in the atmosphere

Sequence of a 1999 Leonid fireball captured from an observing site in the Italian AlpsThe meteor was brighter than the full moon and left a smoke trail that was visible for more than 20 minutes Features of this kind should be observable by the JEM-Euso IR camera

16Time(s)

The decrease of intensity is an exponential function of time

I asymp eI asymp eAtAt

A = negative damping coefficient[countssec]

A (countss)

LEO18 -122

LEO27 -469

LEO51 -1952

Sky background

10 pheGTU10 pheGTU

no signal persistence for flux below this value(~full moon)

Beforeonly one

moving point

Now ldquostripesrdquo groups of

fading pointsFrom the article of L Shrbeny and P Spurny Astronomy amp Astrophysics vol 506 1445-1454 (2009)

17

LIGHT TRACK LIGHT TRACK SIMULATORSIMULATOR

INPUT INPUT = output files of the meteornuclearite simulator

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

OUTPUT OUTPUT

LIGHT TRACK FROM THE GROUNDFROM THE GROUND

STRIPES OFtimestepx y z fluxx y z of the ISS

LIGHT TRACK FROM THE GROUNDFROM THE GROUND

STRIPES OFtimestepx y z fluxx y z of the ISS

LIGHT TRACKFROM ISSFROM ISS

STRIPES OFtimestep

x y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

LIGHT TRACKFROM ISSFROM ISS

STRIPES OFtimestep

x y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

First point the most brightful OLD SIMULATOR DATA

Other points flux RECEIVED ON THE GROUND

I asymp eAt

Flux(ISS)=Flux(ground) x dist(ground)2dist(ISS)2

First point the most brightful OLD SIMULATOR DATA

Other points flux RECEIVED ON THE GROUND

I asymp eAt

Flux(ISS)=Flux(ground) x dist(ground)2dist(ISS)2

Choice ofthe exponential

coefficient A A

Choice ofthe exponential

coefficient A A

18

Beginning of an output Beginning of an output file from ISSfile from ISSthe data are not the data are not grouped in stripesgrouped in stripes

Time(s) x(km) y(km) z(km) Flux(pheGTU)

Θ(arcsec)

Φ(deg)

x(pix) y(pix)

1a

2a

First 4 First 4 stripesstripes

Abs mag 3

~ eAt

A= -1

0028000 -10064 -9668 -300132 1009877 95841 -1362 -2560 -2459 0029000 -10066 -9656 -300137 1043528 95792 -1362 -2560 -2456 0030000 -10074 -9656 -300137 1022863 95830 -1362 -2562 -2456 0031000 -10082 -9656 -300137 1002608 95869 -1362 -2564 -2456 0030000 -10069 -9644 -300142 1077082 95747 -1362 -2561 -2453 0031000 -10077 -9644 -300142 1055753 95786 -1363 -2563 -2453 0032000 -10085 -9644 -300142 1034846 95824 -1363 -2565 -2453 0033000 -10092 -9644 -300142 1014352 95863 -1363 -2567 -2453 0031000 -10071 -9633 -300146 1110570 95702 -1363 -2561 -2450 0032000 -10079 -9633 -300146 1088578 95741 -1363 -2563 -2450 0033000 -10086 -9633 -300146 1067021 95780 -1363 -2565 -2450 0034000 -10094 -9633 -300146 1045890 95818 -1363 -2567 -2450 0035000 -10102 -9633 -300146 1025179 95857 -1364 -2569 -2450 0036000 -10110 -9633 -300146 1004877 95896 -1364 -2571 -2450

3a

4a

with persistence(train)NO persistence(head)

19

~ e At

A= - 4 A= - 20

Abs mag 3

NO persistence

with persistence

20

Abs mag 3Abs mag 3

A= -1 A= -4

A= -10 A= -20

with persistence NO persistence

X (PIXELS) IN FUNCTION OF TIME

21

Abs mag 0Abs mag 0A= -1

A= -4

A= -10 A= -20

with persistence NO persistence

22

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere Divide the output file into

groups of stripes

Find zfor each stripes

with this formula using

the first term (ldquo1rdquo) fixed

and changingthe others(ldquo2rdquo)

Find x yvx vy vz

(with their errors)

z = 400 ndash vmiddott tg[θ2]radic(1+tan[φ2]2) ndash tg[θ1]radic(1+tan[φ1]2)

y = yiss(t0)+tan(φ)[x-xiss(t0) - vt]

x = xiss+vt+(z-400)middottan(θ)radic1+tan(φ)2

0

y

z

400 km

ISS (xissyiss400)

(xyz)

xφ1

θ2

φ2

θ1

Development of another numerical program

23

ResultsResultsResultsResults Font light track output file with A= -1 and abs mag = 3 Total stripes 4717 There are selected three samples from three different stripes of the output file

NdegNdegx

(km)plusmnσ

x

(km)

x expected

(km)

y(km)

plusmnσy

(km)

y expected

(km)

z(km)

plusmnσz

(km)

z expected

(km)

11 -12 15 -01 62 07 62 967 16 975

22 -35 10 -21 176 08 175 910 21 930

33 -60 09 -54 287 12 286 869 36 886

kmsplusmnσplusmnσ

vv

(kms)(kms)

Expectedvalue

(kms)

vxvx 21 17 55

vyvy 105 10 119

vz -52 24 -42

Time error = 05 ms Angle φ error given by the propagation formula where φ = arctan(ypixxpix) σxpix σypix = plusmn 1 pixel Angle θ error = 0075deg = 270 arcsec = 1pixel The associate errors are all calculated using the propagation formula

Expected value of x y and z refers to the most brightful point of each stripe Expected value of velocity

is given by the input file

vmodule (kms)

plusmnσplusmnσvv

(kms)(kms)

Expectedvalue

(kms)

119 31 138

24

ConclusionsConclusions

A simulation of different meteors light profiles as seen from JEM-EUSO has been performed on the evidence coming from ground based photographic records

Starting from ISS measurements of θ amp φ angles and taking profit of the persistence of the signal in the atmosphere it is possible to find position and velocity vectors of a meteor during its passage in the JEM-EUSO field of view

A study of the answer in pixels of JEM-EUSO focal detector can be done in future using these data

25

Thank you

26

bull SpeedSpeed meteor up to 70 kmsec Dark Matter nuclearites ~ 300kmsec (nuclearite max velocity value 570 kms meteor max value 72 kms)

bull Light profileLight profile in meteors the light starts immediately and then decreases due to the mass ablation most of the meteors doesnrsquot reach earth

On the contrary nuclearites are very compact objects the energy loss is similar to the one of an elementary particle No mass ablation The light emission is constant at h hle max (very low altitudes)hmax = 27middot ln (m 12 middot 10-5 g) km (m 01 ndash 100 g hmax 24 ndash 60 km)

M = 158 ndash 167 middot log10 (m 1 microg) (m 01 ndash 100 g M 75 ndash 25)

A nuclearite of mass gt 01 g should cross the entire earth and can move upwardJEM-EUSO could detect also upward going nuclearites

Criteria to identify Nuclearites in Jem-Euso

and differences with meteors

27

Nuclearites and meteors comparisonNuclearites and meteors comparison

1

2

3

1) up-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

h = 40 km 00001 km

2) down-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

3) Meteor v = 70 kms θ = 45deg h = 100 km

Abs mag = 17 Abs mag sec burst = -1

Light profile

Apparent motion

1

2

3

time(s)

ph

oto

ns

time(s)

θ (a

rcse

c )

Nuclearites are much faster than meteors

Graphics done in collaboration with Giulia Bruno

  • Pagina 1
  • Slide 2
  • Slide 3
  • Pagina 4
  • Slide 7
  • Pagina 6
  • Pagina 7
  • Meteor amp Nuclearite simulation
  • Pagina 9
  • Pagina 10
  • Pagina 11
  • Pagina 12
  • Pagina 13
  • Pagina 14
  • Pagina 15
  • Pagina 16
  • Pagina 17
  • Pagina 18
  • Pagina 19
  • Pagina 20
  • Pagina 21
  • Pagina 22
  • Pagina 23
  • Pagina 24
  • Pagina 25
Page 4: SIMULATION OF LIGHT PROFILES OF METEORS AND ITS

4

Optics and electronicsOptics and electronics

33 Fresnel lenses Detector Focal Surfacesingle KI pixel

MAPMTpixel

Working modesDIGITAL (MAPMT

pixel)1 ndash 30 phepixGTUANALOG (charge

integration)KI pixels = 4 Χ 2 MAPMT pixels

10 ndash 106 phepixGTUGate Time Unit (GTU) = 25 micros

1122

33

5

Meteor of the Perseids observed from ISS (Aug 2011)

JEM-EUSO on ISS

bull Beginning point ~ 75 divide 120 kmbull End point ~ 30 divide 70 kmbull Duration ~ 05 divide 3 sbull Length ~ 10 divide 20 kmbull Type sporadic showers (~ 25 obs meteors)bull Frequency ~ 5 divide 100 per hour

(up to thousands during meteor storms)bull Velocity ~ 12 divide 70 kms bull Light spectrum violet to red

6

M = absolute magnitude in the zenith of the observer at a height of 100 km

-5 lt M lt 7 meteor (mass 100 g divide 2mg)

M lt - 8 bolide or fireball (meteoroid mass 10divide100 kg)

M lt -17 superbolide ((meteoroid mass gt 1000 kg)

The Peekskill fireball (Oct 9 1992)

Leonid meteor swarm in 2001 taken by Hivison camera

Meteor shower the LeonidsMeteor shower the Leonids(from Leo constellation)(from Leo constellation)

Different types of lightcurvesDifferent types of lightcurves

Meteor shower the LeonidsMeteor shower the Leonids(from Leo constellation)(from Leo constellation)

Different types of lightcurvesDifferent types of lightcurves

From the article of L Shrbeny and P Spurny ldquoPrecise data on Leonid fireballs from all-sky photographic recordsrdquo Astronomy amp Astrophysics vol 506 1445-1454 (2009)

8

Meteor amp Nuclearite simulationMeteor amp Nuclearite simulationMeteor amp Nuclearite simulationMeteor amp Nuclearite simulation

ISSISS

height of flight

velocity

LIGHT CURVELIGHT CURVE

Meteor yesno secondary burstpolynomial coefficients

Nuclearite M(mass) dependence (only) emission for h lt hmax

METEORMETEOR beginning height

yesno random generationdurationv

x v

y v

z

absolute magnitudex0y0 of ISS

METEOR METEOR NUCLEARITENUCLEARITE

SIMULATORSIMULATOR

NUCLEARITENUCLEARITE hmax

yesno random generationabsolute magnitude (mass)

x0y0 of ISSvx vy vz (any vz possible)

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

INPUTINPUTOUTPUTOUTPUT

9

Computation of the fluxComputation of the fluxComputation of the fluxComputation of the flux

TABLE from ldquoJEM-EUSOMeteor and Nuclearite observationsrdquo submitted to experimental astronomy (JEM-EUSO collaborations)

Data for a meteor in the zenith at a height of 100 km from the ground (300 km from the ISS)The flux of phe (ph) is on the ISS

Absolute magnitude M = - 25 x log10

[Flux(h=100)] + C

Apparent magnitude m = - 25 x log10

(Flux(h)) + C

For distance = 100 km (from the ground) m = M = -25 log

10[Flux(h)Flux(h=100)]

Flux(Flux(h)) = Flux(= Flux(h=100) x 10 ) x 10 - 04(m-M)- 04(m-M)

Absolutemagnitude

(M)

U-band flux(ergscm2A)

photons(s-1)

photo-electrons(GTU=25 μs)-1

mass(g)

collisions in JEM-EUSO

FoV

7 67 10 -12 43 10 7 4 210 -3 1s

5 42 10 -11 27 10 8 23 10 -2 6min

0 42 10 -9 27 10 10 2300 1 027orbit

-5 42 10 -7 27 10 12 23 10 5 100 63year

10

Leonids SimulationsLeonids Simulations

Meteor No

vin (kms) M

max

LEO18 7130 -119

LEO19 7163 -118

LEO21 7145 -115

LEO27 7159 -138

LEO50 7166 -101

LEO51 70 -129

Physical data on the 199920012002 and 2006 Leonid fireballs

Table taken from the article of L Shrbeny and P Spurny Astronomy amp Astrophysics vol 506 1445-1454 (2009)

vin = initial velocity

Mmax

= maximum absolute magnitude

Equation of the light profileIntensity = function of time

I(t) = p0+p1t+p2t2+p3t3+polinomy of degree 88

11

12

13

Meteors out of cone of visibilityMeteors out of cone of visibilityMeteors out of cone of visibilityMeteors out of cone of visibility

Random generator numerical program75 lt zin lt 120 km30 lt zfin lt 70 km11 lt v lt 70 kmsviss = 78 kmsduration lt 4 szin

zfin

rin (zin)rfin (zfin)(radius)

xin (rin)yin (rin)

θφxfin (xinzinzfinθφ)yfin (yinzinzfinθφ)

vvx x ((θθφφ))vvyy ( (θθφφ))vvzz ( (θθ))

duration

v(module)

= random

= from data

5443 samples of (xinyinzin)

14

Meteor entering the cone of visibility

Meteor going out from the cone

15

THE LIGHT TRACKTHE LIGHT TRACKpersistence of the signal in the atmospherepersistence of the signal in the atmosphere

THE LIGHT TRACKTHE LIGHT TRACKpersistence of the signal in the atmospherepersistence of the signal in the atmosphere

Sequence of a 1999 Leonid fireball captured from an observing site in the Italian AlpsThe meteor was brighter than the full moon and left a smoke trail that was visible for more than 20 minutes Features of this kind should be observable by the JEM-Euso IR camera

16Time(s)

The decrease of intensity is an exponential function of time

I asymp eI asymp eAtAt

A = negative damping coefficient[countssec]

A (countss)

LEO18 -122

LEO27 -469

LEO51 -1952

Sky background

10 pheGTU10 pheGTU

no signal persistence for flux below this value(~full moon)

Beforeonly one

moving point

Now ldquostripesrdquo groups of

fading pointsFrom the article of L Shrbeny and P Spurny Astronomy amp Astrophysics vol 506 1445-1454 (2009)

17

LIGHT TRACK LIGHT TRACK SIMULATORSIMULATOR

INPUT INPUT = output files of the meteornuclearite simulator

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

OUTPUT OUTPUT

LIGHT TRACK FROM THE GROUNDFROM THE GROUND

STRIPES OFtimestepx y z fluxx y z of the ISS

LIGHT TRACK FROM THE GROUNDFROM THE GROUND

STRIPES OFtimestepx y z fluxx y z of the ISS

LIGHT TRACKFROM ISSFROM ISS

STRIPES OFtimestep

x y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

LIGHT TRACKFROM ISSFROM ISS

STRIPES OFtimestep

x y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

First point the most brightful OLD SIMULATOR DATA

Other points flux RECEIVED ON THE GROUND

I asymp eAt

Flux(ISS)=Flux(ground) x dist(ground)2dist(ISS)2

First point the most brightful OLD SIMULATOR DATA

Other points flux RECEIVED ON THE GROUND

I asymp eAt

Flux(ISS)=Flux(ground) x dist(ground)2dist(ISS)2

Choice ofthe exponential

coefficient A A

Choice ofthe exponential

coefficient A A

18

Beginning of an output Beginning of an output file from ISSfile from ISSthe data are not the data are not grouped in stripesgrouped in stripes

Time(s) x(km) y(km) z(km) Flux(pheGTU)

Θ(arcsec)

Φ(deg)

x(pix) y(pix)

1a

2a

First 4 First 4 stripesstripes

Abs mag 3

~ eAt

A= -1

0028000 -10064 -9668 -300132 1009877 95841 -1362 -2560 -2459 0029000 -10066 -9656 -300137 1043528 95792 -1362 -2560 -2456 0030000 -10074 -9656 -300137 1022863 95830 -1362 -2562 -2456 0031000 -10082 -9656 -300137 1002608 95869 -1362 -2564 -2456 0030000 -10069 -9644 -300142 1077082 95747 -1362 -2561 -2453 0031000 -10077 -9644 -300142 1055753 95786 -1363 -2563 -2453 0032000 -10085 -9644 -300142 1034846 95824 -1363 -2565 -2453 0033000 -10092 -9644 -300142 1014352 95863 -1363 -2567 -2453 0031000 -10071 -9633 -300146 1110570 95702 -1363 -2561 -2450 0032000 -10079 -9633 -300146 1088578 95741 -1363 -2563 -2450 0033000 -10086 -9633 -300146 1067021 95780 -1363 -2565 -2450 0034000 -10094 -9633 -300146 1045890 95818 -1363 -2567 -2450 0035000 -10102 -9633 -300146 1025179 95857 -1364 -2569 -2450 0036000 -10110 -9633 -300146 1004877 95896 -1364 -2571 -2450

3a

4a

with persistence(train)NO persistence(head)

19

~ e At

A= - 4 A= - 20

Abs mag 3

NO persistence

with persistence

20

Abs mag 3Abs mag 3

A= -1 A= -4

A= -10 A= -20

with persistence NO persistence

X (PIXELS) IN FUNCTION OF TIME

21

Abs mag 0Abs mag 0A= -1

A= -4

A= -10 A= -20

with persistence NO persistence

22

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere Divide the output file into

groups of stripes

Find zfor each stripes

with this formula using

the first term (ldquo1rdquo) fixed

and changingthe others(ldquo2rdquo)

Find x yvx vy vz

(with their errors)

z = 400 ndash vmiddott tg[θ2]radic(1+tan[φ2]2) ndash tg[θ1]radic(1+tan[φ1]2)

y = yiss(t0)+tan(φ)[x-xiss(t0) - vt]

x = xiss+vt+(z-400)middottan(θ)radic1+tan(φ)2

0

y

z

400 km

ISS (xissyiss400)

(xyz)

xφ1

θ2

φ2

θ1

Development of another numerical program

23

ResultsResultsResultsResults Font light track output file with A= -1 and abs mag = 3 Total stripes 4717 There are selected three samples from three different stripes of the output file

NdegNdegx

(km)plusmnσ

x

(km)

x expected

(km)

y(km)

plusmnσy

(km)

y expected

(km)

z(km)

plusmnσz

(km)

z expected

(km)

11 -12 15 -01 62 07 62 967 16 975

22 -35 10 -21 176 08 175 910 21 930

33 -60 09 -54 287 12 286 869 36 886

kmsplusmnσplusmnσ

vv

(kms)(kms)

Expectedvalue

(kms)

vxvx 21 17 55

vyvy 105 10 119

vz -52 24 -42

Time error = 05 ms Angle φ error given by the propagation formula where φ = arctan(ypixxpix) σxpix σypix = plusmn 1 pixel Angle θ error = 0075deg = 270 arcsec = 1pixel The associate errors are all calculated using the propagation formula

Expected value of x y and z refers to the most brightful point of each stripe Expected value of velocity

is given by the input file

vmodule (kms)

plusmnσplusmnσvv

(kms)(kms)

Expectedvalue

(kms)

119 31 138

24

ConclusionsConclusions

A simulation of different meteors light profiles as seen from JEM-EUSO has been performed on the evidence coming from ground based photographic records

Starting from ISS measurements of θ amp φ angles and taking profit of the persistence of the signal in the atmosphere it is possible to find position and velocity vectors of a meteor during its passage in the JEM-EUSO field of view

A study of the answer in pixels of JEM-EUSO focal detector can be done in future using these data

25

Thank you

26

bull SpeedSpeed meteor up to 70 kmsec Dark Matter nuclearites ~ 300kmsec (nuclearite max velocity value 570 kms meteor max value 72 kms)

bull Light profileLight profile in meteors the light starts immediately and then decreases due to the mass ablation most of the meteors doesnrsquot reach earth

On the contrary nuclearites are very compact objects the energy loss is similar to the one of an elementary particle No mass ablation The light emission is constant at h hle max (very low altitudes)hmax = 27middot ln (m 12 middot 10-5 g) km (m 01 ndash 100 g hmax 24 ndash 60 km)

M = 158 ndash 167 middot log10 (m 1 microg) (m 01 ndash 100 g M 75 ndash 25)

A nuclearite of mass gt 01 g should cross the entire earth and can move upwardJEM-EUSO could detect also upward going nuclearites

Criteria to identify Nuclearites in Jem-Euso

and differences with meteors

27

Nuclearites and meteors comparisonNuclearites and meteors comparison

1

2

3

1) up-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

h = 40 km 00001 km

2) down-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

3) Meteor v = 70 kms θ = 45deg h = 100 km

Abs mag = 17 Abs mag sec burst = -1

Light profile

Apparent motion

1

2

3

time(s)

ph

oto

ns

time(s)

θ (a

rcse

c )

Nuclearites are much faster than meteors

Graphics done in collaboration with Giulia Bruno

  • Pagina 1
  • Slide 2
  • Slide 3
  • Pagina 4
  • Slide 7
  • Pagina 6
  • Pagina 7
  • Meteor amp Nuclearite simulation
  • Pagina 9
  • Pagina 10
  • Pagina 11
  • Pagina 12
  • Pagina 13
  • Pagina 14
  • Pagina 15
  • Pagina 16
  • Pagina 17
  • Pagina 18
  • Pagina 19
  • Pagina 20
  • Pagina 21
  • Pagina 22
  • Pagina 23
  • Pagina 24
  • Pagina 25
Page 5: SIMULATION OF LIGHT PROFILES OF METEORS AND ITS

5

Meteor of the Perseids observed from ISS (Aug 2011)

JEM-EUSO on ISS

bull Beginning point ~ 75 divide 120 kmbull End point ~ 30 divide 70 kmbull Duration ~ 05 divide 3 sbull Length ~ 10 divide 20 kmbull Type sporadic showers (~ 25 obs meteors)bull Frequency ~ 5 divide 100 per hour

(up to thousands during meteor storms)bull Velocity ~ 12 divide 70 kms bull Light spectrum violet to red

6

M = absolute magnitude in the zenith of the observer at a height of 100 km

-5 lt M lt 7 meteor (mass 100 g divide 2mg)

M lt - 8 bolide or fireball (meteoroid mass 10divide100 kg)

M lt -17 superbolide ((meteoroid mass gt 1000 kg)

The Peekskill fireball (Oct 9 1992)

Leonid meteor swarm in 2001 taken by Hivison camera

Meteor shower the LeonidsMeteor shower the Leonids(from Leo constellation)(from Leo constellation)

Different types of lightcurvesDifferent types of lightcurves

Meteor shower the LeonidsMeteor shower the Leonids(from Leo constellation)(from Leo constellation)

Different types of lightcurvesDifferent types of lightcurves

From the article of L Shrbeny and P Spurny ldquoPrecise data on Leonid fireballs from all-sky photographic recordsrdquo Astronomy amp Astrophysics vol 506 1445-1454 (2009)

8

Meteor amp Nuclearite simulationMeteor amp Nuclearite simulationMeteor amp Nuclearite simulationMeteor amp Nuclearite simulation

ISSISS

height of flight

velocity

LIGHT CURVELIGHT CURVE

Meteor yesno secondary burstpolynomial coefficients

Nuclearite M(mass) dependence (only) emission for h lt hmax

METEORMETEOR beginning height

yesno random generationdurationv

x v

y v

z

absolute magnitudex0y0 of ISS

METEOR METEOR NUCLEARITENUCLEARITE

SIMULATORSIMULATOR

NUCLEARITENUCLEARITE hmax

yesno random generationabsolute magnitude (mass)

x0y0 of ISSvx vy vz (any vz possible)

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

INPUTINPUTOUTPUTOUTPUT

9

Computation of the fluxComputation of the fluxComputation of the fluxComputation of the flux

TABLE from ldquoJEM-EUSOMeteor and Nuclearite observationsrdquo submitted to experimental astronomy (JEM-EUSO collaborations)

Data for a meteor in the zenith at a height of 100 km from the ground (300 km from the ISS)The flux of phe (ph) is on the ISS

Absolute magnitude M = - 25 x log10

[Flux(h=100)] + C

Apparent magnitude m = - 25 x log10

(Flux(h)) + C

For distance = 100 km (from the ground) m = M = -25 log

10[Flux(h)Flux(h=100)]

Flux(Flux(h)) = Flux(= Flux(h=100) x 10 ) x 10 - 04(m-M)- 04(m-M)

Absolutemagnitude

(M)

U-band flux(ergscm2A)

photons(s-1)

photo-electrons(GTU=25 μs)-1

mass(g)

collisions in JEM-EUSO

FoV

7 67 10 -12 43 10 7 4 210 -3 1s

5 42 10 -11 27 10 8 23 10 -2 6min

0 42 10 -9 27 10 10 2300 1 027orbit

-5 42 10 -7 27 10 12 23 10 5 100 63year

10

Leonids SimulationsLeonids Simulations

Meteor No

vin (kms) M

max

LEO18 7130 -119

LEO19 7163 -118

LEO21 7145 -115

LEO27 7159 -138

LEO50 7166 -101

LEO51 70 -129

Physical data on the 199920012002 and 2006 Leonid fireballs

Table taken from the article of L Shrbeny and P Spurny Astronomy amp Astrophysics vol 506 1445-1454 (2009)

vin = initial velocity

Mmax

= maximum absolute magnitude

Equation of the light profileIntensity = function of time

I(t) = p0+p1t+p2t2+p3t3+polinomy of degree 88

11

12

13

Meteors out of cone of visibilityMeteors out of cone of visibilityMeteors out of cone of visibilityMeteors out of cone of visibility

Random generator numerical program75 lt zin lt 120 km30 lt zfin lt 70 km11 lt v lt 70 kmsviss = 78 kmsduration lt 4 szin

zfin

rin (zin)rfin (zfin)(radius)

xin (rin)yin (rin)

θφxfin (xinzinzfinθφ)yfin (yinzinzfinθφ)

vvx x ((θθφφ))vvyy ( (θθφφ))vvzz ( (θθ))

duration

v(module)

= random

= from data

5443 samples of (xinyinzin)

14

Meteor entering the cone of visibility

Meteor going out from the cone

15

THE LIGHT TRACKTHE LIGHT TRACKpersistence of the signal in the atmospherepersistence of the signal in the atmosphere

THE LIGHT TRACKTHE LIGHT TRACKpersistence of the signal in the atmospherepersistence of the signal in the atmosphere

Sequence of a 1999 Leonid fireball captured from an observing site in the Italian AlpsThe meteor was brighter than the full moon and left a smoke trail that was visible for more than 20 minutes Features of this kind should be observable by the JEM-Euso IR camera

16Time(s)

The decrease of intensity is an exponential function of time

I asymp eI asymp eAtAt

A = negative damping coefficient[countssec]

A (countss)

LEO18 -122

LEO27 -469

LEO51 -1952

Sky background

10 pheGTU10 pheGTU

no signal persistence for flux below this value(~full moon)

Beforeonly one

moving point

Now ldquostripesrdquo groups of

fading pointsFrom the article of L Shrbeny and P Spurny Astronomy amp Astrophysics vol 506 1445-1454 (2009)

17

LIGHT TRACK LIGHT TRACK SIMULATORSIMULATOR

INPUT INPUT = output files of the meteornuclearite simulator

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

OUTPUT OUTPUT

LIGHT TRACK FROM THE GROUNDFROM THE GROUND

STRIPES OFtimestepx y z fluxx y z of the ISS

LIGHT TRACK FROM THE GROUNDFROM THE GROUND

STRIPES OFtimestepx y z fluxx y z of the ISS

LIGHT TRACKFROM ISSFROM ISS

STRIPES OFtimestep

x y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

LIGHT TRACKFROM ISSFROM ISS

STRIPES OFtimestep

x y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

First point the most brightful OLD SIMULATOR DATA

Other points flux RECEIVED ON THE GROUND

I asymp eAt

Flux(ISS)=Flux(ground) x dist(ground)2dist(ISS)2

First point the most brightful OLD SIMULATOR DATA

Other points flux RECEIVED ON THE GROUND

I asymp eAt

Flux(ISS)=Flux(ground) x dist(ground)2dist(ISS)2

Choice ofthe exponential

coefficient A A

Choice ofthe exponential

coefficient A A

18

Beginning of an output Beginning of an output file from ISSfile from ISSthe data are not the data are not grouped in stripesgrouped in stripes

Time(s) x(km) y(km) z(km) Flux(pheGTU)

Θ(arcsec)

Φ(deg)

x(pix) y(pix)

1a

2a

First 4 First 4 stripesstripes

Abs mag 3

~ eAt

A= -1

0028000 -10064 -9668 -300132 1009877 95841 -1362 -2560 -2459 0029000 -10066 -9656 -300137 1043528 95792 -1362 -2560 -2456 0030000 -10074 -9656 -300137 1022863 95830 -1362 -2562 -2456 0031000 -10082 -9656 -300137 1002608 95869 -1362 -2564 -2456 0030000 -10069 -9644 -300142 1077082 95747 -1362 -2561 -2453 0031000 -10077 -9644 -300142 1055753 95786 -1363 -2563 -2453 0032000 -10085 -9644 -300142 1034846 95824 -1363 -2565 -2453 0033000 -10092 -9644 -300142 1014352 95863 -1363 -2567 -2453 0031000 -10071 -9633 -300146 1110570 95702 -1363 -2561 -2450 0032000 -10079 -9633 -300146 1088578 95741 -1363 -2563 -2450 0033000 -10086 -9633 -300146 1067021 95780 -1363 -2565 -2450 0034000 -10094 -9633 -300146 1045890 95818 -1363 -2567 -2450 0035000 -10102 -9633 -300146 1025179 95857 -1364 -2569 -2450 0036000 -10110 -9633 -300146 1004877 95896 -1364 -2571 -2450

3a

4a

with persistence(train)NO persistence(head)

19

~ e At

A= - 4 A= - 20

Abs mag 3

NO persistence

with persistence

20

Abs mag 3Abs mag 3

A= -1 A= -4

A= -10 A= -20

with persistence NO persistence

X (PIXELS) IN FUNCTION OF TIME

21

Abs mag 0Abs mag 0A= -1

A= -4

A= -10 A= -20

with persistence NO persistence

22

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere Divide the output file into

groups of stripes

Find zfor each stripes

with this formula using

the first term (ldquo1rdquo) fixed

and changingthe others(ldquo2rdquo)

Find x yvx vy vz

(with their errors)

z = 400 ndash vmiddott tg[θ2]radic(1+tan[φ2]2) ndash tg[θ1]radic(1+tan[φ1]2)

y = yiss(t0)+tan(φ)[x-xiss(t0) - vt]

x = xiss+vt+(z-400)middottan(θ)radic1+tan(φ)2

0

y

z

400 km

ISS (xissyiss400)

(xyz)

xφ1

θ2

φ2

θ1

Development of another numerical program

23

ResultsResultsResultsResults Font light track output file with A= -1 and abs mag = 3 Total stripes 4717 There are selected three samples from three different stripes of the output file

NdegNdegx

(km)plusmnσ

x

(km)

x expected

(km)

y(km)

plusmnσy

(km)

y expected

(km)

z(km)

plusmnσz

(km)

z expected

(km)

11 -12 15 -01 62 07 62 967 16 975

22 -35 10 -21 176 08 175 910 21 930

33 -60 09 -54 287 12 286 869 36 886

kmsplusmnσplusmnσ

vv

(kms)(kms)

Expectedvalue

(kms)

vxvx 21 17 55

vyvy 105 10 119

vz -52 24 -42

Time error = 05 ms Angle φ error given by the propagation formula where φ = arctan(ypixxpix) σxpix σypix = plusmn 1 pixel Angle θ error = 0075deg = 270 arcsec = 1pixel The associate errors are all calculated using the propagation formula

Expected value of x y and z refers to the most brightful point of each stripe Expected value of velocity

is given by the input file

vmodule (kms)

plusmnσplusmnσvv

(kms)(kms)

Expectedvalue

(kms)

119 31 138

24

ConclusionsConclusions

A simulation of different meteors light profiles as seen from JEM-EUSO has been performed on the evidence coming from ground based photographic records

Starting from ISS measurements of θ amp φ angles and taking profit of the persistence of the signal in the atmosphere it is possible to find position and velocity vectors of a meteor during its passage in the JEM-EUSO field of view

A study of the answer in pixels of JEM-EUSO focal detector can be done in future using these data

25

Thank you

26

bull SpeedSpeed meteor up to 70 kmsec Dark Matter nuclearites ~ 300kmsec (nuclearite max velocity value 570 kms meteor max value 72 kms)

bull Light profileLight profile in meteors the light starts immediately and then decreases due to the mass ablation most of the meteors doesnrsquot reach earth

On the contrary nuclearites are very compact objects the energy loss is similar to the one of an elementary particle No mass ablation The light emission is constant at h hle max (very low altitudes)hmax = 27middot ln (m 12 middot 10-5 g) km (m 01 ndash 100 g hmax 24 ndash 60 km)

M = 158 ndash 167 middot log10 (m 1 microg) (m 01 ndash 100 g M 75 ndash 25)

A nuclearite of mass gt 01 g should cross the entire earth and can move upwardJEM-EUSO could detect also upward going nuclearites

Criteria to identify Nuclearites in Jem-Euso

and differences with meteors

27

Nuclearites and meteors comparisonNuclearites and meteors comparison

1

2

3

1) up-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

h = 40 km 00001 km

2) down-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

3) Meteor v = 70 kms θ = 45deg h = 100 km

Abs mag = 17 Abs mag sec burst = -1

Light profile

Apparent motion

1

2

3

time(s)

ph

oto

ns

time(s)

θ (a

rcse

c )

Nuclearites are much faster than meteors

Graphics done in collaboration with Giulia Bruno

  • Pagina 1
  • Slide 2
  • Slide 3
  • Pagina 4
  • Slide 7
  • Pagina 6
  • Pagina 7
  • Meteor amp Nuclearite simulation
  • Pagina 9
  • Pagina 10
  • Pagina 11
  • Pagina 12
  • Pagina 13
  • Pagina 14
  • Pagina 15
  • Pagina 16
  • Pagina 17
  • Pagina 18
  • Pagina 19
  • Pagina 20
  • Pagina 21
  • Pagina 22
  • Pagina 23
  • Pagina 24
  • Pagina 25
Page 6: SIMULATION OF LIGHT PROFILES OF METEORS AND ITS

6

M = absolute magnitude in the zenith of the observer at a height of 100 km

-5 lt M lt 7 meteor (mass 100 g divide 2mg)

M lt - 8 bolide or fireball (meteoroid mass 10divide100 kg)

M lt -17 superbolide ((meteoroid mass gt 1000 kg)

The Peekskill fireball (Oct 9 1992)

Leonid meteor swarm in 2001 taken by Hivison camera

Meteor shower the LeonidsMeteor shower the Leonids(from Leo constellation)(from Leo constellation)

Different types of lightcurvesDifferent types of lightcurves

Meteor shower the LeonidsMeteor shower the Leonids(from Leo constellation)(from Leo constellation)

Different types of lightcurvesDifferent types of lightcurves

From the article of L Shrbeny and P Spurny ldquoPrecise data on Leonid fireballs from all-sky photographic recordsrdquo Astronomy amp Astrophysics vol 506 1445-1454 (2009)

8

Meteor amp Nuclearite simulationMeteor amp Nuclearite simulationMeteor amp Nuclearite simulationMeteor amp Nuclearite simulation

ISSISS

height of flight

velocity

LIGHT CURVELIGHT CURVE

Meteor yesno secondary burstpolynomial coefficients

Nuclearite M(mass) dependence (only) emission for h lt hmax

METEORMETEOR beginning height

yesno random generationdurationv

x v

y v

z

absolute magnitudex0y0 of ISS

METEOR METEOR NUCLEARITENUCLEARITE

SIMULATORSIMULATOR

NUCLEARITENUCLEARITE hmax

yesno random generationabsolute magnitude (mass)

x0y0 of ISSvx vy vz (any vz possible)

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

INPUTINPUTOUTPUTOUTPUT

9

Computation of the fluxComputation of the fluxComputation of the fluxComputation of the flux

TABLE from ldquoJEM-EUSOMeteor and Nuclearite observationsrdquo submitted to experimental astronomy (JEM-EUSO collaborations)

Data for a meteor in the zenith at a height of 100 km from the ground (300 km from the ISS)The flux of phe (ph) is on the ISS

Absolute magnitude M = - 25 x log10

[Flux(h=100)] + C

Apparent magnitude m = - 25 x log10

(Flux(h)) + C

For distance = 100 km (from the ground) m = M = -25 log

10[Flux(h)Flux(h=100)]

Flux(Flux(h)) = Flux(= Flux(h=100) x 10 ) x 10 - 04(m-M)- 04(m-M)

Absolutemagnitude

(M)

U-band flux(ergscm2A)

photons(s-1)

photo-electrons(GTU=25 μs)-1

mass(g)

collisions in JEM-EUSO

FoV

7 67 10 -12 43 10 7 4 210 -3 1s

5 42 10 -11 27 10 8 23 10 -2 6min

0 42 10 -9 27 10 10 2300 1 027orbit

-5 42 10 -7 27 10 12 23 10 5 100 63year

10

Leonids SimulationsLeonids Simulations

Meteor No

vin (kms) M

max

LEO18 7130 -119

LEO19 7163 -118

LEO21 7145 -115

LEO27 7159 -138

LEO50 7166 -101

LEO51 70 -129

Physical data on the 199920012002 and 2006 Leonid fireballs

Table taken from the article of L Shrbeny and P Spurny Astronomy amp Astrophysics vol 506 1445-1454 (2009)

vin = initial velocity

Mmax

= maximum absolute magnitude

Equation of the light profileIntensity = function of time

I(t) = p0+p1t+p2t2+p3t3+polinomy of degree 88

11

12

13

Meteors out of cone of visibilityMeteors out of cone of visibilityMeteors out of cone of visibilityMeteors out of cone of visibility

Random generator numerical program75 lt zin lt 120 km30 lt zfin lt 70 km11 lt v lt 70 kmsviss = 78 kmsduration lt 4 szin

zfin

rin (zin)rfin (zfin)(radius)

xin (rin)yin (rin)

θφxfin (xinzinzfinθφ)yfin (yinzinzfinθφ)

vvx x ((θθφφ))vvyy ( (θθφφ))vvzz ( (θθ))

duration

v(module)

= random

= from data

5443 samples of (xinyinzin)

14

Meteor entering the cone of visibility

Meteor going out from the cone

15

THE LIGHT TRACKTHE LIGHT TRACKpersistence of the signal in the atmospherepersistence of the signal in the atmosphere

THE LIGHT TRACKTHE LIGHT TRACKpersistence of the signal in the atmospherepersistence of the signal in the atmosphere

Sequence of a 1999 Leonid fireball captured from an observing site in the Italian AlpsThe meteor was brighter than the full moon and left a smoke trail that was visible for more than 20 minutes Features of this kind should be observable by the JEM-Euso IR camera

16Time(s)

The decrease of intensity is an exponential function of time

I asymp eI asymp eAtAt

A = negative damping coefficient[countssec]

A (countss)

LEO18 -122

LEO27 -469

LEO51 -1952

Sky background

10 pheGTU10 pheGTU

no signal persistence for flux below this value(~full moon)

Beforeonly one

moving point

Now ldquostripesrdquo groups of

fading pointsFrom the article of L Shrbeny and P Spurny Astronomy amp Astrophysics vol 506 1445-1454 (2009)

17

LIGHT TRACK LIGHT TRACK SIMULATORSIMULATOR

INPUT INPUT = output files of the meteornuclearite simulator

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

OUTPUT OUTPUT

LIGHT TRACK FROM THE GROUNDFROM THE GROUND

STRIPES OFtimestepx y z fluxx y z of the ISS

LIGHT TRACK FROM THE GROUNDFROM THE GROUND

STRIPES OFtimestepx y z fluxx y z of the ISS

LIGHT TRACKFROM ISSFROM ISS

STRIPES OFtimestep

x y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

LIGHT TRACKFROM ISSFROM ISS

STRIPES OFtimestep

x y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

First point the most brightful OLD SIMULATOR DATA

Other points flux RECEIVED ON THE GROUND

I asymp eAt

Flux(ISS)=Flux(ground) x dist(ground)2dist(ISS)2

First point the most brightful OLD SIMULATOR DATA

Other points flux RECEIVED ON THE GROUND

I asymp eAt

Flux(ISS)=Flux(ground) x dist(ground)2dist(ISS)2

Choice ofthe exponential

coefficient A A

Choice ofthe exponential

coefficient A A

18

Beginning of an output Beginning of an output file from ISSfile from ISSthe data are not the data are not grouped in stripesgrouped in stripes

Time(s) x(km) y(km) z(km) Flux(pheGTU)

Θ(arcsec)

Φ(deg)

x(pix) y(pix)

1a

2a

First 4 First 4 stripesstripes

Abs mag 3

~ eAt

A= -1

0028000 -10064 -9668 -300132 1009877 95841 -1362 -2560 -2459 0029000 -10066 -9656 -300137 1043528 95792 -1362 -2560 -2456 0030000 -10074 -9656 -300137 1022863 95830 -1362 -2562 -2456 0031000 -10082 -9656 -300137 1002608 95869 -1362 -2564 -2456 0030000 -10069 -9644 -300142 1077082 95747 -1362 -2561 -2453 0031000 -10077 -9644 -300142 1055753 95786 -1363 -2563 -2453 0032000 -10085 -9644 -300142 1034846 95824 -1363 -2565 -2453 0033000 -10092 -9644 -300142 1014352 95863 -1363 -2567 -2453 0031000 -10071 -9633 -300146 1110570 95702 -1363 -2561 -2450 0032000 -10079 -9633 -300146 1088578 95741 -1363 -2563 -2450 0033000 -10086 -9633 -300146 1067021 95780 -1363 -2565 -2450 0034000 -10094 -9633 -300146 1045890 95818 -1363 -2567 -2450 0035000 -10102 -9633 -300146 1025179 95857 -1364 -2569 -2450 0036000 -10110 -9633 -300146 1004877 95896 -1364 -2571 -2450

3a

4a

with persistence(train)NO persistence(head)

19

~ e At

A= - 4 A= - 20

Abs mag 3

NO persistence

with persistence

20

Abs mag 3Abs mag 3

A= -1 A= -4

A= -10 A= -20

with persistence NO persistence

X (PIXELS) IN FUNCTION OF TIME

21

Abs mag 0Abs mag 0A= -1

A= -4

A= -10 A= -20

with persistence NO persistence

22

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere Divide the output file into

groups of stripes

Find zfor each stripes

with this formula using

the first term (ldquo1rdquo) fixed

and changingthe others(ldquo2rdquo)

Find x yvx vy vz

(with their errors)

z = 400 ndash vmiddott tg[θ2]radic(1+tan[φ2]2) ndash tg[θ1]radic(1+tan[φ1]2)

y = yiss(t0)+tan(φ)[x-xiss(t0) - vt]

x = xiss+vt+(z-400)middottan(θ)radic1+tan(φ)2

0

y

z

400 km

ISS (xissyiss400)

(xyz)

xφ1

θ2

φ2

θ1

Development of another numerical program

23

ResultsResultsResultsResults Font light track output file with A= -1 and abs mag = 3 Total stripes 4717 There are selected three samples from three different stripes of the output file

NdegNdegx

(km)plusmnσ

x

(km)

x expected

(km)

y(km)

plusmnσy

(km)

y expected

(km)

z(km)

plusmnσz

(km)

z expected

(km)

11 -12 15 -01 62 07 62 967 16 975

22 -35 10 -21 176 08 175 910 21 930

33 -60 09 -54 287 12 286 869 36 886

kmsplusmnσplusmnσ

vv

(kms)(kms)

Expectedvalue

(kms)

vxvx 21 17 55

vyvy 105 10 119

vz -52 24 -42

Time error = 05 ms Angle φ error given by the propagation formula where φ = arctan(ypixxpix) σxpix σypix = plusmn 1 pixel Angle θ error = 0075deg = 270 arcsec = 1pixel The associate errors are all calculated using the propagation formula

Expected value of x y and z refers to the most brightful point of each stripe Expected value of velocity

is given by the input file

vmodule (kms)

plusmnσplusmnσvv

(kms)(kms)

Expectedvalue

(kms)

119 31 138

24

ConclusionsConclusions

A simulation of different meteors light profiles as seen from JEM-EUSO has been performed on the evidence coming from ground based photographic records

Starting from ISS measurements of θ amp φ angles and taking profit of the persistence of the signal in the atmosphere it is possible to find position and velocity vectors of a meteor during its passage in the JEM-EUSO field of view

A study of the answer in pixels of JEM-EUSO focal detector can be done in future using these data

25

Thank you

26

bull SpeedSpeed meteor up to 70 kmsec Dark Matter nuclearites ~ 300kmsec (nuclearite max velocity value 570 kms meteor max value 72 kms)

bull Light profileLight profile in meteors the light starts immediately and then decreases due to the mass ablation most of the meteors doesnrsquot reach earth

On the contrary nuclearites are very compact objects the energy loss is similar to the one of an elementary particle No mass ablation The light emission is constant at h hle max (very low altitudes)hmax = 27middot ln (m 12 middot 10-5 g) km (m 01 ndash 100 g hmax 24 ndash 60 km)

M = 158 ndash 167 middot log10 (m 1 microg) (m 01 ndash 100 g M 75 ndash 25)

A nuclearite of mass gt 01 g should cross the entire earth and can move upwardJEM-EUSO could detect also upward going nuclearites

Criteria to identify Nuclearites in Jem-Euso

and differences with meteors

27

Nuclearites and meteors comparisonNuclearites and meteors comparison

1

2

3

1) up-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

h = 40 km 00001 km

2) down-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

3) Meteor v = 70 kms θ = 45deg h = 100 km

Abs mag = 17 Abs mag sec burst = -1

Light profile

Apparent motion

1

2

3

time(s)

ph

oto

ns

time(s)

θ (a

rcse

c )

Nuclearites are much faster than meteors

Graphics done in collaboration with Giulia Bruno

  • Pagina 1
  • Slide 2
  • Slide 3
  • Pagina 4
  • Slide 7
  • Pagina 6
  • Pagina 7
  • Meteor amp Nuclearite simulation
  • Pagina 9
  • Pagina 10
  • Pagina 11
  • Pagina 12
  • Pagina 13
  • Pagina 14
  • Pagina 15
  • Pagina 16
  • Pagina 17
  • Pagina 18
  • Pagina 19
  • Pagina 20
  • Pagina 21
  • Pagina 22
  • Pagina 23
  • Pagina 24
  • Pagina 25
Page 7: SIMULATION OF LIGHT PROFILES OF METEORS AND ITS

Meteor shower the LeonidsMeteor shower the Leonids(from Leo constellation)(from Leo constellation)

Different types of lightcurvesDifferent types of lightcurves

Meteor shower the LeonidsMeteor shower the Leonids(from Leo constellation)(from Leo constellation)

Different types of lightcurvesDifferent types of lightcurves

From the article of L Shrbeny and P Spurny ldquoPrecise data on Leonid fireballs from all-sky photographic recordsrdquo Astronomy amp Astrophysics vol 506 1445-1454 (2009)

8

Meteor amp Nuclearite simulationMeteor amp Nuclearite simulationMeteor amp Nuclearite simulationMeteor amp Nuclearite simulation

ISSISS

height of flight

velocity

LIGHT CURVELIGHT CURVE

Meteor yesno secondary burstpolynomial coefficients

Nuclearite M(mass) dependence (only) emission for h lt hmax

METEORMETEOR beginning height

yesno random generationdurationv

x v

y v

z

absolute magnitudex0y0 of ISS

METEOR METEOR NUCLEARITENUCLEARITE

SIMULATORSIMULATOR

NUCLEARITENUCLEARITE hmax

yesno random generationabsolute magnitude (mass)

x0y0 of ISSvx vy vz (any vz possible)

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

INPUTINPUTOUTPUTOUTPUT

9

Computation of the fluxComputation of the fluxComputation of the fluxComputation of the flux

TABLE from ldquoJEM-EUSOMeteor and Nuclearite observationsrdquo submitted to experimental astronomy (JEM-EUSO collaborations)

Data for a meteor in the zenith at a height of 100 km from the ground (300 km from the ISS)The flux of phe (ph) is on the ISS

Absolute magnitude M = - 25 x log10

[Flux(h=100)] + C

Apparent magnitude m = - 25 x log10

(Flux(h)) + C

For distance = 100 km (from the ground) m = M = -25 log

10[Flux(h)Flux(h=100)]

Flux(Flux(h)) = Flux(= Flux(h=100) x 10 ) x 10 - 04(m-M)- 04(m-M)

Absolutemagnitude

(M)

U-band flux(ergscm2A)

photons(s-1)

photo-electrons(GTU=25 μs)-1

mass(g)

collisions in JEM-EUSO

FoV

7 67 10 -12 43 10 7 4 210 -3 1s

5 42 10 -11 27 10 8 23 10 -2 6min

0 42 10 -9 27 10 10 2300 1 027orbit

-5 42 10 -7 27 10 12 23 10 5 100 63year

10

Leonids SimulationsLeonids Simulations

Meteor No

vin (kms) M

max

LEO18 7130 -119

LEO19 7163 -118

LEO21 7145 -115

LEO27 7159 -138

LEO50 7166 -101

LEO51 70 -129

Physical data on the 199920012002 and 2006 Leonid fireballs

Table taken from the article of L Shrbeny and P Spurny Astronomy amp Astrophysics vol 506 1445-1454 (2009)

vin = initial velocity

Mmax

= maximum absolute magnitude

Equation of the light profileIntensity = function of time

I(t) = p0+p1t+p2t2+p3t3+polinomy of degree 88

11

12

13

Meteors out of cone of visibilityMeteors out of cone of visibilityMeteors out of cone of visibilityMeteors out of cone of visibility

Random generator numerical program75 lt zin lt 120 km30 lt zfin lt 70 km11 lt v lt 70 kmsviss = 78 kmsduration lt 4 szin

zfin

rin (zin)rfin (zfin)(radius)

xin (rin)yin (rin)

θφxfin (xinzinzfinθφ)yfin (yinzinzfinθφ)

vvx x ((θθφφ))vvyy ( (θθφφ))vvzz ( (θθ))

duration

v(module)

= random

= from data

5443 samples of (xinyinzin)

14

Meteor entering the cone of visibility

Meteor going out from the cone

15

THE LIGHT TRACKTHE LIGHT TRACKpersistence of the signal in the atmospherepersistence of the signal in the atmosphere

THE LIGHT TRACKTHE LIGHT TRACKpersistence of the signal in the atmospherepersistence of the signal in the atmosphere

Sequence of a 1999 Leonid fireball captured from an observing site in the Italian AlpsThe meteor was brighter than the full moon and left a smoke trail that was visible for more than 20 minutes Features of this kind should be observable by the JEM-Euso IR camera

16Time(s)

The decrease of intensity is an exponential function of time

I asymp eI asymp eAtAt

A = negative damping coefficient[countssec]

A (countss)

LEO18 -122

LEO27 -469

LEO51 -1952

Sky background

10 pheGTU10 pheGTU

no signal persistence for flux below this value(~full moon)

Beforeonly one

moving point

Now ldquostripesrdquo groups of

fading pointsFrom the article of L Shrbeny and P Spurny Astronomy amp Astrophysics vol 506 1445-1454 (2009)

17

LIGHT TRACK LIGHT TRACK SIMULATORSIMULATOR

INPUT INPUT = output files of the meteornuclearite simulator

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

OUTPUT OUTPUT

LIGHT TRACK FROM THE GROUNDFROM THE GROUND

STRIPES OFtimestepx y z fluxx y z of the ISS

LIGHT TRACK FROM THE GROUNDFROM THE GROUND

STRIPES OFtimestepx y z fluxx y z of the ISS

LIGHT TRACKFROM ISSFROM ISS

STRIPES OFtimestep

x y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

LIGHT TRACKFROM ISSFROM ISS

STRIPES OFtimestep

x y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

First point the most brightful OLD SIMULATOR DATA

Other points flux RECEIVED ON THE GROUND

I asymp eAt

Flux(ISS)=Flux(ground) x dist(ground)2dist(ISS)2

First point the most brightful OLD SIMULATOR DATA

Other points flux RECEIVED ON THE GROUND

I asymp eAt

Flux(ISS)=Flux(ground) x dist(ground)2dist(ISS)2

Choice ofthe exponential

coefficient A A

Choice ofthe exponential

coefficient A A

18

Beginning of an output Beginning of an output file from ISSfile from ISSthe data are not the data are not grouped in stripesgrouped in stripes

Time(s) x(km) y(km) z(km) Flux(pheGTU)

Θ(arcsec)

Φ(deg)

x(pix) y(pix)

1a

2a

First 4 First 4 stripesstripes

Abs mag 3

~ eAt

A= -1

0028000 -10064 -9668 -300132 1009877 95841 -1362 -2560 -2459 0029000 -10066 -9656 -300137 1043528 95792 -1362 -2560 -2456 0030000 -10074 -9656 -300137 1022863 95830 -1362 -2562 -2456 0031000 -10082 -9656 -300137 1002608 95869 -1362 -2564 -2456 0030000 -10069 -9644 -300142 1077082 95747 -1362 -2561 -2453 0031000 -10077 -9644 -300142 1055753 95786 -1363 -2563 -2453 0032000 -10085 -9644 -300142 1034846 95824 -1363 -2565 -2453 0033000 -10092 -9644 -300142 1014352 95863 -1363 -2567 -2453 0031000 -10071 -9633 -300146 1110570 95702 -1363 -2561 -2450 0032000 -10079 -9633 -300146 1088578 95741 -1363 -2563 -2450 0033000 -10086 -9633 -300146 1067021 95780 -1363 -2565 -2450 0034000 -10094 -9633 -300146 1045890 95818 -1363 -2567 -2450 0035000 -10102 -9633 -300146 1025179 95857 -1364 -2569 -2450 0036000 -10110 -9633 -300146 1004877 95896 -1364 -2571 -2450

3a

4a

with persistence(train)NO persistence(head)

19

~ e At

A= - 4 A= - 20

Abs mag 3

NO persistence

with persistence

20

Abs mag 3Abs mag 3

A= -1 A= -4

A= -10 A= -20

with persistence NO persistence

X (PIXELS) IN FUNCTION OF TIME

21

Abs mag 0Abs mag 0A= -1

A= -4

A= -10 A= -20

with persistence NO persistence

22

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere Divide the output file into

groups of stripes

Find zfor each stripes

with this formula using

the first term (ldquo1rdquo) fixed

and changingthe others(ldquo2rdquo)

Find x yvx vy vz

(with their errors)

z = 400 ndash vmiddott tg[θ2]radic(1+tan[φ2]2) ndash tg[θ1]radic(1+tan[φ1]2)

y = yiss(t0)+tan(φ)[x-xiss(t0) - vt]

x = xiss+vt+(z-400)middottan(θ)radic1+tan(φ)2

0

y

z

400 km

ISS (xissyiss400)

(xyz)

xφ1

θ2

φ2

θ1

Development of another numerical program

23

ResultsResultsResultsResults Font light track output file with A= -1 and abs mag = 3 Total stripes 4717 There are selected three samples from three different stripes of the output file

NdegNdegx

(km)plusmnσ

x

(km)

x expected

(km)

y(km)

plusmnσy

(km)

y expected

(km)

z(km)

plusmnσz

(km)

z expected

(km)

11 -12 15 -01 62 07 62 967 16 975

22 -35 10 -21 176 08 175 910 21 930

33 -60 09 -54 287 12 286 869 36 886

kmsplusmnσplusmnσ

vv

(kms)(kms)

Expectedvalue

(kms)

vxvx 21 17 55

vyvy 105 10 119

vz -52 24 -42

Time error = 05 ms Angle φ error given by the propagation formula where φ = arctan(ypixxpix) σxpix σypix = plusmn 1 pixel Angle θ error = 0075deg = 270 arcsec = 1pixel The associate errors are all calculated using the propagation formula

Expected value of x y and z refers to the most brightful point of each stripe Expected value of velocity

is given by the input file

vmodule (kms)

plusmnσplusmnσvv

(kms)(kms)

Expectedvalue

(kms)

119 31 138

24

ConclusionsConclusions

A simulation of different meteors light profiles as seen from JEM-EUSO has been performed on the evidence coming from ground based photographic records

Starting from ISS measurements of θ amp φ angles and taking profit of the persistence of the signal in the atmosphere it is possible to find position and velocity vectors of a meteor during its passage in the JEM-EUSO field of view

A study of the answer in pixels of JEM-EUSO focal detector can be done in future using these data

25

Thank you

26

bull SpeedSpeed meteor up to 70 kmsec Dark Matter nuclearites ~ 300kmsec (nuclearite max velocity value 570 kms meteor max value 72 kms)

bull Light profileLight profile in meteors the light starts immediately and then decreases due to the mass ablation most of the meteors doesnrsquot reach earth

On the contrary nuclearites are very compact objects the energy loss is similar to the one of an elementary particle No mass ablation The light emission is constant at h hle max (very low altitudes)hmax = 27middot ln (m 12 middot 10-5 g) km (m 01 ndash 100 g hmax 24 ndash 60 km)

M = 158 ndash 167 middot log10 (m 1 microg) (m 01 ndash 100 g M 75 ndash 25)

A nuclearite of mass gt 01 g should cross the entire earth and can move upwardJEM-EUSO could detect also upward going nuclearites

Criteria to identify Nuclearites in Jem-Euso

and differences with meteors

27

Nuclearites and meteors comparisonNuclearites and meteors comparison

1

2

3

1) up-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

h = 40 km 00001 km

2) down-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

3) Meteor v = 70 kms θ = 45deg h = 100 km

Abs mag = 17 Abs mag sec burst = -1

Light profile

Apparent motion

1

2

3

time(s)

ph

oto

ns

time(s)

θ (a

rcse

c )

Nuclearites are much faster than meteors

Graphics done in collaboration with Giulia Bruno

  • Pagina 1
  • Slide 2
  • Slide 3
  • Pagina 4
  • Slide 7
  • Pagina 6
  • Pagina 7
  • Meteor amp Nuclearite simulation
  • Pagina 9
  • Pagina 10
  • Pagina 11
  • Pagina 12
  • Pagina 13
  • Pagina 14
  • Pagina 15
  • Pagina 16
  • Pagina 17
  • Pagina 18
  • Pagina 19
  • Pagina 20
  • Pagina 21
  • Pagina 22
  • Pagina 23
  • Pagina 24
  • Pagina 25
Page 8: SIMULATION OF LIGHT PROFILES OF METEORS AND ITS

8

Meteor amp Nuclearite simulationMeteor amp Nuclearite simulationMeteor amp Nuclearite simulationMeteor amp Nuclearite simulation

ISSISS

height of flight

velocity

LIGHT CURVELIGHT CURVE

Meteor yesno secondary burstpolynomial coefficients

Nuclearite M(mass) dependence (only) emission for h lt hmax

METEORMETEOR beginning height

yesno random generationdurationv

x v

y v

z

absolute magnitudex0y0 of ISS

METEOR METEOR NUCLEARITENUCLEARITE

SIMULATORSIMULATOR

NUCLEARITENUCLEARITE hmax

yesno random generationabsolute magnitude (mass)

x0y0 of ISSvx vy vz (any vz possible)

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

INPUTINPUTOUTPUTOUTPUT

9

Computation of the fluxComputation of the fluxComputation of the fluxComputation of the flux

TABLE from ldquoJEM-EUSOMeteor and Nuclearite observationsrdquo submitted to experimental astronomy (JEM-EUSO collaborations)

Data for a meteor in the zenith at a height of 100 km from the ground (300 km from the ISS)The flux of phe (ph) is on the ISS

Absolute magnitude M = - 25 x log10

[Flux(h=100)] + C

Apparent magnitude m = - 25 x log10

(Flux(h)) + C

For distance = 100 km (from the ground) m = M = -25 log

10[Flux(h)Flux(h=100)]

Flux(Flux(h)) = Flux(= Flux(h=100) x 10 ) x 10 - 04(m-M)- 04(m-M)

Absolutemagnitude

(M)

U-band flux(ergscm2A)

photons(s-1)

photo-electrons(GTU=25 μs)-1

mass(g)

collisions in JEM-EUSO

FoV

7 67 10 -12 43 10 7 4 210 -3 1s

5 42 10 -11 27 10 8 23 10 -2 6min

0 42 10 -9 27 10 10 2300 1 027orbit

-5 42 10 -7 27 10 12 23 10 5 100 63year

10

Leonids SimulationsLeonids Simulations

Meteor No

vin (kms) M

max

LEO18 7130 -119

LEO19 7163 -118

LEO21 7145 -115

LEO27 7159 -138

LEO50 7166 -101

LEO51 70 -129

Physical data on the 199920012002 and 2006 Leonid fireballs

Table taken from the article of L Shrbeny and P Spurny Astronomy amp Astrophysics vol 506 1445-1454 (2009)

vin = initial velocity

Mmax

= maximum absolute magnitude

Equation of the light profileIntensity = function of time

I(t) = p0+p1t+p2t2+p3t3+polinomy of degree 88

11

12

13

Meteors out of cone of visibilityMeteors out of cone of visibilityMeteors out of cone of visibilityMeteors out of cone of visibility

Random generator numerical program75 lt zin lt 120 km30 lt zfin lt 70 km11 lt v lt 70 kmsviss = 78 kmsduration lt 4 szin

zfin

rin (zin)rfin (zfin)(radius)

xin (rin)yin (rin)

θφxfin (xinzinzfinθφ)yfin (yinzinzfinθφ)

vvx x ((θθφφ))vvyy ( (θθφφ))vvzz ( (θθ))

duration

v(module)

= random

= from data

5443 samples of (xinyinzin)

14

Meteor entering the cone of visibility

Meteor going out from the cone

15

THE LIGHT TRACKTHE LIGHT TRACKpersistence of the signal in the atmospherepersistence of the signal in the atmosphere

THE LIGHT TRACKTHE LIGHT TRACKpersistence of the signal in the atmospherepersistence of the signal in the atmosphere

Sequence of a 1999 Leonid fireball captured from an observing site in the Italian AlpsThe meteor was brighter than the full moon and left a smoke trail that was visible for more than 20 minutes Features of this kind should be observable by the JEM-Euso IR camera

16Time(s)

The decrease of intensity is an exponential function of time

I asymp eI asymp eAtAt

A = negative damping coefficient[countssec]

A (countss)

LEO18 -122

LEO27 -469

LEO51 -1952

Sky background

10 pheGTU10 pheGTU

no signal persistence for flux below this value(~full moon)

Beforeonly one

moving point

Now ldquostripesrdquo groups of

fading pointsFrom the article of L Shrbeny and P Spurny Astronomy amp Astrophysics vol 506 1445-1454 (2009)

17

LIGHT TRACK LIGHT TRACK SIMULATORSIMULATOR

INPUT INPUT = output files of the meteornuclearite simulator

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

OUTPUT OUTPUT

LIGHT TRACK FROM THE GROUNDFROM THE GROUND

STRIPES OFtimestepx y z fluxx y z of the ISS

LIGHT TRACK FROM THE GROUNDFROM THE GROUND

STRIPES OFtimestepx y z fluxx y z of the ISS

LIGHT TRACKFROM ISSFROM ISS

STRIPES OFtimestep

x y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

LIGHT TRACKFROM ISSFROM ISS

STRIPES OFtimestep

x y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

First point the most brightful OLD SIMULATOR DATA

Other points flux RECEIVED ON THE GROUND

I asymp eAt

Flux(ISS)=Flux(ground) x dist(ground)2dist(ISS)2

First point the most brightful OLD SIMULATOR DATA

Other points flux RECEIVED ON THE GROUND

I asymp eAt

Flux(ISS)=Flux(ground) x dist(ground)2dist(ISS)2

Choice ofthe exponential

coefficient A A

Choice ofthe exponential

coefficient A A

18

Beginning of an output Beginning of an output file from ISSfile from ISSthe data are not the data are not grouped in stripesgrouped in stripes

Time(s) x(km) y(km) z(km) Flux(pheGTU)

Θ(arcsec)

Φ(deg)

x(pix) y(pix)

1a

2a

First 4 First 4 stripesstripes

Abs mag 3

~ eAt

A= -1

0028000 -10064 -9668 -300132 1009877 95841 -1362 -2560 -2459 0029000 -10066 -9656 -300137 1043528 95792 -1362 -2560 -2456 0030000 -10074 -9656 -300137 1022863 95830 -1362 -2562 -2456 0031000 -10082 -9656 -300137 1002608 95869 -1362 -2564 -2456 0030000 -10069 -9644 -300142 1077082 95747 -1362 -2561 -2453 0031000 -10077 -9644 -300142 1055753 95786 -1363 -2563 -2453 0032000 -10085 -9644 -300142 1034846 95824 -1363 -2565 -2453 0033000 -10092 -9644 -300142 1014352 95863 -1363 -2567 -2453 0031000 -10071 -9633 -300146 1110570 95702 -1363 -2561 -2450 0032000 -10079 -9633 -300146 1088578 95741 -1363 -2563 -2450 0033000 -10086 -9633 -300146 1067021 95780 -1363 -2565 -2450 0034000 -10094 -9633 -300146 1045890 95818 -1363 -2567 -2450 0035000 -10102 -9633 -300146 1025179 95857 -1364 -2569 -2450 0036000 -10110 -9633 -300146 1004877 95896 -1364 -2571 -2450

3a

4a

with persistence(train)NO persistence(head)

19

~ e At

A= - 4 A= - 20

Abs mag 3

NO persistence

with persistence

20

Abs mag 3Abs mag 3

A= -1 A= -4

A= -10 A= -20

with persistence NO persistence

X (PIXELS) IN FUNCTION OF TIME

21

Abs mag 0Abs mag 0A= -1

A= -4

A= -10 A= -20

with persistence NO persistence

22

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere Divide the output file into

groups of stripes

Find zfor each stripes

with this formula using

the first term (ldquo1rdquo) fixed

and changingthe others(ldquo2rdquo)

Find x yvx vy vz

(with their errors)

z = 400 ndash vmiddott tg[θ2]radic(1+tan[φ2]2) ndash tg[θ1]radic(1+tan[φ1]2)

y = yiss(t0)+tan(φ)[x-xiss(t0) - vt]

x = xiss+vt+(z-400)middottan(θ)radic1+tan(φ)2

0

y

z

400 km

ISS (xissyiss400)

(xyz)

xφ1

θ2

φ2

θ1

Development of another numerical program

23

ResultsResultsResultsResults Font light track output file with A= -1 and abs mag = 3 Total stripes 4717 There are selected three samples from three different stripes of the output file

NdegNdegx

(km)plusmnσ

x

(km)

x expected

(km)

y(km)

plusmnσy

(km)

y expected

(km)

z(km)

plusmnσz

(km)

z expected

(km)

11 -12 15 -01 62 07 62 967 16 975

22 -35 10 -21 176 08 175 910 21 930

33 -60 09 -54 287 12 286 869 36 886

kmsplusmnσplusmnσ

vv

(kms)(kms)

Expectedvalue

(kms)

vxvx 21 17 55

vyvy 105 10 119

vz -52 24 -42

Time error = 05 ms Angle φ error given by the propagation formula where φ = arctan(ypixxpix) σxpix σypix = plusmn 1 pixel Angle θ error = 0075deg = 270 arcsec = 1pixel The associate errors are all calculated using the propagation formula

Expected value of x y and z refers to the most brightful point of each stripe Expected value of velocity

is given by the input file

vmodule (kms)

plusmnσplusmnσvv

(kms)(kms)

Expectedvalue

(kms)

119 31 138

24

ConclusionsConclusions

A simulation of different meteors light profiles as seen from JEM-EUSO has been performed on the evidence coming from ground based photographic records

Starting from ISS measurements of θ amp φ angles and taking profit of the persistence of the signal in the atmosphere it is possible to find position and velocity vectors of a meteor during its passage in the JEM-EUSO field of view

A study of the answer in pixels of JEM-EUSO focal detector can be done in future using these data

25

Thank you

26

bull SpeedSpeed meteor up to 70 kmsec Dark Matter nuclearites ~ 300kmsec (nuclearite max velocity value 570 kms meteor max value 72 kms)

bull Light profileLight profile in meteors the light starts immediately and then decreases due to the mass ablation most of the meteors doesnrsquot reach earth

On the contrary nuclearites are very compact objects the energy loss is similar to the one of an elementary particle No mass ablation The light emission is constant at h hle max (very low altitudes)hmax = 27middot ln (m 12 middot 10-5 g) km (m 01 ndash 100 g hmax 24 ndash 60 km)

M = 158 ndash 167 middot log10 (m 1 microg) (m 01 ndash 100 g M 75 ndash 25)

A nuclearite of mass gt 01 g should cross the entire earth and can move upwardJEM-EUSO could detect also upward going nuclearites

Criteria to identify Nuclearites in Jem-Euso

and differences with meteors

27

Nuclearites and meteors comparisonNuclearites and meteors comparison

1

2

3

1) up-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

h = 40 km 00001 km

2) down-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

3) Meteor v = 70 kms θ = 45deg h = 100 km

Abs mag = 17 Abs mag sec burst = -1

Light profile

Apparent motion

1

2

3

time(s)

ph

oto

ns

time(s)

θ (a

rcse

c )

Nuclearites are much faster than meteors

Graphics done in collaboration with Giulia Bruno

  • Pagina 1
  • Slide 2
  • Slide 3
  • Pagina 4
  • Slide 7
  • Pagina 6
  • Pagina 7
  • Meteor amp Nuclearite simulation
  • Pagina 9
  • Pagina 10
  • Pagina 11
  • Pagina 12
  • Pagina 13
  • Pagina 14
  • Pagina 15
  • Pagina 16
  • Pagina 17
  • Pagina 18
  • Pagina 19
  • Pagina 20
  • Pagina 21
  • Pagina 22
  • Pagina 23
  • Pagina 24
  • Pagina 25
Page 9: SIMULATION OF LIGHT PROFILES OF METEORS AND ITS

9

Computation of the fluxComputation of the fluxComputation of the fluxComputation of the flux

TABLE from ldquoJEM-EUSOMeteor and Nuclearite observationsrdquo submitted to experimental astronomy (JEM-EUSO collaborations)

Data for a meteor in the zenith at a height of 100 km from the ground (300 km from the ISS)The flux of phe (ph) is on the ISS

Absolute magnitude M = - 25 x log10

[Flux(h=100)] + C

Apparent magnitude m = - 25 x log10

(Flux(h)) + C

For distance = 100 km (from the ground) m = M = -25 log

10[Flux(h)Flux(h=100)]

Flux(Flux(h)) = Flux(= Flux(h=100) x 10 ) x 10 - 04(m-M)- 04(m-M)

Absolutemagnitude

(M)

U-band flux(ergscm2A)

photons(s-1)

photo-electrons(GTU=25 μs)-1

mass(g)

collisions in JEM-EUSO

FoV

7 67 10 -12 43 10 7 4 210 -3 1s

5 42 10 -11 27 10 8 23 10 -2 6min

0 42 10 -9 27 10 10 2300 1 027orbit

-5 42 10 -7 27 10 12 23 10 5 100 63year

10

Leonids SimulationsLeonids Simulations

Meteor No

vin (kms) M

max

LEO18 7130 -119

LEO19 7163 -118

LEO21 7145 -115

LEO27 7159 -138

LEO50 7166 -101

LEO51 70 -129

Physical data on the 199920012002 and 2006 Leonid fireballs

Table taken from the article of L Shrbeny and P Spurny Astronomy amp Astrophysics vol 506 1445-1454 (2009)

vin = initial velocity

Mmax

= maximum absolute magnitude

Equation of the light profileIntensity = function of time

I(t) = p0+p1t+p2t2+p3t3+polinomy of degree 88

11

12

13

Meteors out of cone of visibilityMeteors out of cone of visibilityMeteors out of cone of visibilityMeteors out of cone of visibility

Random generator numerical program75 lt zin lt 120 km30 lt zfin lt 70 km11 lt v lt 70 kmsviss = 78 kmsduration lt 4 szin

zfin

rin (zin)rfin (zfin)(radius)

xin (rin)yin (rin)

θφxfin (xinzinzfinθφ)yfin (yinzinzfinθφ)

vvx x ((θθφφ))vvyy ( (θθφφ))vvzz ( (θθ))

duration

v(module)

= random

= from data

5443 samples of (xinyinzin)

14

Meteor entering the cone of visibility

Meteor going out from the cone

15

THE LIGHT TRACKTHE LIGHT TRACKpersistence of the signal in the atmospherepersistence of the signal in the atmosphere

THE LIGHT TRACKTHE LIGHT TRACKpersistence of the signal in the atmospherepersistence of the signal in the atmosphere

Sequence of a 1999 Leonid fireball captured from an observing site in the Italian AlpsThe meteor was brighter than the full moon and left a smoke trail that was visible for more than 20 minutes Features of this kind should be observable by the JEM-Euso IR camera

16Time(s)

The decrease of intensity is an exponential function of time

I asymp eI asymp eAtAt

A = negative damping coefficient[countssec]

A (countss)

LEO18 -122

LEO27 -469

LEO51 -1952

Sky background

10 pheGTU10 pheGTU

no signal persistence for flux below this value(~full moon)

Beforeonly one

moving point

Now ldquostripesrdquo groups of

fading pointsFrom the article of L Shrbeny and P Spurny Astronomy amp Astrophysics vol 506 1445-1454 (2009)

17

LIGHT TRACK LIGHT TRACK SIMULATORSIMULATOR

INPUT INPUT = output files of the meteornuclearite simulator

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

OUTPUT OUTPUT

LIGHT TRACK FROM THE GROUNDFROM THE GROUND

STRIPES OFtimestepx y z fluxx y z of the ISS

LIGHT TRACK FROM THE GROUNDFROM THE GROUND

STRIPES OFtimestepx y z fluxx y z of the ISS

LIGHT TRACKFROM ISSFROM ISS

STRIPES OFtimestep

x y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

LIGHT TRACKFROM ISSFROM ISS

STRIPES OFtimestep

x y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

First point the most brightful OLD SIMULATOR DATA

Other points flux RECEIVED ON THE GROUND

I asymp eAt

Flux(ISS)=Flux(ground) x dist(ground)2dist(ISS)2

First point the most brightful OLD SIMULATOR DATA

Other points flux RECEIVED ON THE GROUND

I asymp eAt

Flux(ISS)=Flux(ground) x dist(ground)2dist(ISS)2

Choice ofthe exponential

coefficient A A

Choice ofthe exponential

coefficient A A

18

Beginning of an output Beginning of an output file from ISSfile from ISSthe data are not the data are not grouped in stripesgrouped in stripes

Time(s) x(km) y(km) z(km) Flux(pheGTU)

Θ(arcsec)

Φ(deg)

x(pix) y(pix)

1a

2a

First 4 First 4 stripesstripes

Abs mag 3

~ eAt

A= -1

0028000 -10064 -9668 -300132 1009877 95841 -1362 -2560 -2459 0029000 -10066 -9656 -300137 1043528 95792 -1362 -2560 -2456 0030000 -10074 -9656 -300137 1022863 95830 -1362 -2562 -2456 0031000 -10082 -9656 -300137 1002608 95869 -1362 -2564 -2456 0030000 -10069 -9644 -300142 1077082 95747 -1362 -2561 -2453 0031000 -10077 -9644 -300142 1055753 95786 -1363 -2563 -2453 0032000 -10085 -9644 -300142 1034846 95824 -1363 -2565 -2453 0033000 -10092 -9644 -300142 1014352 95863 -1363 -2567 -2453 0031000 -10071 -9633 -300146 1110570 95702 -1363 -2561 -2450 0032000 -10079 -9633 -300146 1088578 95741 -1363 -2563 -2450 0033000 -10086 -9633 -300146 1067021 95780 -1363 -2565 -2450 0034000 -10094 -9633 -300146 1045890 95818 -1363 -2567 -2450 0035000 -10102 -9633 -300146 1025179 95857 -1364 -2569 -2450 0036000 -10110 -9633 -300146 1004877 95896 -1364 -2571 -2450

3a

4a

with persistence(train)NO persistence(head)

19

~ e At

A= - 4 A= - 20

Abs mag 3

NO persistence

with persistence

20

Abs mag 3Abs mag 3

A= -1 A= -4

A= -10 A= -20

with persistence NO persistence

X (PIXELS) IN FUNCTION OF TIME

21

Abs mag 0Abs mag 0A= -1

A= -4

A= -10 A= -20

with persistence NO persistence

22

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere Divide the output file into

groups of stripes

Find zfor each stripes

with this formula using

the first term (ldquo1rdquo) fixed

and changingthe others(ldquo2rdquo)

Find x yvx vy vz

(with their errors)

z = 400 ndash vmiddott tg[θ2]radic(1+tan[φ2]2) ndash tg[θ1]radic(1+tan[φ1]2)

y = yiss(t0)+tan(φ)[x-xiss(t0) - vt]

x = xiss+vt+(z-400)middottan(θ)radic1+tan(φ)2

0

y

z

400 km

ISS (xissyiss400)

(xyz)

xφ1

θ2

φ2

θ1

Development of another numerical program

23

ResultsResultsResultsResults Font light track output file with A= -1 and abs mag = 3 Total stripes 4717 There are selected three samples from three different stripes of the output file

NdegNdegx

(km)plusmnσ

x

(km)

x expected

(km)

y(km)

plusmnσy

(km)

y expected

(km)

z(km)

plusmnσz

(km)

z expected

(km)

11 -12 15 -01 62 07 62 967 16 975

22 -35 10 -21 176 08 175 910 21 930

33 -60 09 -54 287 12 286 869 36 886

kmsplusmnσplusmnσ

vv

(kms)(kms)

Expectedvalue

(kms)

vxvx 21 17 55

vyvy 105 10 119

vz -52 24 -42

Time error = 05 ms Angle φ error given by the propagation formula where φ = arctan(ypixxpix) σxpix σypix = plusmn 1 pixel Angle θ error = 0075deg = 270 arcsec = 1pixel The associate errors are all calculated using the propagation formula

Expected value of x y and z refers to the most brightful point of each stripe Expected value of velocity

is given by the input file

vmodule (kms)

plusmnσplusmnσvv

(kms)(kms)

Expectedvalue

(kms)

119 31 138

24

ConclusionsConclusions

A simulation of different meteors light profiles as seen from JEM-EUSO has been performed on the evidence coming from ground based photographic records

Starting from ISS measurements of θ amp φ angles and taking profit of the persistence of the signal in the atmosphere it is possible to find position and velocity vectors of a meteor during its passage in the JEM-EUSO field of view

A study of the answer in pixels of JEM-EUSO focal detector can be done in future using these data

25

Thank you

26

bull SpeedSpeed meteor up to 70 kmsec Dark Matter nuclearites ~ 300kmsec (nuclearite max velocity value 570 kms meteor max value 72 kms)

bull Light profileLight profile in meteors the light starts immediately and then decreases due to the mass ablation most of the meteors doesnrsquot reach earth

On the contrary nuclearites are very compact objects the energy loss is similar to the one of an elementary particle No mass ablation The light emission is constant at h hle max (very low altitudes)hmax = 27middot ln (m 12 middot 10-5 g) km (m 01 ndash 100 g hmax 24 ndash 60 km)

M = 158 ndash 167 middot log10 (m 1 microg) (m 01 ndash 100 g M 75 ndash 25)

A nuclearite of mass gt 01 g should cross the entire earth and can move upwardJEM-EUSO could detect also upward going nuclearites

Criteria to identify Nuclearites in Jem-Euso

and differences with meteors

27

Nuclearites and meteors comparisonNuclearites and meteors comparison

1

2

3

1) up-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

h = 40 km 00001 km

2) down-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

3) Meteor v = 70 kms θ = 45deg h = 100 km

Abs mag = 17 Abs mag sec burst = -1

Light profile

Apparent motion

1

2

3

time(s)

ph

oto

ns

time(s)

θ (a

rcse

c )

Nuclearites are much faster than meteors

Graphics done in collaboration with Giulia Bruno

  • Pagina 1
  • Slide 2
  • Slide 3
  • Pagina 4
  • Slide 7
  • Pagina 6
  • Pagina 7
  • Meteor amp Nuclearite simulation
  • Pagina 9
  • Pagina 10
  • Pagina 11
  • Pagina 12
  • Pagina 13
  • Pagina 14
  • Pagina 15
  • Pagina 16
  • Pagina 17
  • Pagina 18
  • Pagina 19
  • Pagina 20
  • Pagina 21
  • Pagina 22
  • Pagina 23
  • Pagina 24
  • Pagina 25
Page 10: SIMULATION OF LIGHT PROFILES OF METEORS AND ITS

10

Leonids SimulationsLeonids Simulations

Meteor No

vin (kms) M

max

LEO18 7130 -119

LEO19 7163 -118

LEO21 7145 -115

LEO27 7159 -138

LEO50 7166 -101

LEO51 70 -129

Physical data on the 199920012002 and 2006 Leonid fireballs

Table taken from the article of L Shrbeny and P Spurny Astronomy amp Astrophysics vol 506 1445-1454 (2009)

vin = initial velocity

Mmax

= maximum absolute magnitude

Equation of the light profileIntensity = function of time

I(t) = p0+p1t+p2t2+p3t3+polinomy of degree 88

11

12

13

Meteors out of cone of visibilityMeteors out of cone of visibilityMeteors out of cone of visibilityMeteors out of cone of visibility

Random generator numerical program75 lt zin lt 120 km30 lt zfin lt 70 km11 lt v lt 70 kmsviss = 78 kmsduration lt 4 szin

zfin

rin (zin)rfin (zfin)(radius)

xin (rin)yin (rin)

θφxfin (xinzinzfinθφ)yfin (yinzinzfinθφ)

vvx x ((θθφφ))vvyy ( (θθφφ))vvzz ( (θθ))

duration

v(module)

= random

= from data

5443 samples of (xinyinzin)

14

Meteor entering the cone of visibility

Meteor going out from the cone

15

THE LIGHT TRACKTHE LIGHT TRACKpersistence of the signal in the atmospherepersistence of the signal in the atmosphere

THE LIGHT TRACKTHE LIGHT TRACKpersistence of the signal in the atmospherepersistence of the signal in the atmosphere

Sequence of a 1999 Leonid fireball captured from an observing site in the Italian AlpsThe meteor was brighter than the full moon and left a smoke trail that was visible for more than 20 minutes Features of this kind should be observable by the JEM-Euso IR camera

16Time(s)

The decrease of intensity is an exponential function of time

I asymp eI asymp eAtAt

A = negative damping coefficient[countssec]

A (countss)

LEO18 -122

LEO27 -469

LEO51 -1952

Sky background

10 pheGTU10 pheGTU

no signal persistence for flux below this value(~full moon)

Beforeonly one

moving point

Now ldquostripesrdquo groups of

fading pointsFrom the article of L Shrbeny and P Spurny Astronomy amp Astrophysics vol 506 1445-1454 (2009)

17

LIGHT TRACK LIGHT TRACK SIMULATORSIMULATOR

INPUT INPUT = output files of the meteornuclearite simulator

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

OUTPUT OUTPUT

LIGHT TRACK FROM THE GROUNDFROM THE GROUND

STRIPES OFtimestepx y z fluxx y z of the ISS

LIGHT TRACK FROM THE GROUNDFROM THE GROUND

STRIPES OFtimestepx y z fluxx y z of the ISS

LIGHT TRACKFROM ISSFROM ISS

STRIPES OFtimestep

x y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

LIGHT TRACKFROM ISSFROM ISS

STRIPES OFtimestep

x y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

First point the most brightful OLD SIMULATOR DATA

Other points flux RECEIVED ON THE GROUND

I asymp eAt

Flux(ISS)=Flux(ground) x dist(ground)2dist(ISS)2

First point the most brightful OLD SIMULATOR DATA

Other points flux RECEIVED ON THE GROUND

I asymp eAt

Flux(ISS)=Flux(ground) x dist(ground)2dist(ISS)2

Choice ofthe exponential

coefficient A A

Choice ofthe exponential

coefficient A A

18

Beginning of an output Beginning of an output file from ISSfile from ISSthe data are not the data are not grouped in stripesgrouped in stripes

Time(s) x(km) y(km) z(km) Flux(pheGTU)

Θ(arcsec)

Φ(deg)

x(pix) y(pix)

1a

2a

First 4 First 4 stripesstripes

Abs mag 3

~ eAt

A= -1

0028000 -10064 -9668 -300132 1009877 95841 -1362 -2560 -2459 0029000 -10066 -9656 -300137 1043528 95792 -1362 -2560 -2456 0030000 -10074 -9656 -300137 1022863 95830 -1362 -2562 -2456 0031000 -10082 -9656 -300137 1002608 95869 -1362 -2564 -2456 0030000 -10069 -9644 -300142 1077082 95747 -1362 -2561 -2453 0031000 -10077 -9644 -300142 1055753 95786 -1363 -2563 -2453 0032000 -10085 -9644 -300142 1034846 95824 -1363 -2565 -2453 0033000 -10092 -9644 -300142 1014352 95863 -1363 -2567 -2453 0031000 -10071 -9633 -300146 1110570 95702 -1363 -2561 -2450 0032000 -10079 -9633 -300146 1088578 95741 -1363 -2563 -2450 0033000 -10086 -9633 -300146 1067021 95780 -1363 -2565 -2450 0034000 -10094 -9633 -300146 1045890 95818 -1363 -2567 -2450 0035000 -10102 -9633 -300146 1025179 95857 -1364 -2569 -2450 0036000 -10110 -9633 -300146 1004877 95896 -1364 -2571 -2450

3a

4a

with persistence(train)NO persistence(head)

19

~ e At

A= - 4 A= - 20

Abs mag 3

NO persistence

with persistence

20

Abs mag 3Abs mag 3

A= -1 A= -4

A= -10 A= -20

with persistence NO persistence

X (PIXELS) IN FUNCTION OF TIME

21

Abs mag 0Abs mag 0A= -1

A= -4

A= -10 A= -20

with persistence NO persistence

22

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere Divide the output file into

groups of stripes

Find zfor each stripes

with this formula using

the first term (ldquo1rdquo) fixed

and changingthe others(ldquo2rdquo)

Find x yvx vy vz

(with their errors)

z = 400 ndash vmiddott tg[θ2]radic(1+tan[φ2]2) ndash tg[θ1]radic(1+tan[φ1]2)

y = yiss(t0)+tan(φ)[x-xiss(t0) - vt]

x = xiss+vt+(z-400)middottan(θ)radic1+tan(φ)2

0

y

z

400 km

ISS (xissyiss400)

(xyz)

xφ1

θ2

φ2

θ1

Development of another numerical program

23

ResultsResultsResultsResults Font light track output file with A= -1 and abs mag = 3 Total stripes 4717 There are selected three samples from three different stripes of the output file

NdegNdegx

(km)plusmnσ

x

(km)

x expected

(km)

y(km)

plusmnσy

(km)

y expected

(km)

z(km)

plusmnσz

(km)

z expected

(km)

11 -12 15 -01 62 07 62 967 16 975

22 -35 10 -21 176 08 175 910 21 930

33 -60 09 -54 287 12 286 869 36 886

kmsplusmnσplusmnσ

vv

(kms)(kms)

Expectedvalue

(kms)

vxvx 21 17 55

vyvy 105 10 119

vz -52 24 -42

Time error = 05 ms Angle φ error given by the propagation formula where φ = arctan(ypixxpix) σxpix σypix = plusmn 1 pixel Angle θ error = 0075deg = 270 arcsec = 1pixel The associate errors are all calculated using the propagation formula

Expected value of x y and z refers to the most brightful point of each stripe Expected value of velocity

is given by the input file

vmodule (kms)

plusmnσplusmnσvv

(kms)(kms)

Expectedvalue

(kms)

119 31 138

24

ConclusionsConclusions

A simulation of different meteors light profiles as seen from JEM-EUSO has been performed on the evidence coming from ground based photographic records

Starting from ISS measurements of θ amp φ angles and taking profit of the persistence of the signal in the atmosphere it is possible to find position and velocity vectors of a meteor during its passage in the JEM-EUSO field of view

A study of the answer in pixels of JEM-EUSO focal detector can be done in future using these data

25

Thank you

26

bull SpeedSpeed meteor up to 70 kmsec Dark Matter nuclearites ~ 300kmsec (nuclearite max velocity value 570 kms meteor max value 72 kms)

bull Light profileLight profile in meteors the light starts immediately and then decreases due to the mass ablation most of the meteors doesnrsquot reach earth

On the contrary nuclearites are very compact objects the energy loss is similar to the one of an elementary particle No mass ablation The light emission is constant at h hle max (very low altitudes)hmax = 27middot ln (m 12 middot 10-5 g) km (m 01 ndash 100 g hmax 24 ndash 60 km)

M = 158 ndash 167 middot log10 (m 1 microg) (m 01 ndash 100 g M 75 ndash 25)

A nuclearite of mass gt 01 g should cross the entire earth and can move upwardJEM-EUSO could detect also upward going nuclearites

Criteria to identify Nuclearites in Jem-Euso

and differences with meteors

27

Nuclearites and meteors comparisonNuclearites and meteors comparison

1

2

3

1) up-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

h = 40 km 00001 km

2) down-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

3) Meteor v = 70 kms θ = 45deg h = 100 km

Abs mag = 17 Abs mag sec burst = -1

Light profile

Apparent motion

1

2

3

time(s)

ph

oto

ns

time(s)

θ (a

rcse

c )

Nuclearites are much faster than meteors

Graphics done in collaboration with Giulia Bruno

  • Pagina 1
  • Slide 2
  • Slide 3
  • Pagina 4
  • Slide 7
  • Pagina 6
  • Pagina 7
  • Meteor amp Nuclearite simulation
  • Pagina 9
  • Pagina 10
  • Pagina 11
  • Pagina 12
  • Pagina 13
  • Pagina 14
  • Pagina 15
  • Pagina 16
  • Pagina 17
  • Pagina 18
  • Pagina 19
  • Pagina 20
  • Pagina 21
  • Pagina 22
  • Pagina 23
  • Pagina 24
  • Pagina 25
Page 11: SIMULATION OF LIGHT PROFILES OF METEORS AND ITS

11

12

13

Meteors out of cone of visibilityMeteors out of cone of visibilityMeteors out of cone of visibilityMeteors out of cone of visibility

Random generator numerical program75 lt zin lt 120 km30 lt zfin lt 70 km11 lt v lt 70 kmsviss = 78 kmsduration lt 4 szin

zfin

rin (zin)rfin (zfin)(radius)

xin (rin)yin (rin)

θφxfin (xinzinzfinθφ)yfin (yinzinzfinθφ)

vvx x ((θθφφ))vvyy ( (θθφφ))vvzz ( (θθ))

duration

v(module)

= random

= from data

5443 samples of (xinyinzin)

14

Meteor entering the cone of visibility

Meteor going out from the cone

15

THE LIGHT TRACKTHE LIGHT TRACKpersistence of the signal in the atmospherepersistence of the signal in the atmosphere

THE LIGHT TRACKTHE LIGHT TRACKpersistence of the signal in the atmospherepersistence of the signal in the atmosphere

Sequence of a 1999 Leonid fireball captured from an observing site in the Italian AlpsThe meteor was brighter than the full moon and left a smoke trail that was visible for more than 20 minutes Features of this kind should be observable by the JEM-Euso IR camera

16Time(s)

The decrease of intensity is an exponential function of time

I asymp eI asymp eAtAt

A = negative damping coefficient[countssec]

A (countss)

LEO18 -122

LEO27 -469

LEO51 -1952

Sky background

10 pheGTU10 pheGTU

no signal persistence for flux below this value(~full moon)

Beforeonly one

moving point

Now ldquostripesrdquo groups of

fading pointsFrom the article of L Shrbeny and P Spurny Astronomy amp Astrophysics vol 506 1445-1454 (2009)

17

LIGHT TRACK LIGHT TRACK SIMULATORSIMULATOR

INPUT INPUT = output files of the meteornuclearite simulator

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

OUTPUT OUTPUT

LIGHT TRACK FROM THE GROUNDFROM THE GROUND

STRIPES OFtimestepx y z fluxx y z of the ISS

LIGHT TRACK FROM THE GROUNDFROM THE GROUND

STRIPES OFtimestepx y z fluxx y z of the ISS

LIGHT TRACKFROM ISSFROM ISS

STRIPES OFtimestep

x y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

LIGHT TRACKFROM ISSFROM ISS

STRIPES OFtimestep

x y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

First point the most brightful OLD SIMULATOR DATA

Other points flux RECEIVED ON THE GROUND

I asymp eAt

Flux(ISS)=Flux(ground) x dist(ground)2dist(ISS)2

First point the most brightful OLD SIMULATOR DATA

Other points flux RECEIVED ON THE GROUND

I asymp eAt

Flux(ISS)=Flux(ground) x dist(ground)2dist(ISS)2

Choice ofthe exponential

coefficient A A

Choice ofthe exponential

coefficient A A

18

Beginning of an output Beginning of an output file from ISSfile from ISSthe data are not the data are not grouped in stripesgrouped in stripes

Time(s) x(km) y(km) z(km) Flux(pheGTU)

Θ(arcsec)

Φ(deg)

x(pix) y(pix)

1a

2a

First 4 First 4 stripesstripes

Abs mag 3

~ eAt

A= -1

0028000 -10064 -9668 -300132 1009877 95841 -1362 -2560 -2459 0029000 -10066 -9656 -300137 1043528 95792 -1362 -2560 -2456 0030000 -10074 -9656 -300137 1022863 95830 -1362 -2562 -2456 0031000 -10082 -9656 -300137 1002608 95869 -1362 -2564 -2456 0030000 -10069 -9644 -300142 1077082 95747 -1362 -2561 -2453 0031000 -10077 -9644 -300142 1055753 95786 -1363 -2563 -2453 0032000 -10085 -9644 -300142 1034846 95824 -1363 -2565 -2453 0033000 -10092 -9644 -300142 1014352 95863 -1363 -2567 -2453 0031000 -10071 -9633 -300146 1110570 95702 -1363 -2561 -2450 0032000 -10079 -9633 -300146 1088578 95741 -1363 -2563 -2450 0033000 -10086 -9633 -300146 1067021 95780 -1363 -2565 -2450 0034000 -10094 -9633 -300146 1045890 95818 -1363 -2567 -2450 0035000 -10102 -9633 -300146 1025179 95857 -1364 -2569 -2450 0036000 -10110 -9633 -300146 1004877 95896 -1364 -2571 -2450

3a

4a

with persistence(train)NO persistence(head)

19

~ e At

A= - 4 A= - 20

Abs mag 3

NO persistence

with persistence

20

Abs mag 3Abs mag 3

A= -1 A= -4

A= -10 A= -20

with persistence NO persistence

X (PIXELS) IN FUNCTION OF TIME

21

Abs mag 0Abs mag 0A= -1

A= -4

A= -10 A= -20

with persistence NO persistence

22

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere Divide the output file into

groups of stripes

Find zfor each stripes

with this formula using

the first term (ldquo1rdquo) fixed

and changingthe others(ldquo2rdquo)

Find x yvx vy vz

(with their errors)

z = 400 ndash vmiddott tg[θ2]radic(1+tan[φ2]2) ndash tg[θ1]radic(1+tan[φ1]2)

y = yiss(t0)+tan(φ)[x-xiss(t0) - vt]

x = xiss+vt+(z-400)middottan(θ)radic1+tan(φ)2

0

y

z

400 km

ISS (xissyiss400)

(xyz)

xφ1

θ2

φ2

θ1

Development of another numerical program

23

ResultsResultsResultsResults Font light track output file with A= -1 and abs mag = 3 Total stripes 4717 There are selected three samples from three different stripes of the output file

NdegNdegx

(km)plusmnσ

x

(km)

x expected

(km)

y(km)

plusmnσy

(km)

y expected

(km)

z(km)

plusmnσz

(km)

z expected

(km)

11 -12 15 -01 62 07 62 967 16 975

22 -35 10 -21 176 08 175 910 21 930

33 -60 09 -54 287 12 286 869 36 886

kmsplusmnσplusmnσ

vv

(kms)(kms)

Expectedvalue

(kms)

vxvx 21 17 55

vyvy 105 10 119

vz -52 24 -42

Time error = 05 ms Angle φ error given by the propagation formula where φ = arctan(ypixxpix) σxpix σypix = plusmn 1 pixel Angle θ error = 0075deg = 270 arcsec = 1pixel The associate errors are all calculated using the propagation formula

Expected value of x y and z refers to the most brightful point of each stripe Expected value of velocity

is given by the input file

vmodule (kms)

plusmnσplusmnσvv

(kms)(kms)

Expectedvalue

(kms)

119 31 138

24

ConclusionsConclusions

A simulation of different meteors light profiles as seen from JEM-EUSO has been performed on the evidence coming from ground based photographic records

Starting from ISS measurements of θ amp φ angles and taking profit of the persistence of the signal in the atmosphere it is possible to find position and velocity vectors of a meteor during its passage in the JEM-EUSO field of view

A study of the answer in pixels of JEM-EUSO focal detector can be done in future using these data

25

Thank you

26

bull SpeedSpeed meteor up to 70 kmsec Dark Matter nuclearites ~ 300kmsec (nuclearite max velocity value 570 kms meteor max value 72 kms)

bull Light profileLight profile in meteors the light starts immediately and then decreases due to the mass ablation most of the meteors doesnrsquot reach earth

On the contrary nuclearites are very compact objects the energy loss is similar to the one of an elementary particle No mass ablation The light emission is constant at h hle max (very low altitudes)hmax = 27middot ln (m 12 middot 10-5 g) km (m 01 ndash 100 g hmax 24 ndash 60 km)

M = 158 ndash 167 middot log10 (m 1 microg) (m 01 ndash 100 g M 75 ndash 25)

A nuclearite of mass gt 01 g should cross the entire earth and can move upwardJEM-EUSO could detect also upward going nuclearites

Criteria to identify Nuclearites in Jem-Euso

and differences with meteors

27

Nuclearites and meteors comparisonNuclearites and meteors comparison

1

2

3

1) up-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

h = 40 km 00001 km

2) down-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

3) Meteor v = 70 kms θ = 45deg h = 100 km

Abs mag = 17 Abs mag sec burst = -1

Light profile

Apparent motion

1

2

3

time(s)

ph

oto

ns

time(s)

θ (a

rcse

c )

Nuclearites are much faster than meteors

Graphics done in collaboration with Giulia Bruno

  • Pagina 1
  • Slide 2
  • Slide 3
  • Pagina 4
  • Slide 7
  • Pagina 6
  • Pagina 7
  • Meteor amp Nuclearite simulation
  • Pagina 9
  • Pagina 10
  • Pagina 11
  • Pagina 12
  • Pagina 13
  • Pagina 14
  • Pagina 15
  • Pagina 16
  • Pagina 17
  • Pagina 18
  • Pagina 19
  • Pagina 20
  • Pagina 21
  • Pagina 22
  • Pagina 23
  • Pagina 24
  • Pagina 25
Page 12: SIMULATION OF LIGHT PROFILES OF METEORS AND ITS

12

13

Meteors out of cone of visibilityMeteors out of cone of visibilityMeteors out of cone of visibilityMeteors out of cone of visibility

Random generator numerical program75 lt zin lt 120 km30 lt zfin lt 70 km11 lt v lt 70 kmsviss = 78 kmsduration lt 4 szin

zfin

rin (zin)rfin (zfin)(radius)

xin (rin)yin (rin)

θφxfin (xinzinzfinθφ)yfin (yinzinzfinθφ)

vvx x ((θθφφ))vvyy ( (θθφφ))vvzz ( (θθ))

duration

v(module)

= random

= from data

5443 samples of (xinyinzin)

14

Meteor entering the cone of visibility

Meteor going out from the cone

15

THE LIGHT TRACKTHE LIGHT TRACKpersistence of the signal in the atmospherepersistence of the signal in the atmosphere

THE LIGHT TRACKTHE LIGHT TRACKpersistence of the signal in the atmospherepersistence of the signal in the atmosphere

Sequence of a 1999 Leonid fireball captured from an observing site in the Italian AlpsThe meteor was brighter than the full moon and left a smoke trail that was visible for more than 20 minutes Features of this kind should be observable by the JEM-Euso IR camera

16Time(s)

The decrease of intensity is an exponential function of time

I asymp eI asymp eAtAt

A = negative damping coefficient[countssec]

A (countss)

LEO18 -122

LEO27 -469

LEO51 -1952

Sky background

10 pheGTU10 pheGTU

no signal persistence for flux below this value(~full moon)

Beforeonly one

moving point

Now ldquostripesrdquo groups of

fading pointsFrom the article of L Shrbeny and P Spurny Astronomy amp Astrophysics vol 506 1445-1454 (2009)

17

LIGHT TRACK LIGHT TRACK SIMULATORSIMULATOR

INPUT INPUT = output files of the meteornuclearite simulator

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

OUTPUT OUTPUT

LIGHT TRACK FROM THE GROUNDFROM THE GROUND

STRIPES OFtimestepx y z fluxx y z of the ISS

LIGHT TRACK FROM THE GROUNDFROM THE GROUND

STRIPES OFtimestepx y z fluxx y z of the ISS

LIGHT TRACKFROM ISSFROM ISS

STRIPES OFtimestep

x y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

LIGHT TRACKFROM ISSFROM ISS

STRIPES OFtimestep

x y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

First point the most brightful OLD SIMULATOR DATA

Other points flux RECEIVED ON THE GROUND

I asymp eAt

Flux(ISS)=Flux(ground) x dist(ground)2dist(ISS)2

First point the most brightful OLD SIMULATOR DATA

Other points flux RECEIVED ON THE GROUND

I asymp eAt

Flux(ISS)=Flux(ground) x dist(ground)2dist(ISS)2

Choice ofthe exponential

coefficient A A

Choice ofthe exponential

coefficient A A

18

Beginning of an output Beginning of an output file from ISSfile from ISSthe data are not the data are not grouped in stripesgrouped in stripes

Time(s) x(km) y(km) z(km) Flux(pheGTU)

Θ(arcsec)

Φ(deg)

x(pix) y(pix)

1a

2a

First 4 First 4 stripesstripes

Abs mag 3

~ eAt

A= -1

0028000 -10064 -9668 -300132 1009877 95841 -1362 -2560 -2459 0029000 -10066 -9656 -300137 1043528 95792 -1362 -2560 -2456 0030000 -10074 -9656 -300137 1022863 95830 -1362 -2562 -2456 0031000 -10082 -9656 -300137 1002608 95869 -1362 -2564 -2456 0030000 -10069 -9644 -300142 1077082 95747 -1362 -2561 -2453 0031000 -10077 -9644 -300142 1055753 95786 -1363 -2563 -2453 0032000 -10085 -9644 -300142 1034846 95824 -1363 -2565 -2453 0033000 -10092 -9644 -300142 1014352 95863 -1363 -2567 -2453 0031000 -10071 -9633 -300146 1110570 95702 -1363 -2561 -2450 0032000 -10079 -9633 -300146 1088578 95741 -1363 -2563 -2450 0033000 -10086 -9633 -300146 1067021 95780 -1363 -2565 -2450 0034000 -10094 -9633 -300146 1045890 95818 -1363 -2567 -2450 0035000 -10102 -9633 -300146 1025179 95857 -1364 -2569 -2450 0036000 -10110 -9633 -300146 1004877 95896 -1364 -2571 -2450

3a

4a

with persistence(train)NO persistence(head)

19

~ e At

A= - 4 A= - 20

Abs mag 3

NO persistence

with persistence

20

Abs mag 3Abs mag 3

A= -1 A= -4

A= -10 A= -20

with persistence NO persistence

X (PIXELS) IN FUNCTION OF TIME

21

Abs mag 0Abs mag 0A= -1

A= -4

A= -10 A= -20

with persistence NO persistence

22

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere Divide the output file into

groups of stripes

Find zfor each stripes

with this formula using

the first term (ldquo1rdquo) fixed

and changingthe others(ldquo2rdquo)

Find x yvx vy vz

(with their errors)

z = 400 ndash vmiddott tg[θ2]radic(1+tan[φ2]2) ndash tg[θ1]radic(1+tan[φ1]2)

y = yiss(t0)+tan(φ)[x-xiss(t0) - vt]

x = xiss+vt+(z-400)middottan(θ)radic1+tan(φ)2

0

y

z

400 km

ISS (xissyiss400)

(xyz)

xφ1

θ2

φ2

θ1

Development of another numerical program

23

ResultsResultsResultsResults Font light track output file with A= -1 and abs mag = 3 Total stripes 4717 There are selected three samples from three different stripes of the output file

NdegNdegx

(km)plusmnσ

x

(km)

x expected

(km)

y(km)

plusmnσy

(km)

y expected

(km)

z(km)

plusmnσz

(km)

z expected

(km)

11 -12 15 -01 62 07 62 967 16 975

22 -35 10 -21 176 08 175 910 21 930

33 -60 09 -54 287 12 286 869 36 886

kmsplusmnσplusmnσ

vv

(kms)(kms)

Expectedvalue

(kms)

vxvx 21 17 55

vyvy 105 10 119

vz -52 24 -42

Time error = 05 ms Angle φ error given by the propagation formula where φ = arctan(ypixxpix) σxpix σypix = plusmn 1 pixel Angle θ error = 0075deg = 270 arcsec = 1pixel The associate errors are all calculated using the propagation formula

Expected value of x y and z refers to the most brightful point of each stripe Expected value of velocity

is given by the input file

vmodule (kms)

plusmnσplusmnσvv

(kms)(kms)

Expectedvalue

(kms)

119 31 138

24

ConclusionsConclusions

A simulation of different meteors light profiles as seen from JEM-EUSO has been performed on the evidence coming from ground based photographic records

Starting from ISS measurements of θ amp φ angles and taking profit of the persistence of the signal in the atmosphere it is possible to find position and velocity vectors of a meteor during its passage in the JEM-EUSO field of view

A study of the answer in pixels of JEM-EUSO focal detector can be done in future using these data

25

Thank you

26

bull SpeedSpeed meteor up to 70 kmsec Dark Matter nuclearites ~ 300kmsec (nuclearite max velocity value 570 kms meteor max value 72 kms)

bull Light profileLight profile in meteors the light starts immediately and then decreases due to the mass ablation most of the meteors doesnrsquot reach earth

On the contrary nuclearites are very compact objects the energy loss is similar to the one of an elementary particle No mass ablation The light emission is constant at h hle max (very low altitudes)hmax = 27middot ln (m 12 middot 10-5 g) km (m 01 ndash 100 g hmax 24 ndash 60 km)

M = 158 ndash 167 middot log10 (m 1 microg) (m 01 ndash 100 g M 75 ndash 25)

A nuclearite of mass gt 01 g should cross the entire earth and can move upwardJEM-EUSO could detect also upward going nuclearites

Criteria to identify Nuclearites in Jem-Euso

and differences with meteors

27

Nuclearites and meteors comparisonNuclearites and meteors comparison

1

2

3

1) up-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

h = 40 km 00001 km

2) down-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

3) Meteor v = 70 kms θ = 45deg h = 100 km

Abs mag = 17 Abs mag sec burst = -1

Light profile

Apparent motion

1

2

3

time(s)

ph

oto

ns

time(s)

θ (a

rcse

c )

Nuclearites are much faster than meteors

Graphics done in collaboration with Giulia Bruno

  • Pagina 1
  • Slide 2
  • Slide 3
  • Pagina 4
  • Slide 7
  • Pagina 6
  • Pagina 7
  • Meteor amp Nuclearite simulation
  • Pagina 9
  • Pagina 10
  • Pagina 11
  • Pagina 12
  • Pagina 13
  • Pagina 14
  • Pagina 15
  • Pagina 16
  • Pagina 17
  • Pagina 18
  • Pagina 19
  • Pagina 20
  • Pagina 21
  • Pagina 22
  • Pagina 23
  • Pagina 24
  • Pagina 25
Page 13: SIMULATION OF LIGHT PROFILES OF METEORS AND ITS

13

Meteors out of cone of visibilityMeteors out of cone of visibilityMeteors out of cone of visibilityMeteors out of cone of visibility

Random generator numerical program75 lt zin lt 120 km30 lt zfin lt 70 km11 lt v lt 70 kmsviss = 78 kmsduration lt 4 szin

zfin

rin (zin)rfin (zfin)(radius)

xin (rin)yin (rin)

θφxfin (xinzinzfinθφ)yfin (yinzinzfinθφ)

vvx x ((θθφφ))vvyy ( (θθφφ))vvzz ( (θθ))

duration

v(module)

= random

= from data

5443 samples of (xinyinzin)

14

Meteor entering the cone of visibility

Meteor going out from the cone

15

THE LIGHT TRACKTHE LIGHT TRACKpersistence of the signal in the atmospherepersistence of the signal in the atmosphere

THE LIGHT TRACKTHE LIGHT TRACKpersistence of the signal in the atmospherepersistence of the signal in the atmosphere

Sequence of a 1999 Leonid fireball captured from an observing site in the Italian AlpsThe meteor was brighter than the full moon and left a smoke trail that was visible for more than 20 minutes Features of this kind should be observable by the JEM-Euso IR camera

16Time(s)

The decrease of intensity is an exponential function of time

I asymp eI asymp eAtAt

A = negative damping coefficient[countssec]

A (countss)

LEO18 -122

LEO27 -469

LEO51 -1952

Sky background

10 pheGTU10 pheGTU

no signal persistence for flux below this value(~full moon)

Beforeonly one

moving point

Now ldquostripesrdquo groups of

fading pointsFrom the article of L Shrbeny and P Spurny Astronomy amp Astrophysics vol 506 1445-1454 (2009)

17

LIGHT TRACK LIGHT TRACK SIMULATORSIMULATOR

INPUT INPUT = output files of the meteornuclearite simulator

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

OUTPUT OUTPUT

LIGHT TRACK FROM THE GROUNDFROM THE GROUND

STRIPES OFtimestepx y z fluxx y z of the ISS

LIGHT TRACK FROM THE GROUNDFROM THE GROUND

STRIPES OFtimestepx y z fluxx y z of the ISS

LIGHT TRACKFROM ISSFROM ISS

STRIPES OFtimestep

x y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

LIGHT TRACKFROM ISSFROM ISS

STRIPES OFtimestep

x y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

First point the most brightful OLD SIMULATOR DATA

Other points flux RECEIVED ON THE GROUND

I asymp eAt

Flux(ISS)=Flux(ground) x dist(ground)2dist(ISS)2

First point the most brightful OLD SIMULATOR DATA

Other points flux RECEIVED ON THE GROUND

I asymp eAt

Flux(ISS)=Flux(ground) x dist(ground)2dist(ISS)2

Choice ofthe exponential

coefficient A A

Choice ofthe exponential

coefficient A A

18

Beginning of an output Beginning of an output file from ISSfile from ISSthe data are not the data are not grouped in stripesgrouped in stripes

Time(s) x(km) y(km) z(km) Flux(pheGTU)

Θ(arcsec)

Φ(deg)

x(pix) y(pix)

1a

2a

First 4 First 4 stripesstripes

Abs mag 3

~ eAt

A= -1

0028000 -10064 -9668 -300132 1009877 95841 -1362 -2560 -2459 0029000 -10066 -9656 -300137 1043528 95792 -1362 -2560 -2456 0030000 -10074 -9656 -300137 1022863 95830 -1362 -2562 -2456 0031000 -10082 -9656 -300137 1002608 95869 -1362 -2564 -2456 0030000 -10069 -9644 -300142 1077082 95747 -1362 -2561 -2453 0031000 -10077 -9644 -300142 1055753 95786 -1363 -2563 -2453 0032000 -10085 -9644 -300142 1034846 95824 -1363 -2565 -2453 0033000 -10092 -9644 -300142 1014352 95863 -1363 -2567 -2453 0031000 -10071 -9633 -300146 1110570 95702 -1363 -2561 -2450 0032000 -10079 -9633 -300146 1088578 95741 -1363 -2563 -2450 0033000 -10086 -9633 -300146 1067021 95780 -1363 -2565 -2450 0034000 -10094 -9633 -300146 1045890 95818 -1363 -2567 -2450 0035000 -10102 -9633 -300146 1025179 95857 -1364 -2569 -2450 0036000 -10110 -9633 -300146 1004877 95896 -1364 -2571 -2450

3a

4a

with persistence(train)NO persistence(head)

19

~ e At

A= - 4 A= - 20

Abs mag 3

NO persistence

with persistence

20

Abs mag 3Abs mag 3

A= -1 A= -4

A= -10 A= -20

with persistence NO persistence

X (PIXELS) IN FUNCTION OF TIME

21

Abs mag 0Abs mag 0A= -1

A= -4

A= -10 A= -20

with persistence NO persistence

22

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere Divide the output file into

groups of stripes

Find zfor each stripes

with this formula using

the first term (ldquo1rdquo) fixed

and changingthe others(ldquo2rdquo)

Find x yvx vy vz

(with their errors)

z = 400 ndash vmiddott tg[θ2]radic(1+tan[φ2]2) ndash tg[θ1]radic(1+tan[φ1]2)

y = yiss(t0)+tan(φ)[x-xiss(t0) - vt]

x = xiss+vt+(z-400)middottan(θ)radic1+tan(φ)2

0

y

z

400 km

ISS (xissyiss400)

(xyz)

xφ1

θ2

φ2

θ1

Development of another numerical program

23

ResultsResultsResultsResults Font light track output file with A= -1 and abs mag = 3 Total stripes 4717 There are selected three samples from three different stripes of the output file

NdegNdegx

(km)plusmnσ

x

(km)

x expected

(km)

y(km)

plusmnσy

(km)

y expected

(km)

z(km)

plusmnσz

(km)

z expected

(km)

11 -12 15 -01 62 07 62 967 16 975

22 -35 10 -21 176 08 175 910 21 930

33 -60 09 -54 287 12 286 869 36 886

kmsplusmnσplusmnσ

vv

(kms)(kms)

Expectedvalue

(kms)

vxvx 21 17 55

vyvy 105 10 119

vz -52 24 -42

Time error = 05 ms Angle φ error given by the propagation formula where φ = arctan(ypixxpix) σxpix σypix = plusmn 1 pixel Angle θ error = 0075deg = 270 arcsec = 1pixel The associate errors are all calculated using the propagation formula

Expected value of x y and z refers to the most brightful point of each stripe Expected value of velocity

is given by the input file

vmodule (kms)

plusmnσplusmnσvv

(kms)(kms)

Expectedvalue

(kms)

119 31 138

24

ConclusionsConclusions

A simulation of different meteors light profiles as seen from JEM-EUSO has been performed on the evidence coming from ground based photographic records

Starting from ISS measurements of θ amp φ angles and taking profit of the persistence of the signal in the atmosphere it is possible to find position and velocity vectors of a meteor during its passage in the JEM-EUSO field of view

A study of the answer in pixels of JEM-EUSO focal detector can be done in future using these data

25

Thank you

26

bull SpeedSpeed meteor up to 70 kmsec Dark Matter nuclearites ~ 300kmsec (nuclearite max velocity value 570 kms meteor max value 72 kms)

bull Light profileLight profile in meteors the light starts immediately and then decreases due to the mass ablation most of the meteors doesnrsquot reach earth

On the contrary nuclearites are very compact objects the energy loss is similar to the one of an elementary particle No mass ablation The light emission is constant at h hle max (very low altitudes)hmax = 27middot ln (m 12 middot 10-5 g) km (m 01 ndash 100 g hmax 24 ndash 60 km)

M = 158 ndash 167 middot log10 (m 1 microg) (m 01 ndash 100 g M 75 ndash 25)

A nuclearite of mass gt 01 g should cross the entire earth and can move upwardJEM-EUSO could detect also upward going nuclearites

Criteria to identify Nuclearites in Jem-Euso

and differences with meteors

27

Nuclearites and meteors comparisonNuclearites and meteors comparison

1

2

3

1) up-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

h = 40 km 00001 km

2) down-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

3) Meteor v = 70 kms θ = 45deg h = 100 km

Abs mag = 17 Abs mag sec burst = -1

Light profile

Apparent motion

1

2

3

time(s)

ph

oto

ns

time(s)

θ (a

rcse

c )

Nuclearites are much faster than meteors

Graphics done in collaboration with Giulia Bruno

  • Pagina 1
  • Slide 2
  • Slide 3
  • Pagina 4
  • Slide 7
  • Pagina 6
  • Pagina 7
  • Meteor amp Nuclearite simulation
  • Pagina 9
  • Pagina 10
  • Pagina 11
  • Pagina 12
  • Pagina 13
  • Pagina 14
  • Pagina 15
  • Pagina 16
  • Pagina 17
  • Pagina 18
  • Pagina 19
  • Pagina 20
  • Pagina 21
  • Pagina 22
  • Pagina 23
  • Pagina 24
  • Pagina 25
Page 14: SIMULATION OF LIGHT PROFILES OF METEORS AND ITS

14

Meteor entering the cone of visibility

Meteor going out from the cone

15

THE LIGHT TRACKTHE LIGHT TRACKpersistence of the signal in the atmospherepersistence of the signal in the atmosphere

THE LIGHT TRACKTHE LIGHT TRACKpersistence of the signal in the atmospherepersistence of the signal in the atmosphere

Sequence of a 1999 Leonid fireball captured from an observing site in the Italian AlpsThe meteor was brighter than the full moon and left a smoke trail that was visible for more than 20 minutes Features of this kind should be observable by the JEM-Euso IR camera

16Time(s)

The decrease of intensity is an exponential function of time

I asymp eI asymp eAtAt

A = negative damping coefficient[countssec]

A (countss)

LEO18 -122

LEO27 -469

LEO51 -1952

Sky background

10 pheGTU10 pheGTU

no signal persistence for flux below this value(~full moon)

Beforeonly one

moving point

Now ldquostripesrdquo groups of

fading pointsFrom the article of L Shrbeny and P Spurny Astronomy amp Astrophysics vol 506 1445-1454 (2009)

17

LIGHT TRACK LIGHT TRACK SIMULATORSIMULATOR

INPUT INPUT = output files of the meteornuclearite simulator

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

OUTPUT OUTPUT

LIGHT TRACK FROM THE GROUNDFROM THE GROUND

STRIPES OFtimestepx y z fluxx y z of the ISS

LIGHT TRACK FROM THE GROUNDFROM THE GROUND

STRIPES OFtimestepx y z fluxx y z of the ISS

LIGHT TRACKFROM ISSFROM ISS

STRIPES OFtimestep

x y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

LIGHT TRACKFROM ISSFROM ISS

STRIPES OFtimestep

x y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

First point the most brightful OLD SIMULATOR DATA

Other points flux RECEIVED ON THE GROUND

I asymp eAt

Flux(ISS)=Flux(ground) x dist(ground)2dist(ISS)2

First point the most brightful OLD SIMULATOR DATA

Other points flux RECEIVED ON THE GROUND

I asymp eAt

Flux(ISS)=Flux(ground) x dist(ground)2dist(ISS)2

Choice ofthe exponential

coefficient A A

Choice ofthe exponential

coefficient A A

18

Beginning of an output Beginning of an output file from ISSfile from ISSthe data are not the data are not grouped in stripesgrouped in stripes

Time(s) x(km) y(km) z(km) Flux(pheGTU)

Θ(arcsec)

Φ(deg)

x(pix) y(pix)

1a

2a

First 4 First 4 stripesstripes

Abs mag 3

~ eAt

A= -1

0028000 -10064 -9668 -300132 1009877 95841 -1362 -2560 -2459 0029000 -10066 -9656 -300137 1043528 95792 -1362 -2560 -2456 0030000 -10074 -9656 -300137 1022863 95830 -1362 -2562 -2456 0031000 -10082 -9656 -300137 1002608 95869 -1362 -2564 -2456 0030000 -10069 -9644 -300142 1077082 95747 -1362 -2561 -2453 0031000 -10077 -9644 -300142 1055753 95786 -1363 -2563 -2453 0032000 -10085 -9644 -300142 1034846 95824 -1363 -2565 -2453 0033000 -10092 -9644 -300142 1014352 95863 -1363 -2567 -2453 0031000 -10071 -9633 -300146 1110570 95702 -1363 -2561 -2450 0032000 -10079 -9633 -300146 1088578 95741 -1363 -2563 -2450 0033000 -10086 -9633 -300146 1067021 95780 -1363 -2565 -2450 0034000 -10094 -9633 -300146 1045890 95818 -1363 -2567 -2450 0035000 -10102 -9633 -300146 1025179 95857 -1364 -2569 -2450 0036000 -10110 -9633 -300146 1004877 95896 -1364 -2571 -2450

3a

4a

with persistence(train)NO persistence(head)

19

~ e At

A= - 4 A= - 20

Abs mag 3

NO persistence

with persistence

20

Abs mag 3Abs mag 3

A= -1 A= -4

A= -10 A= -20

with persistence NO persistence

X (PIXELS) IN FUNCTION OF TIME

21

Abs mag 0Abs mag 0A= -1

A= -4

A= -10 A= -20

with persistence NO persistence

22

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere Divide the output file into

groups of stripes

Find zfor each stripes

with this formula using

the first term (ldquo1rdquo) fixed

and changingthe others(ldquo2rdquo)

Find x yvx vy vz

(with their errors)

z = 400 ndash vmiddott tg[θ2]radic(1+tan[φ2]2) ndash tg[θ1]radic(1+tan[φ1]2)

y = yiss(t0)+tan(φ)[x-xiss(t0) - vt]

x = xiss+vt+(z-400)middottan(θ)radic1+tan(φ)2

0

y

z

400 km

ISS (xissyiss400)

(xyz)

xφ1

θ2

φ2

θ1

Development of another numerical program

23

ResultsResultsResultsResults Font light track output file with A= -1 and abs mag = 3 Total stripes 4717 There are selected three samples from three different stripes of the output file

NdegNdegx

(km)plusmnσ

x

(km)

x expected

(km)

y(km)

plusmnσy

(km)

y expected

(km)

z(km)

plusmnσz

(km)

z expected

(km)

11 -12 15 -01 62 07 62 967 16 975

22 -35 10 -21 176 08 175 910 21 930

33 -60 09 -54 287 12 286 869 36 886

kmsplusmnσplusmnσ

vv

(kms)(kms)

Expectedvalue

(kms)

vxvx 21 17 55

vyvy 105 10 119

vz -52 24 -42

Time error = 05 ms Angle φ error given by the propagation formula where φ = arctan(ypixxpix) σxpix σypix = plusmn 1 pixel Angle θ error = 0075deg = 270 arcsec = 1pixel The associate errors are all calculated using the propagation formula

Expected value of x y and z refers to the most brightful point of each stripe Expected value of velocity

is given by the input file

vmodule (kms)

plusmnσplusmnσvv

(kms)(kms)

Expectedvalue

(kms)

119 31 138

24

ConclusionsConclusions

A simulation of different meteors light profiles as seen from JEM-EUSO has been performed on the evidence coming from ground based photographic records

Starting from ISS measurements of θ amp φ angles and taking profit of the persistence of the signal in the atmosphere it is possible to find position and velocity vectors of a meteor during its passage in the JEM-EUSO field of view

A study of the answer in pixels of JEM-EUSO focal detector can be done in future using these data

25

Thank you

26

bull SpeedSpeed meteor up to 70 kmsec Dark Matter nuclearites ~ 300kmsec (nuclearite max velocity value 570 kms meteor max value 72 kms)

bull Light profileLight profile in meteors the light starts immediately and then decreases due to the mass ablation most of the meteors doesnrsquot reach earth

On the contrary nuclearites are very compact objects the energy loss is similar to the one of an elementary particle No mass ablation The light emission is constant at h hle max (very low altitudes)hmax = 27middot ln (m 12 middot 10-5 g) km (m 01 ndash 100 g hmax 24 ndash 60 km)

M = 158 ndash 167 middot log10 (m 1 microg) (m 01 ndash 100 g M 75 ndash 25)

A nuclearite of mass gt 01 g should cross the entire earth and can move upwardJEM-EUSO could detect also upward going nuclearites

Criteria to identify Nuclearites in Jem-Euso

and differences with meteors

27

Nuclearites and meteors comparisonNuclearites and meteors comparison

1

2

3

1) up-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

h = 40 km 00001 km

2) down-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

3) Meteor v = 70 kms θ = 45deg h = 100 km

Abs mag = 17 Abs mag sec burst = -1

Light profile

Apparent motion

1

2

3

time(s)

ph

oto

ns

time(s)

θ (a

rcse

c )

Nuclearites are much faster than meteors

Graphics done in collaboration with Giulia Bruno

  • Pagina 1
  • Slide 2
  • Slide 3
  • Pagina 4
  • Slide 7
  • Pagina 6
  • Pagina 7
  • Meteor amp Nuclearite simulation
  • Pagina 9
  • Pagina 10
  • Pagina 11
  • Pagina 12
  • Pagina 13
  • Pagina 14
  • Pagina 15
  • Pagina 16
  • Pagina 17
  • Pagina 18
  • Pagina 19
  • Pagina 20
  • Pagina 21
  • Pagina 22
  • Pagina 23
  • Pagina 24
  • Pagina 25
Page 15: SIMULATION OF LIGHT PROFILES OF METEORS AND ITS

15

THE LIGHT TRACKTHE LIGHT TRACKpersistence of the signal in the atmospherepersistence of the signal in the atmosphere

THE LIGHT TRACKTHE LIGHT TRACKpersistence of the signal in the atmospherepersistence of the signal in the atmosphere

Sequence of a 1999 Leonid fireball captured from an observing site in the Italian AlpsThe meteor was brighter than the full moon and left a smoke trail that was visible for more than 20 minutes Features of this kind should be observable by the JEM-Euso IR camera

16Time(s)

The decrease of intensity is an exponential function of time

I asymp eI asymp eAtAt

A = negative damping coefficient[countssec]

A (countss)

LEO18 -122

LEO27 -469

LEO51 -1952

Sky background

10 pheGTU10 pheGTU

no signal persistence for flux below this value(~full moon)

Beforeonly one

moving point

Now ldquostripesrdquo groups of

fading pointsFrom the article of L Shrbeny and P Spurny Astronomy amp Astrophysics vol 506 1445-1454 (2009)

17

LIGHT TRACK LIGHT TRACK SIMULATORSIMULATOR

INPUT INPUT = output files of the meteornuclearite simulator

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

OUTPUT OUTPUT

LIGHT TRACK FROM THE GROUNDFROM THE GROUND

STRIPES OFtimestepx y z fluxx y z of the ISS

LIGHT TRACK FROM THE GROUNDFROM THE GROUND

STRIPES OFtimestepx y z fluxx y z of the ISS

LIGHT TRACKFROM ISSFROM ISS

STRIPES OFtimestep

x y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

LIGHT TRACKFROM ISSFROM ISS

STRIPES OFtimestep

x y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

First point the most brightful OLD SIMULATOR DATA

Other points flux RECEIVED ON THE GROUND

I asymp eAt

Flux(ISS)=Flux(ground) x dist(ground)2dist(ISS)2

First point the most brightful OLD SIMULATOR DATA

Other points flux RECEIVED ON THE GROUND

I asymp eAt

Flux(ISS)=Flux(ground) x dist(ground)2dist(ISS)2

Choice ofthe exponential

coefficient A A

Choice ofthe exponential

coefficient A A

18

Beginning of an output Beginning of an output file from ISSfile from ISSthe data are not the data are not grouped in stripesgrouped in stripes

Time(s) x(km) y(km) z(km) Flux(pheGTU)

Θ(arcsec)

Φ(deg)

x(pix) y(pix)

1a

2a

First 4 First 4 stripesstripes

Abs mag 3

~ eAt

A= -1

0028000 -10064 -9668 -300132 1009877 95841 -1362 -2560 -2459 0029000 -10066 -9656 -300137 1043528 95792 -1362 -2560 -2456 0030000 -10074 -9656 -300137 1022863 95830 -1362 -2562 -2456 0031000 -10082 -9656 -300137 1002608 95869 -1362 -2564 -2456 0030000 -10069 -9644 -300142 1077082 95747 -1362 -2561 -2453 0031000 -10077 -9644 -300142 1055753 95786 -1363 -2563 -2453 0032000 -10085 -9644 -300142 1034846 95824 -1363 -2565 -2453 0033000 -10092 -9644 -300142 1014352 95863 -1363 -2567 -2453 0031000 -10071 -9633 -300146 1110570 95702 -1363 -2561 -2450 0032000 -10079 -9633 -300146 1088578 95741 -1363 -2563 -2450 0033000 -10086 -9633 -300146 1067021 95780 -1363 -2565 -2450 0034000 -10094 -9633 -300146 1045890 95818 -1363 -2567 -2450 0035000 -10102 -9633 -300146 1025179 95857 -1364 -2569 -2450 0036000 -10110 -9633 -300146 1004877 95896 -1364 -2571 -2450

3a

4a

with persistence(train)NO persistence(head)

19

~ e At

A= - 4 A= - 20

Abs mag 3

NO persistence

with persistence

20

Abs mag 3Abs mag 3

A= -1 A= -4

A= -10 A= -20

with persistence NO persistence

X (PIXELS) IN FUNCTION OF TIME

21

Abs mag 0Abs mag 0A= -1

A= -4

A= -10 A= -20

with persistence NO persistence

22

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere Divide the output file into

groups of stripes

Find zfor each stripes

with this formula using

the first term (ldquo1rdquo) fixed

and changingthe others(ldquo2rdquo)

Find x yvx vy vz

(with their errors)

z = 400 ndash vmiddott tg[θ2]radic(1+tan[φ2]2) ndash tg[θ1]radic(1+tan[φ1]2)

y = yiss(t0)+tan(φ)[x-xiss(t0) - vt]

x = xiss+vt+(z-400)middottan(θ)radic1+tan(φ)2

0

y

z

400 km

ISS (xissyiss400)

(xyz)

xφ1

θ2

φ2

θ1

Development of another numerical program

23

ResultsResultsResultsResults Font light track output file with A= -1 and abs mag = 3 Total stripes 4717 There are selected three samples from three different stripes of the output file

NdegNdegx

(km)plusmnσ

x

(km)

x expected

(km)

y(km)

plusmnσy

(km)

y expected

(km)

z(km)

plusmnσz

(km)

z expected

(km)

11 -12 15 -01 62 07 62 967 16 975

22 -35 10 -21 176 08 175 910 21 930

33 -60 09 -54 287 12 286 869 36 886

kmsplusmnσplusmnσ

vv

(kms)(kms)

Expectedvalue

(kms)

vxvx 21 17 55

vyvy 105 10 119

vz -52 24 -42

Time error = 05 ms Angle φ error given by the propagation formula where φ = arctan(ypixxpix) σxpix σypix = plusmn 1 pixel Angle θ error = 0075deg = 270 arcsec = 1pixel The associate errors are all calculated using the propagation formula

Expected value of x y and z refers to the most brightful point of each stripe Expected value of velocity

is given by the input file

vmodule (kms)

plusmnσplusmnσvv

(kms)(kms)

Expectedvalue

(kms)

119 31 138

24

ConclusionsConclusions

A simulation of different meteors light profiles as seen from JEM-EUSO has been performed on the evidence coming from ground based photographic records

Starting from ISS measurements of θ amp φ angles and taking profit of the persistence of the signal in the atmosphere it is possible to find position and velocity vectors of a meteor during its passage in the JEM-EUSO field of view

A study of the answer in pixels of JEM-EUSO focal detector can be done in future using these data

25

Thank you

26

bull SpeedSpeed meteor up to 70 kmsec Dark Matter nuclearites ~ 300kmsec (nuclearite max velocity value 570 kms meteor max value 72 kms)

bull Light profileLight profile in meteors the light starts immediately and then decreases due to the mass ablation most of the meteors doesnrsquot reach earth

On the contrary nuclearites are very compact objects the energy loss is similar to the one of an elementary particle No mass ablation The light emission is constant at h hle max (very low altitudes)hmax = 27middot ln (m 12 middot 10-5 g) km (m 01 ndash 100 g hmax 24 ndash 60 km)

M = 158 ndash 167 middot log10 (m 1 microg) (m 01 ndash 100 g M 75 ndash 25)

A nuclearite of mass gt 01 g should cross the entire earth and can move upwardJEM-EUSO could detect also upward going nuclearites

Criteria to identify Nuclearites in Jem-Euso

and differences with meteors

27

Nuclearites and meteors comparisonNuclearites and meteors comparison

1

2

3

1) up-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

h = 40 km 00001 km

2) down-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

3) Meteor v = 70 kms θ = 45deg h = 100 km

Abs mag = 17 Abs mag sec burst = -1

Light profile

Apparent motion

1

2

3

time(s)

ph

oto

ns

time(s)

θ (a

rcse

c )

Nuclearites are much faster than meteors

Graphics done in collaboration with Giulia Bruno

  • Pagina 1
  • Slide 2
  • Slide 3
  • Pagina 4
  • Slide 7
  • Pagina 6
  • Pagina 7
  • Meteor amp Nuclearite simulation
  • Pagina 9
  • Pagina 10
  • Pagina 11
  • Pagina 12
  • Pagina 13
  • Pagina 14
  • Pagina 15
  • Pagina 16
  • Pagina 17
  • Pagina 18
  • Pagina 19
  • Pagina 20
  • Pagina 21
  • Pagina 22
  • Pagina 23
  • Pagina 24
  • Pagina 25
Page 16: SIMULATION OF LIGHT PROFILES OF METEORS AND ITS

16Time(s)

The decrease of intensity is an exponential function of time

I asymp eI asymp eAtAt

A = negative damping coefficient[countssec]

A (countss)

LEO18 -122

LEO27 -469

LEO51 -1952

Sky background

10 pheGTU10 pheGTU

no signal persistence for flux below this value(~full moon)

Beforeonly one

moving point

Now ldquostripesrdquo groups of

fading pointsFrom the article of L Shrbeny and P Spurny Astronomy amp Astrophysics vol 506 1445-1454 (2009)

17

LIGHT TRACK LIGHT TRACK SIMULATORSIMULATOR

INPUT INPUT = output files of the meteornuclearite simulator

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

OUTPUT OUTPUT

LIGHT TRACK FROM THE GROUNDFROM THE GROUND

STRIPES OFtimestepx y z fluxx y z of the ISS

LIGHT TRACK FROM THE GROUNDFROM THE GROUND

STRIPES OFtimestepx y z fluxx y z of the ISS

LIGHT TRACKFROM ISSFROM ISS

STRIPES OFtimestep

x y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

LIGHT TRACKFROM ISSFROM ISS

STRIPES OFtimestep

x y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

First point the most brightful OLD SIMULATOR DATA

Other points flux RECEIVED ON THE GROUND

I asymp eAt

Flux(ISS)=Flux(ground) x dist(ground)2dist(ISS)2

First point the most brightful OLD SIMULATOR DATA

Other points flux RECEIVED ON THE GROUND

I asymp eAt

Flux(ISS)=Flux(ground) x dist(ground)2dist(ISS)2

Choice ofthe exponential

coefficient A A

Choice ofthe exponential

coefficient A A

18

Beginning of an output Beginning of an output file from ISSfile from ISSthe data are not the data are not grouped in stripesgrouped in stripes

Time(s) x(km) y(km) z(km) Flux(pheGTU)

Θ(arcsec)

Φ(deg)

x(pix) y(pix)

1a

2a

First 4 First 4 stripesstripes

Abs mag 3

~ eAt

A= -1

0028000 -10064 -9668 -300132 1009877 95841 -1362 -2560 -2459 0029000 -10066 -9656 -300137 1043528 95792 -1362 -2560 -2456 0030000 -10074 -9656 -300137 1022863 95830 -1362 -2562 -2456 0031000 -10082 -9656 -300137 1002608 95869 -1362 -2564 -2456 0030000 -10069 -9644 -300142 1077082 95747 -1362 -2561 -2453 0031000 -10077 -9644 -300142 1055753 95786 -1363 -2563 -2453 0032000 -10085 -9644 -300142 1034846 95824 -1363 -2565 -2453 0033000 -10092 -9644 -300142 1014352 95863 -1363 -2567 -2453 0031000 -10071 -9633 -300146 1110570 95702 -1363 -2561 -2450 0032000 -10079 -9633 -300146 1088578 95741 -1363 -2563 -2450 0033000 -10086 -9633 -300146 1067021 95780 -1363 -2565 -2450 0034000 -10094 -9633 -300146 1045890 95818 -1363 -2567 -2450 0035000 -10102 -9633 -300146 1025179 95857 -1364 -2569 -2450 0036000 -10110 -9633 -300146 1004877 95896 -1364 -2571 -2450

3a

4a

with persistence(train)NO persistence(head)

19

~ e At

A= - 4 A= - 20

Abs mag 3

NO persistence

with persistence

20

Abs mag 3Abs mag 3

A= -1 A= -4

A= -10 A= -20

with persistence NO persistence

X (PIXELS) IN FUNCTION OF TIME

21

Abs mag 0Abs mag 0A= -1

A= -4

A= -10 A= -20

with persistence NO persistence

22

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere Divide the output file into

groups of stripes

Find zfor each stripes

with this formula using

the first term (ldquo1rdquo) fixed

and changingthe others(ldquo2rdquo)

Find x yvx vy vz

(with their errors)

z = 400 ndash vmiddott tg[θ2]radic(1+tan[φ2]2) ndash tg[θ1]radic(1+tan[φ1]2)

y = yiss(t0)+tan(φ)[x-xiss(t0) - vt]

x = xiss+vt+(z-400)middottan(θ)radic1+tan(φ)2

0

y

z

400 km

ISS (xissyiss400)

(xyz)

xφ1

θ2

φ2

θ1

Development of another numerical program

23

ResultsResultsResultsResults Font light track output file with A= -1 and abs mag = 3 Total stripes 4717 There are selected three samples from three different stripes of the output file

NdegNdegx

(km)plusmnσ

x

(km)

x expected

(km)

y(km)

plusmnσy

(km)

y expected

(km)

z(km)

plusmnσz

(km)

z expected

(km)

11 -12 15 -01 62 07 62 967 16 975

22 -35 10 -21 176 08 175 910 21 930

33 -60 09 -54 287 12 286 869 36 886

kmsplusmnσplusmnσ

vv

(kms)(kms)

Expectedvalue

(kms)

vxvx 21 17 55

vyvy 105 10 119

vz -52 24 -42

Time error = 05 ms Angle φ error given by the propagation formula where φ = arctan(ypixxpix) σxpix σypix = plusmn 1 pixel Angle θ error = 0075deg = 270 arcsec = 1pixel The associate errors are all calculated using the propagation formula

Expected value of x y and z refers to the most brightful point of each stripe Expected value of velocity

is given by the input file

vmodule (kms)

plusmnσplusmnσvv

(kms)(kms)

Expectedvalue

(kms)

119 31 138

24

ConclusionsConclusions

A simulation of different meteors light profiles as seen from JEM-EUSO has been performed on the evidence coming from ground based photographic records

Starting from ISS measurements of θ amp φ angles and taking profit of the persistence of the signal in the atmosphere it is possible to find position and velocity vectors of a meteor during its passage in the JEM-EUSO field of view

A study of the answer in pixels of JEM-EUSO focal detector can be done in future using these data

25

Thank you

26

bull SpeedSpeed meteor up to 70 kmsec Dark Matter nuclearites ~ 300kmsec (nuclearite max velocity value 570 kms meteor max value 72 kms)

bull Light profileLight profile in meteors the light starts immediately and then decreases due to the mass ablation most of the meteors doesnrsquot reach earth

On the contrary nuclearites are very compact objects the energy loss is similar to the one of an elementary particle No mass ablation The light emission is constant at h hle max (very low altitudes)hmax = 27middot ln (m 12 middot 10-5 g) km (m 01 ndash 100 g hmax 24 ndash 60 km)

M = 158 ndash 167 middot log10 (m 1 microg) (m 01 ndash 100 g M 75 ndash 25)

A nuclearite of mass gt 01 g should cross the entire earth and can move upwardJEM-EUSO could detect also upward going nuclearites

Criteria to identify Nuclearites in Jem-Euso

and differences with meteors

27

Nuclearites and meteors comparisonNuclearites and meteors comparison

1

2

3

1) up-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

h = 40 km 00001 km

2) down-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

3) Meteor v = 70 kms θ = 45deg h = 100 km

Abs mag = 17 Abs mag sec burst = -1

Light profile

Apparent motion

1

2

3

time(s)

ph

oto

ns

time(s)

θ (a

rcse

c )

Nuclearites are much faster than meteors

Graphics done in collaboration with Giulia Bruno

  • Pagina 1
  • Slide 2
  • Slide 3
  • Pagina 4
  • Slide 7
  • Pagina 6
  • Pagina 7
  • Meteor amp Nuclearite simulation
  • Pagina 9
  • Pagina 10
  • Pagina 11
  • Pagina 12
  • Pagina 13
  • Pagina 14
  • Pagina 15
  • Pagina 16
  • Pagina 17
  • Pagina 18
  • Pagina 19
  • Pagina 20
  • Pagina 21
  • Pagina 22
  • Pagina 23
  • Pagina 24
  • Pagina 25
Page 17: SIMULATION OF LIGHT PROFILES OF METEORS AND ITS

17

LIGHT TRACK LIGHT TRACK SIMULATORSIMULATOR

INPUT INPUT = output files of the meteornuclearite simulator

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

METEORNUCLEARITE FROM ISSFROM ISS

timestepx y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

METEORNUCLEARITE FROM THE GROUNDFROM THE GROUND

timestepx y z fluxx y z of the ISS

OUTPUT OUTPUT

LIGHT TRACK FROM THE GROUNDFROM THE GROUND

STRIPES OFtimestepx y z fluxx y z of the ISS

LIGHT TRACK FROM THE GROUNDFROM THE GROUND

STRIPES OFtimestepx y z fluxx y z of the ISS

LIGHT TRACKFROM ISSFROM ISS

STRIPES OFtimestep

x y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

LIGHT TRACKFROM ISSFROM ISS

STRIPES OFtimestep

x y z flux

zenith angle (θ)azimutal angle (φ)

x y (pix)

First point the most brightful OLD SIMULATOR DATA

Other points flux RECEIVED ON THE GROUND

I asymp eAt

Flux(ISS)=Flux(ground) x dist(ground)2dist(ISS)2

First point the most brightful OLD SIMULATOR DATA

Other points flux RECEIVED ON THE GROUND

I asymp eAt

Flux(ISS)=Flux(ground) x dist(ground)2dist(ISS)2

Choice ofthe exponential

coefficient A A

Choice ofthe exponential

coefficient A A

18

Beginning of an output Beginning of an output file from ISSfile from ISSthe data are not the data are not grouped in stripesgrouped in stripes

Time(s) x(km) y(km) z(km) Flux(pheGTU)

Θ(arcsec)

Φ(deg)

x(pix) y(pix)

1a

2a

First 4 First 4 stripesstripes

Abs mag 3

~ eAt

A= -1

0028000 -10064 -9668 -300132 1009877 95841 -1362 -2560 -2459 0029000 -10066 -9656 -300137 1043528 95792 -1362 -2560 -2456 0030000 -10074 -9656 -300137 1022863 95830 -1362 -2562 -2456 0031000 -10082 -9656 -300137 1002608 95869 -1362 -2564 -2456 0030000 -10069 -9644 -300142 1077082 95747 -1362 -2561 -2453 0031000 -10077 -9644 -300142 1055753 95786 -1363 -2563 -2453 0032000 -10085 -9644 -300142 1034846 95824 -1363 -2565 -2453 0033000 -10092 -9644 -300142 1014352 95863 -1363 -2567 -2453 0031000 -10071 -9633 -300146 1110570 95702 -1363 -2561 -2450 0032000 -10079 -9633 -300146 1088578 95741 -1363 -2563 -2450 0033000 -10086 -9633 -300146 1067021 95780 -1363 -2565 -2450 0034000 -10094 -9633 -300146 1045890 95818 -1363 -2567 -2450 0035000 -10102 -9633 -300146 1025179 95857 -1364 -2569 -2450 0036000 -10110 -9633 -300146 1004877 95896 -1364 -2571 -2450

3a

4a

with persistence(train)NO persistence(head)

19

~ e At

A= - 4 A= - 20

Abs mag 3

NO persistence

with persistence

20

Abs mag 3Abs mag 3

A= -1 A= -4

A= -10 A= -20

with persistence NO persistence

X (PIXELS) IN FUNCTION OF TIME

21

Abs mag 0Abs mag 0A= -1

A= -4

A= -10 A= -20

with persistence NO persistence

22

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere Divide the output file into

groups of stripes

Find zfor each stripes

with this formula using

the first term (ldquo1rdquo) fixed

and changingthe others(ldquo2rdquo)

Find x yvx vy vz

(with their errors)

z = 400 ndash vmiddott tg[θ2]radic(1+tan[φ2]2) ndash tg[θ1]radic(1+tan[φ1]2)

y = yiss(t0)+tan(φ)[x-xiss(t0) - vt]

x = xiss+vt+(z-400)middottan(θ)radic1+tan(φ)2

0

y

z

400 km

ISS (xissyiss400)

(xyz)

xφ1

θ2

φ2

θ1

Development of another numerical program

23

ResultsResultsResultsResults Font light track output file with A= -1 and abs mag = 3 Total stripes 4717 There are selected three samples from three different stripes of the output file

NdegNdegx

(km)plusmnσ

x

(km)

x expected

(km)

y(km)

plusmnσy

(km)

y expected

(km)

z(km)

plusmnσz

(km)

z expected

(km)

11 -12 15 -01 62 07 62 967 16 975

22 -35 10 -21 176 08 175 910 21 930

33 -60 09 -54 287 12 286 869 36 886

kmsplusmnσplusmnσ

vv

(kms)(kms)

Expectedvalue

(kms)

vxvx 21 17 55

vyvy 105 10 119

vz -52 24 -42

Time error = 05 ms Angle φ error given by the propagation formula where φ = arctan(ypixxpix) σxpix σypix = plusmn 1 pixel Angle θ error = 0075deg = 270 arcsec = 1pixel The associate errors are all calculated using the propagation formula

Expected value of x y and z refers to the most brightful point of each stripe Expected value of velocity

is given by the input file

vmodule (kms)

plusmnσplusmnσvv

(kms)(kms)

Expectedvalue

(kms)

119 31 138

24

ConclusionsConclusions

A simulation of different meteors light profiles as seen from JEM-EUSO has been performed on the evidence coming from ground based photographic records

Starting from ISS measurements of θ amp φ angles and taking profit of the persistence of the signal in the atmosphere it is possible to find position and velocity vectors of a meteor during its passage in the JEM-EUSO field of view

A study of the answer in pixels of JEM-EUSO focal detector can be done in future using these data

25

Thank you

26

bull SpeedSpeed meteor up to 70 kmsec Dark Matter nuclearites ~ 300kmsec (nuclearite max velocity value 570 kms meteor max value 72 kms)

bull Light profileLight profile in meteors the light starts immediately and then decreases due to the mass ablation most of the meteors doesnrsquot reach earth

On the contrary nuclearites are very compact objects the energy loss is similar to the one of an elementary particle No mass ablation The light emission is constant at h hle max (very low altitudes)hmax = 27middot ln (m 12 middot 10-5 g) km (m 01 ndash 100 g hmax 24 ndash 60 km)

M = 158 ndash 167 middot log10 (m 1 microg) (m 01 ndash 100 g M 75 ndash 25)

A nuclearite of mass gt 01 g should cross the entire earth and can move upwardJEM-EUSO could detect also upward going nuclearites

Criteria to identify Nuclearites in Jem-Euso

and differences with meteors

27

Nuclearites and meteors comparisonNuclearites and meteors comparison

1

2

3

1) up-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

h = 40 km 00001 km

2) down-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

3) Meteor v = 70 kms θ = 45deg h = 100 km

Abs mag = 17 Abs mag sec burst = -1

Light profile

Apparent motion

1

2

3

time(s)

ph

oto

ns

time(s)

θ (a

rcse

c )

Nuclearites are much faster than meteors

Graphics done in collaboration with Giulia Bruno

  • Pagina 1
  • Slide 2
  • Slide 3
  • Pagina 4
  • Slide 7
  • Pagina 6
  • Pagina 7
  • Meteor amp Nuclearite simulation
  • Pagina 9
  • Pagina 10
  • Pagina 11
  • Pagina 12
  • Pagina 13
  • Pagina 14
  • Pagina 15
  • Pagina 16
  • Pagina 17
  • Pagina 18
  • Pagina 19
  • Pagina 20
  • Pagina 21
  • Pagina 22
  • Pagina 23
  • Pagina 24
  • Pagina 25
Page 18: SIMULATION OF LIGHT PROFILES OF METEORS AND ITS

18

Beginning of an output Beginning of an output file from ISSfile from ISSthe data are not the data are not grouped in stripesgrouped in stripes

Time(s) x(km) y(km) z(km) Flux(pheGTU)

Θ(arcsec)

Φ(deg)

x(pix) y(pix)

1a

2a

First 4 First 4 stripesstripes

Abs mag 3

~ eAt

A= -1

0028000 -10064 -9668 -300132 1009877 95841 -1362 -2560 -2459 0029000 -10066 -9656 -300137 1043528 95792 -1362 -2560 -2456 0030000 -10074 -9656 -300137 1022863 95830 -1362 -2562 -2456 0031000 -10082 -9656 -300137 1002608 95869 -1362 -2564 -2456 0030000 -10069 -9644 -300142 1077082 95747 -1362 -2561 -2453 0031000 -10077 -9644 -300142 1055753 95786 -1363 -2563 -2453 0032000 -10085 -9644 -300142 1034846 95824 -1363 -2565 -2453 0033000 -10092 -9644 -300142 1014352 95863 -1363 -2567 -2453 0031000 -10071 -9633 -300146 1110570 95702 -1363 -2561 -2450 0032000 -10079 -9633 -300146 1088578 95741 -1363 -2563 -2450 0033000 -10086 -9633 -300146 1067021 95780 -1363 -2565 -2450 0034000 -10094 -9633 -300146 1045890 95818 -1363 -2567 -2450 0035000 -10102 -9633 -300146 1025179 95857 -1364 -2569 -2450 0036000 -10110 -9633 -300146 1004877 95896 -1364 -2571 -2450

3a

4a

with persistence(train)NO persistence(head)

19

~ e At

A= - 4 A= - 20

Abs mag 3

NO persistence

with persistence

20

Abs mag 3Abs mag 3

A= -1 A= -4

A= -10 A= -20

with persistence NO persistence

X (PIXELS) IN FUNCTION OF TIME

21

Abs mag 0Abs mag 0A= -1

A= -4

A= -10 A= -20

with persistence NO persistence

22

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere Divide the output file into

groups of stripes

Find zfor each stripes

with this formula using

the first term (ldquo1rdquo) fixed

and changingthe others(ldquo2rdquo)

Find x yvx vy vz

(with their errors)

z = 400 ndash vmiddott tg[θ2]radic(1+tan[φ2]2) ndash tg[θ1]radic(1+tan[φ1]2)

y = yiss(t0)+tan(φ)[x-xiss(t0) - vt]

x = xiss+vt+(z-400)middottan(θ)radic1+tan(φ)2

0

y

z

400 km

ISS (xissyiss400)

(xyz)

xφ1

θ2

φ2

θ1

Development of another numerical program

23

ResultsResultsResultsResults Font light track output file with A= -1 and abs mag = 3 Total stripes 4717 There are selected three samples from three different stripes of the output file

NdegNdegx

(km)plusmnσ

x

(km)

x expected

(km)

y(km)

plusmnσy

(km)

y expected

(km)

z(km)

plusmnσz

(km)

z expected

(km)

11 -12 15 -01 62 07 62 967 16 975

22 -35 10 -21 176 08 175 910 21 930

33 -60 09 -54 287 12 286 869 36 886

kmsplusmnσplusmnσ

vv

(kms)(kms)

Expectedvalue

(kms)

vxvx 21 17 55

vyvy 105 10 119

vz -52 24 -42

Time error = 05 ms Angle φ error given by the propagation formula where φ = arctan(ypixxpix) σxpix σypix = plusmn 1 pixel Angle θ error = 0075deg = 270 arcsec = 1pixel The associate errors are all calculated using the propagation formula

Expected value of x y and z refers to the most brightful point of each stripe Expected value of velocity

is given by the input file

vmodule (kms)

plusmnσplusmnσvv

(kms)(kms)

Expectedvalue

(kms)

119 31 138

24

ConclusionsConclusions

A simulation of different meteors light profiles as seen from JEM-EUSO has been performed on the evidence coming from ground based photographic records

Starting from ISS measurements of θ amp φ angles and taking profit of the persistence of the signal in the atmosphere it is possible to find position and velocity vectors of a meteor during its passage in the JEM-EUSO field of view

A study of the answer in pixels of JEM-EUSO focal detector can be done in future using these data

25

Thank you

26

bull SpeedSpeed meteor up to 70 kmsec Dark Matter nuclearites ~ 300kmsec (nuclearite max velocity value 570 kms meteor max value 72 kms)

bull Light profileLight profile in meteors the light starts immediately and then decreases due to the mass ablation most of the meteors doesnrsquot reach earth

On the contrary nuclearites are very compact objects the energy loss is similar to the one of an elementary particle No mass ablation The light emission is constant at h hle max (very low altitudes)hmax = 27middot ln (m 12 middot 10-5 g) km (m 01 ndash 100 g hmax 24 ndash 60 km)

M = 158 ndash 167 middot log10 (m 1 microg) (m 01 ndash 100 g M 75 ndash 25)

A nuclearite of mass gt 01 g should cross the entire earth and can move upwardJEM-EUSO could detect also upward going nuclearites

Criteria to identify Nuclearites in Jem-Euso

and differences with meteors

27

Nuclearites and meteors comparisonNuclearites and meteors comparison

1

2

3

1) up-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

h = 40 km 00001 km

2) down-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

3) Meteor v = 70 kms θ = 45deg h = 100 km

Abs mag = 17 Abs mag sec burst = -1

Light profile

Apparent motion

1

2

3

time(s)

ph

oto

ns

time(s)

θ (a

rcse

c )

Nuclearites are much faster than meteors

Graphics done in collaboration with Giulia Bruno

  • Pagina 1
  • Slide 2
  • Slide 3
  • Pagina 4
  • Slide 7
  • Pagina 6
  • Pagina 7
  • Meteor amp Nuclearite simulation
  • Pagina 9
  • Pagina 10
  • Pagina 11
  • Pagina 12
  • Pagina 13
  • Pagina 14
  • Pagina 15
  • Pagina 16
  • Pagina 17
  • Pagina 18
  • Pagina 19
  • Pagina 20
  • Pagina 21
  • Pagina 22
  • Pagina 23
  • Pagina 24
  • Pagina 25
Page 19: SIMULATION OF LIGHT PROFILES OF METEORS AND ITS

19

~ e At

A= - 4 A= - 20

Abs mag 3

NO persistence

with persistence

20

Abs mag 3Abs mag 3

A= -1 A= -4

A= -10 A= -20

with persistence NO persistence

X (PIXELS) IN FUNCTION OF TIME

21

Abs mag 0Abs mag 0A= -1

A= -4

A= -10 A= -20

with persistence NO persistence

22

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere Divide the output file into

groups of stripes

Find zfor each stripes

with this formula using

the first term (ldquo1rdquo) fixed

and changingthe others(ldquo2rdquo)

Find x yvx vy vz

(with their errors)

z = 400 ndash vmiddott tg[θ2]radic(1+tan[φ2]2) ndash tg[θ1]radic(1+tan[φ1]2)

y = yiss(t0)+tan(φ)[x-xiss(t0) - vt]

x = xiss+vt+(z-400)middottan(θ)radic1+tan(φ)2

0

y

z

400 km

ISS (xissyiss400)

(xyz)

xφ1

θ2

φ2

θ1

Development of another numerical program

23

ResultsResultsResultsResults Font light track output file with A= -1 and abs mag = 3 Total stripes 4717 There are selected three samples from three different stripes of the output file

NdegNdegx

(km)plusmnσ

x

(km)

x expected

(km)

y(km)

plusmnσy

(km)

y expected

(km)

z(km)

plusmnσz

(km)

z expected

(km)

11 -12 15 -01 62 07 62 967 16 975

22 -35 10 -21 176 08 175 910 21 930

33 -60 09 -54 287 12 286 869 36 886

kmsplusmnσplusmnσ

vv

(kms)(kms)

Expectedvalue

(kms)

vxvx 21 17 55

vyvy 105 10 119

vz -52 24 -42

Time error = 05 ms Angle φ error given by the propagation formula where φ = arctan(ypixxpix) σxpix σypix = plusmn 1 pixel Angle θ error = 0075deg = 270 arcsec = 1pixel The associate errors are all calculated using the propagation formula

Expected value of x y and z refers to the most brightful point of each stripe Expected value of velocity

is given by the input file

vmodule (kms)

plusmnσplusmnσvv

(kms)(kms)

Expectedvalue

(kms)

119 31 138

24

ConclusionsConclusions

A simulation of different meteors light profiles as seen from JEM-EUSO has been performed on the evidence coming from ground based photographic records

Starting from ISS measurements of θ amp φ angles and taking profit of the persistence of the signal in the atmosphere it is possible to find position and velocity vectors of a meteor during its passage in the JEM-EUSO field of view

A study of the answer in pixels of JEM-EUSO focal detector can be done in future using these data

25

Thank you

26

bull SpeedSpeed meteor up to 70 kmsec Dark Matter nuclearites ~ 300kmsec (nuclearite max velocity value 570 kms meteor max value 72 kms)

bull Light profileLight profile in meteors the light starts immediately and then decreases due to the mass ablation most of the meteors doesnrsquot reach earth

On the contrary nuclearites are very compact objects the energy loss is similar to the one of an elementary particle No mass ablation The light emission is constant at h hle max (very low altitudes)hmax = 27middot ln (m 12 middot 10-5 g) km (m 01 ndash 100 g hmax 24 ndash 60 km)

M = 158 ndash 167 middot log10 (m 1 microg) (m 01 ndash 100 g M 75 ndash 25)

A nuclearite of mass gt 01 g should cross the entire earth and can move upwardJEM-EUSO could detect also upward going nuclearites

Criteria to identify Nuclearites in Jem-Euso

and differences with meteors

27

Nuclearites and meteors comparisonNuclearites and meteors comparison

1

2

3

1) up-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

h = 40 km 00001 km

2) down-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

3) Meteor v = 70 kms θ = 45deg h = 100 km

Abs mag = 17 Abs mag sec burst = -1

Light profile

Apparent motion

1

2

3

time(s)

ph

oto

ns

time(s)

θ (a

rcse

c )

Nuclearites are much faster than meteors

Graphics done in collaboration with Giulia Bruno

  • Pagina 1
  • Slide 2
  • Slide 3
  • Pagina 4
  • Slide 7
  • Pagina 6
  • Pagina 7
  • Meteor amp Nuclearite simulation
  • Pagina 9
  • Pagina 10
  • Pagina 11
  • Pagina 12
  • Pagina 13
  • Pagina 14
  • Pagina 15
  • Pagina 16
  • Pagina 17
  • Pagina 18
  • Pagina 19
  • Pagina 20
  • Pagina 21
  • Pagina 22
  • Pagina 23
  • Pagina 24
  • Pagina 25
Page 20: SIMULATION OF LIGHT PROFILES OF METEORS AND ITS

20

Abs mag 3Abs mag 3

A= -1 A= -4

A= -10 A= -20

with persistence NO persistence

X (PIXELS) IN FUNCTION OF TIME

21

Abs mag 0Abs mag 0A= -1

A= -4

A= -10 A= -20

with persistence NO persistence

22

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere Divide the output file into

groups of stripes

Find zfor each stripes

with this formula using

the first term (ldquo1rdquo) fixed

and changingthe others(ldquo2rdquo)

Find x yvx vy vz

(with their errors)

z = 400 ndash vmiddott tg[θ2]radic(1+tan[φ2]2) ndash tg[θ1]radic(1+tan[φ1]2)

y = yiss(t0)+tan(φ)[x-xiss(t0) - vt]

x = xiss+vt+(z-400)middottan(θ)radic1+tan(φ)2

0

y

z

400 km

ISS (xissyiss400)

(xyz)

xφ1

θ2

φ2

θ1

Development of another numerical program

23

ResultsResultsResultsResults Font light track output file with A= -1 and abs mag = 3 Total stripes 4717 There are selected three samples from three different stripes of the output file

NdegNdegx

(km)plusmnσ

x

(km)

x expected

(km)

y(km)

plusmnσy

(km)

y expected

(km)

z(km)

plusmnσz

(km)

z expected

(km)

11 -12 15 -01 62 07 62 967 16 975

22 -35 10 -21 176 08 175 910 21 930

33 -60 09 -54 287 12 286 869 36 886

kmsplusmnσplusmnσ

vv

(kms)(kms)

Expectedvalue

(kms)

vxvx 21 17 55

vyvy 105 10 119

vz -52 24 -42

Time error = 05 ms Angle φ error given by the propagation formula where φ = arctan(ypixxpix) σxpix σypix = plusmn 1 pixel Angle θ error = 0075deg = 270 arcsec = 1pixel The associate errors are all calculated using the propagation formula

Expected value of x y and z refers to the most brightful point of each stripe Expected value of velocity

is given by the input file

vmodule (kms)

plusmnσplusmnσvv

(kms)(kms)

Expectedvalue

(kms)

119 31 138

24

ConclusionsConclusions

A simulation of different meteors light profiles as seen from JEM-EUSO has been performed on the evidence coming from ground based photographic records

Starting from ISS measurements of θ amp φ angles and taking profit of the persistence of the signal in the atmosphere it is possible to find position and velocity vectors of a meteor during its passage in the JEM-EUSO field of view

A study of the answer in pixels of JEM-EUSO focal detector can be done in future using these data

25

Thank you

26

bull SpeedSpeed meteor up to 70 kmsec Dark Matter nuclearites ~ 300kmsec (nuclearite max velocity value 570 kms meteor max value 72 kms)

bull Light profileLight profile in meteors the light starts immediately and then decreases due to the mass ablation most of the meteors doesnrsquot reach earth

On the contrary nuclearites are very compact objects the energy loss is similar to the one of an elementary particle No mass ablation The light emission is constant at h hle max (very low altitudes)hmax = 27middot ln (m 12 middot 10-5 g) km (m 01 ndash 100 g hmax 24 ndash 60 km)

M = 158 ndash 167 middot log10 (m 1 microg) (m 01 ndash 100 g M 75 ndash 25)

A nuclearite of mass gt 01 g should cross the entire earth and can move upwardJEM-EUSO could detect also upward going nuclearites

Criteria to identify Nuclearites in Jem-Euso

and differences with meteors

27

Nuclearites and meteors comparisonNuclearites and meteors comparison

1

2

3

1) up-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

h = 40 km 00001 km

2) down-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

3) Meteor v = 70 kms θ = 45deg h = 100 km

Abs mag = 17 Abs mag sec burst = -1

Light profile

Apparent motion

1

2

3

time(s)

ph

oto

ns

time(s)

θ (a

rcse

c )

Nuclearites are much faster than meteors

Graphics done in collaboration with Giulia Bruno

  • Pagina 1
  • Slide 2
  • Slide 3
  • Pagina 4
  • Slide 7
  • Pagina 6
  • Pagina 7
  • Meteor amp Nuclearite simulation
  • Pagina 9
  • Pagina 10
  • Pagina 11
  • Pagina 12
  • Pagina 13
  • Pagina 14
  • Pagina 15
  • Pagina 16
  • Pagina 17
  • Pagina 18
  • Pagina 19
  • Pagina 20
  • Pagina 21
  • Pagina 22
  • Pagina 23
  • Pagina 24
  • Pagina 25
Page 21: SIMULATION OF LIGHT PROFILES OF METEORS AND ITS

21

Abs mag 0Abs mag 0A= -1

A= -4

A= -10 A= -20

with persistence NO persistence

22

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere Divide the output file into

groups of stripes

Find zfor each stripes

with this formula using

the first term (ldquo1rdquo) fixed

and changingthe others(ldquo2rdquo)

Find x yvx vy vz

(with their errors)

z = 400 ndash vmiddott tg[θ2]radic(1+tan[φ2]2) ndash tg[θ1]radic(1+tan[φ1]2)

y = yiss(t0)+tan(φ)[x-xiss(t0) - vt]

x = xiss+vt+(z-400)middottan(θ)radic1+tan(φ)2

0

y

z

400 km

ISS (xissyiss400)

(xyz)

xφ1

θ2

φ2

θ1

Development of another numerical program

23

ResultsResultsResultsResults Font light track output file with A= -1 and abs mag = 3 Total stripes 4717 There are selected three samples from three different stripes of the output file

NdegNdegx

(km)plusmnσ

x

(km)

x expected

(km)

y(km)

plusmnσy

(km)

y expected

(km)

z(km)

plusmnσz

(km)

z expected

(km)

11 -12 15 -01 62 07 62 967 16 975

22 -35 10 -21 176 08 175 910 21 930

33 -60 09 -54 287 12 286 869 36 886

kmsplusmnσplusmnσ

vv

(kms)(kms)

Expectedvalue

(kms)

vxvx 21 17 55

vyvy 105 10 119

vz -52 24 -42

Time error = 05 ms Angle φ error given by the propagation formula where φ = arctan(ypixxpix) σxpix σypix = plusmn 1 pixel Angle θ error = 0075deg = 270 arcsec = 1pixel The associate errors are all calculated using the propagation formula

Expected value of x y and z refers to the most brightful point of each stripe Expected value of velocity

is given by the input file

vmodule (kms)

plusmnσplusmnσvv

(kms)(kms)

Expectedvalue

(kms)

119 31 138

24

ConclusionsConclusions

A simulation of different meteors light profiles as seen from JEM-EUSO has been performed on the evidence coming from ground based photographic records

Starting from ISS measurements of θ amp φ angles and taking profit of the persistence of the signal in the atmosphere it is possible to find position and velocity vectors of a meteor during its passage in the JEM-EUSO field of view

A study of the answer in pixels of JEM-EUSO focal detector can be done in future using these data

25

Thank you

26

bull SpeedSpeed meteor up to 70 kmsec Dark Matter nuclearites ~ 300kmsec (nuclearite max velocity value 570 kms meteor max value 72 kms)

bull Light profileLight profile in meteors the light starts immediately and then decreases due to the mass ablation most of the meteors doesnrsquot reach earth

On the contrary nuclearites are very compact objects the energy loss is similar to the one of an elementary particle No mass ablation The light emission is constant at h hle max (very low altitudes)hmax = 27middot ln (m 12 middot 10-5 g) km (m 01 ndash 100 g hmax 24 ndash 60 km)

M = 158 ndash 167 middot log10 (m 1 microg) (m 01 ndash 100 g M 75 ndash 25)

A nuclearite of mass gt 01 g should cross the entire earth and can move upwardJEM-EUSO could detect also upward going nuclearites

Criteria to identify Nuclearites in Jem-Euso

and differences with meteors

27

Nuclearites and meteors comparisonNuclearites and meteors comparison

1

2

3

1) up-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

h = 40 km 00001 km

2) down-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

3) Meteor v = 70 kms θ = 45deg h = 100 km

Abs mag = 17 Abs mag sec burst = -1

Light profile

Apparent motion

1

2

3

time(s)

ph

oto

ns

time(s)

θ (a

rcse

c )

Nuclearites are much faster than meteors

Graphics done in collaboration with Giulia Bruno

  • Pagina 1
  • Slide 2
  • Slide 3
  • Pagina 4
  • Slide 7
  • Pagina 6
  • Pagina 7
  • Meteor amp Nuclearite simulation
  • Pagina 9
  • Pagina 10
  • Pagina 11
  • Pagina 12
  • Pagina 13
  • Pagina 14
  • Pagina 15
  • Pagina 16
  • Pagina 17
  • Pagina 18
  • Pagina 19
  • Pagina 20
  • Pagina 21
  • Pagina 22
  • Pagina 23
  • Pagina 24
  • Pagina 25
Page 22: SIMULATION OF LIGHT PROFILES OF METEORS AND ITS

22

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere

How to determine a meteor trajectory and How to determine a meteor trajectory and velocity from its persistence train in the velocity from its persistence train in the

atmosphereatmosphere Divide the output file into

groups of stripes

Find zfor each stripes

with this formula using

the first term (ldquo1rdquo) fixed

and changingthe others(ldquo2rdquo)

Find x yvx vy vz

(with their errors)

z = 400 ndash vmiddott tg[θ2]radic(1+tan[φ2]2) ndash tg[θ1]radic(1+tan[φ1]2)

y = yiss(t0)+tan(φ)[x-xiss(t0) - vt]

x = xiss+vt+(z-400)middottan(θ)radic1+tan(φ)2

0

y

z

400 km

ISS (xissyiss400)

(xyz)

xφ1

θ2

φ2

θ1

Development of another numerical program

23

ResultsResultsResultsResults Font light track output file with A= -1 and abs mag = 3 Total stripes 4717 There are selected three samples from three different stripes of the output file

NdegNdegx

(km)plusmnσ

x

(km)

x expected

(km)

y(km)

plusmnσy

(km)

y expected

(km)

z(km)

plusmnσz

(km)

z expected

(km)

11 -12 15 -01 62 07 62 967 16 975

22 -35 10 -21 176 08 175 910 21 930

33 -60 09 -54 287 12 286 869 36 886

kmsplusmnσplusmnσ

vv

(kms)(kms)

Expectedvalue

(kms)

vxvx 21 17 55

vyvy 105 10 119

vz -52 24 -42

Time error = 05 ms Angle φ error given by the propagation formula where φ = arctan(ypixxpix) σxpix σypix = plusmn 1 pixel Angle θ error = 0075deg = 270 arcsec = 1pixel The associate errors are all calculated using the propagation formula

Expected value of x y and z refers to the most brightful point of each stripe Expected value of velocity

is given by the input file

vmodule (kms)

plusmnσplusmnσvv

(kms)(kms)

Expectedvalue

(kms)

119 31 138

24

ConclusionsConclusions

A simulation of different meteors light profiles as seen from JEM-EUSO has been performed on the evidence coming from ground based photographic records

Starting from ISS measurements of θ amp φ angles and taking profit of the persistence of the signal in the atmosphere it is possible to find position and velocity vectors of a meteor during its passage in the JEM-EUSO field of view

A study of the answer in pixels of JEM-EUSO focal detector can be done in future using these data

25

Thank you

26

bull SpeedSpeed meteor up to 70 kmsec Dark Matter nuclearites ~ 300kmsec (nuclearite max velocity value 570 kms meteor max value 72 kms)

bull Light profileLight profile in meteors the light starts immediately and then decreases due to the mass ablation most of the meteors doesnrsquot reach earth

On the contrary nuclearites are very compact objects the energy loss is similar to the one of an elementary particle No mass ablation The light emission is constant at h hle max (very low altitudes)hmax = 27middot ln (m 12 middot 10-5 g) km (m 01 ndash 100 g hmax 24 ndash 60 km)

M = 158 ndash 167 middot log10 (m 1 microg) (m 01 ndash 100 g M 75 ndash 25)

A nuclearite of mass gt 01 g should cross the entire earth and can move upwardJEM-EUSO could detect also upward going nuclearites

Criteria to identify Nuclearites in Jem-Euso

and differences with meteors

27

Nuclearites and meteors comparisonNuclearites and meteors comparison

1

2

3

1) up-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

h = 40 km 00001 km

2) down-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

3) Meteor v = 70 kms θ = 45deg h = 100 km

Abs mag = 17 Abs mag sec burst = -1

Light profile

Apparent motion

1

2

3

time(s)

ph

oto

ns

time(s)

θ (a

rcse

c )

Nuclearites are much faster than meteors

Graphics done in collaboration with Giulia Bruno

  • Pagina 1
  • Slide 2
  • Slide 3
  • Pagina 4
  • Slide 7
  • Pagina 6
  • Pagina 7
  • Meteor amp Nuclearite simulation
  • Pagina 9
  • Pagina 10
  • Pagina 11
  • Pagina 12
  • Pagina 13
  • Pagina 14
  • Pagina 15
  • Pagina 16
  • Pagina 17
  • Pagina 18
  • Pagina 19
  • Pagina 20
  • Pagina 21
  • Pagina 22
  • Pagina 23
  • Pagina 24
  • Pagina 25
Page 23: SIMULATION OF LIGHT PROFILES OF METEORS AND ITS

23

ResultsResultsResultsResults Font light track output file with A= -1 and abs mag = 3 Total stripes 4717 There are selected three samples from three different stripes of the output file

NdegNdegx

(km)plusmnσ

x

(km)

x expected

(km)

y(km)

plusmnσy

(km)

y expected

(km)

z(km)

plusmnσz

(km)

z expected

(km)

11 -12 15 -01 62 07 62 967 16 975

22 -35 10 -21 176 08 175 910 21 930

33 -60 09 -54 287 12 286 869 36 886

kmsplusmnσplusmnσ

vv

(kms)(kms)

Expectedvalue

(kms)

vxvx 21 17 55

vyvy 105 10 119

vz -52 24 -42

Time error = 05 ms Angle φ error given by the propagation formula where φ = arctan(ypixxpix) σxpix σypix = plusmn 1 pixel Angle θ error = 0075deg = 270 arcsec = 1pixel The associate errors are all calculated using the propagation formula

Expected value of x y and z refers to the most brightful point of each stripe Expected value of velocity

is given by the input file

vmodule (kms)

plusmnσplusmnσvv

(kms)(kms)

Expectedvalue

(kms)

119 31 138

24

ConclusionsConclusions

A simulation of different meteors light profiles as seen from JEM-EUSO has been performed on the evidence coming from ground based photographic records

Starting from ISS measurements of θ amp φ angles and taking profit of the persistence of the signal in the atmosphere it is possible to find position and velocity vectors of a meteor during its passage in the JEM-EUSO field of view

A study of the answer in pixels of JEM-EUSO focal detector can be done in future using these data

25

Thank you

26

bull SpeedSpeed meteor up to 70 kmsec Dark Matter nuclearites ~ 300kmsec (nuclearite max velocity value 570 kms meteor max value 72 kms)

bull Light profileLight profile in meteors the light starts immediately and then decreases due to the mass ablation most of the meteors doesnrsquot reach earth

On the contrary nuclearites are very compact objects the energy loss is similar to the one of an elementary particle No mass ablation The light emission is constant at h hle max (very low altitudes)hmax = 27middot ln (m 12 middot 10-5 g) km (m 01 ndash 100 g hmax 24 ndash 60 km)

M = 158 ndash 167 middot log10 (m 1 microg) (m 01 ndash 100 g M 75 ndash 25)

A nuclearite of mass gt 01 g should cross the entire earth and can move upwardJEM-EUSO could detect also upward going nuclearites

Criteria to identify Nuclearites in Jem-Euso

and differences with meteors

27

Nuclearites and meteors comparisonNuclearites and meteors comparison

1

2

3

1) up-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

h = 40 km 00001 km

2) down-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

3) Meteor v = 70 kms θ = 45deg h = 100 km

Abs mag = 17 Abs mag sec burst = -1

Light profile

Apparent motion

1

2

3

time(s)

ph

oto

ns

time(s)

θ (a

rcse

c )

Nuclearites are much faster than meteors

Graphics done in collaboration with Giulia Bruno

  • Pagina 1
  • Slide 2
  • Slide 3
  • Pagina 4
  • Slide 7
  • Pagina 6
  • Pagina 7
  • Meteor amp Nuclearite simulation
  • Pagina 9
  • Pagina 10
  • Pagina 11
  • Pagina 12
  • Pagina 13
  • Pagina 14
  • Pagina 15
  • Pagina 16
  • Pagina 17
  • Pagina 18
  • Pagina 19
  • Pagina 20
  • Pagina 21
  • Pagina 22
  • Pagina 23
  • Pagina 24
  • Pagina 25
Page 24: SIMULATION OF LIGHT PROFILES OF METEORS AND ITS

24

ConclusionsConclusions

A simulation of different meteors light profiles as seen from JEM-EUSO has been performed on the evidence coming from ground based photographic records

Starting from ISS measurements of θ amp φ angles and taking profit of the persistence of the signal in the atmosphere it is possible to find position and velocity vectors of a meteor during its passage in the JEM-EUSO field of view

A study of the answer in pixels of JEM-EUSO focal detector can be done in future using these data

25

Thank you

26

bull SpeedSpeed meteor up to 70 kmsec Dark Matter nuclearites ~ 300kmsec (nuclearite max velocity value 570 kms meteor max value 72 kms)

bull Light profileLight profile in meteors the light starts immediately and then decreases due to the mass ablation most of the meteors doesnrsquot reach earth

On the contrary nuclearites are very compact objects the energy loss is similar to the one of an elementary particle No mass ablation The light emission is constant at h hle max (very low altitudes)hmax = 27middot ln (m 12 middot 10-5 g) km (m 01 ndash 100 g hmax 24 ndash 60 km)

M = 158 ndash 167 middot log10 (m 1 microg) (m 01 ndash 100 g M 75 ndash 25)

A nuclearite of mass gt 01 g should cross the entire earth and can move upwardJEM-EUSO could detect also upward going nuclearites

Criteria to identify Nuclearites in Jem-Euso

and differences with meteors

27

Nuclearites and meteors comparisonNuclearites and meteors comparison

1

2

3

1) up-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

h = 40 km 00001 km

2) down-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

3) Meteor v = 70 kms θ = 45deg h = 100 km

Abs mag = 17 Abs mag sec burst = -1

Light profile

Apparent motion

1

2

3

time(s)

ph

oto

ns

time(s)

θ (a

rcse

c )

Nuclearites are much faster than meteors

Graphics done in collaboration with Giulia Bruno

  • Pagina 1
  • Slide 2
  • Slide 3
  • Pagina 4
  • Slide 7
  • Pagina 6
  • Pagina 7
  • Meteor amp Nuclearite simulation
  • Pagina 9
  • Pagina 10
  • Pagina 11
  • Pagina 12
  • Pagina 13
  • Pagina 14
  • Pagina 15
  • Pagina 16
  • Pagina 17
  • Pagina 18
  • Pagina 19
  • Pagina 20
  • Pagina 21
  • Pagina 22
  • Pagina 23
  • Pagina 24
  • Pagina 25
Page 25: SIMULATION OF LIGHT PROFILES OF METEORS AND ITS

25

Thank you

26

bull SpeedSpeed meteor up to 70 kmsec Dark Matter nuclearites ~ 300kmsec (nuclearite max velocity value 570 kms meteor max value 72 kms)

bull Light profileLight profile in meteors the light starts immediately and then decreases due to the mass ablation most of the meteors doesnrsquot reach earth

On the contrary nuclearites are very compact objects the energy loss is similar to the one of an elementary particle No mass ablation The light emission is constant at h hle max (very low altitudes)hmax = 27middot ln (m 12 middot 10-5 g) km (m 01 ndash 100 g hmax 24 ndash 60 km)

M = 158 ndash 167 middot log10 (m 1 microg) (m 01 ndash 100 g M 75 ndash 25)

A nuclearite of mass gt 01 g should cross the entire earth and can move upwardJEM-EUSO could detect also upward going nuclearites

Criteria to identify Nuclearites in Jem-Euso

and differences with meteors

27

Nuclearites and meteors comparisonNuclearites and meteors comparison

1

2

3

1) up-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

h = 40 km 00001 km

2) down-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

3) Meteor v = 70 kms θ = 45deg h = 100 km

Abs mag = 17 Abs mag sec burst = -1

Light profile

Apparent motion

1

2

3

time(s)

ph

oto

ns

time(s)

θ (a

rcse

c )

Nuclearites are much faster than meteors

Graphics done in collaboration with Giulia Bruno

  • Pagina 1
  • Slide 2
  • Slide 3
  • Pagina 4
  • Slide 7
  • Pagina 6
  • Pagina 7
  • Meteor amp Nuclearite simulation
  • Pagina 9
  • Pagina 10
  • Pagina 11
  • Pagina 12
  • Pagina 13
  • Pagina 14
  • Pagina 15
  • Pagina 16
  • Pagina 17
  • Pagina 18
  • Pagina 19
  • Pagina 20
  • Pagina 21
  • Pagina 22
  • Pagina 23
  • Pagina 24
  • Pagina 25
Page 26: SIMULATION OF LIGHT PROFILES OF METEORS AND ITS

26

bull SpeedSpeed meteor up to 70 kmsec Dark Matter nuclearites ~ 300kmsec (nuclearite max velocity value 570 kms meteor max value 72 kms)

bull Light profileLight profile in meteors the light starts immediately and then decreases due to the mass ablation most of the meteors doesnrsquot reach earth

On the contrary nuclearites are very compact objects the energy loss is similar to the one of an elementary particle No mass ablation The light emission is constant at h hle max (very low altitudes)hmax = 27middot ln (m 12 middot 10-5 g) km (m 01 ndash 100 g hmax 24 ndash 60 km)

M = 158 ndash 167 middot log10 (m 1 microg) (m 01 ndash 100 g M 75 ndash 25)

A nuclearite of mass gt 01 g should cross the entire earth and can move upwardJEM-EUSO could detect also upward going nuclearites

Criteria to identify Nuclearites in Jem-Euso

and differences with meteors

27

Nuclearites and meteors comparisonNuclearites and meteors comparison

1

2

3

1) up-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

h = 40 km 00001 km

2) down-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

3) Meteor v = 70 kms θ = 45deg h = 100 km

Abs mag = 17 Abs mag sec burst = -1

Light profile

Apparent motion

1

2

3

time(s)

ph

oto

ns

time(s)

θ (a

rcse

c )

Nuclearites are much faster than meteors

Graphics done in collaboration with Giulia Bruno

  • Pagina 1
  • Slide 2
  • Slide 3
  • Pagina 4
  • Slide 7
  • Pagina 6
  • Pagina 7
  • Meteor amp Nuclearite simulation
  • Pagina 9
  • Pagina 10
  • Pagina 11
  • Pagina 12
  • Pagina 13
  • Pagina 14
  • Pagina 15
  • Pagina 16
  • Pagina 17
  • Pagina 18
  • Pagina 19
  • Pagina 20
  • Pagina 21
  • Pagina 22
  • Pagina 23
  • Pagina 24
  • Pagina 25
Page 27: SIMULATION OF LIGHT PROFILES OF METEORS AND ITS

27

Nuclearites and meteors comparisonNuclearites and meteors comparison

1

2

3

1) up-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

h = 40 km 00001 km

2) down-ward going nuclearitem = 20 g v = 250 kms θ = 45deg

3) Meteor v = 70 kms θ = 45deg h = 100 km

Abs mag = 17 Abs mag sec burst = -1

Light profile

Apparent motion

1

2

3

time(s)

ph

oto

ns

time(s)

θ (a

rcse

c )

Nuclearites are much faster than meteors

Graphics done in collaboration with Giulia Bruno

  • Pagina 1
  • Slide 2
  • Slide 3
  • Pagina 4
  • Slide 7
  • Pagina 6
  • Pagina 7
  • Meteor amp Nuclearite simulation
  • Pagina 9
  • Pagina 10
  • Pagina 11
  • Pagina 12
  • Pagina 13
  • Pagina 14
  • Pagina 15
  • Pagina 16
  • Pagina 17
  • Pagina 18
  • Pagina 19
  • Pagina 20
  • Pagina 21
  • Pagina 22
  • Pagina 23
  • Pagina 24
  • Pagina 25