simulation and understanding of metamaterials

31
Simulation and Understanding of Metamaterials Th. Koschny, J. Zhou, C. M. Soukoulis Ames Laboratory and Department of Physics, Iowa State University. h. Koschny, MURI NIMs Review May 2007, Purdue

Upload: nile

Post on 01-Feb-2016

69 views

Category:

Documents


0 download

DESCRIPTION

Simulation and Understanding of Metamaterials. Th. Koschny, J. Zhou, C. M. Soukoulis Ames Laboratory and Department of Physics, Iowa State University. Th. Koschny, MURI NIMs Review May 2007, Purdue. Outline. Retrieval Breaking of Scaling Cut-wire pairs Diamagnetic response of SRR - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Simulation and Understanding of Metamaterials

Simulation and Understandingof Metamaterials

Th. Koschny, J. Zhou, C. M. Soukoulis

Ames Laboratory and Department of Physics, Iowa State University.

Th. Koschny, MURI NIMs Review May 2007, Purdue

Page 2: Simulation and Understanding of Metamaterials

Outline

1. Retrieval2. Breaking of Scaling3. Cut-wire pairs4. Diamagnetic response of SRR5. Anisotropic & Chiral metamaterials

Page 3: Simulation and Understanding of Metamaterials

Homogeneous Effective Medium Retrieval

z, n

d

e ik

teik

re− ik

PRB, 65, 195104 (2002),Opt. Exp. 11, 649 (2003).

Page 4: Simulation and Understanding of Metamaterials

Effective medium: Periodicity ArtifactsResonance/Anti-resonance “coupling”

“cut-off” deformationsnegative imaginary part

PRE, 68, 065602(R) (2003),PRL 95, 203901 (2005).

Curves are for our 200THz SRR,315nm x 330nm x 185nm unit cell

2 2 2( ) | | | | 2 | | ( ) ( )Q E H H n zω ε μ ω ω ω′′ ′′ ′′ ′= + =Energy loss is positive for causal branch Im(n) > 0 Re(z) > 0

ν

Page 5: Simulation and Understanding of Metamaterials

Periodic Effective medium description

PRB 71, 245105 (2005),PRE 71, 036617 (2005).

Dashed lines: Underlying physical resonancesSolid lines: Effective response due to periodicity

anti-resonance pseudo-resonance

“cut-off” at Brillouin zone edge

intermediateband gap

“cut-off” & shift

generic SRR

anti-pseudo-resonance

Page 6: Simulation and Understanding of Metamaterials

Outline

1. Retrieval2. Breaking of Scaling3. Cut-wire pairs4. Diamagnetic response of SRR5. Anisotropic & Chiral metamaterials

Page 7: Simulation and Understanding of Metamaterials

Breaking of Scaling

Metals are near-perfect conductors,the effective LC-resonator

depends on geometry only

Going to THz frequenciesIdea: geometric scaling

Scale: lenght S length time S time× ∧ ×Such that speed of light invariant and 0S →

0 rel

A

dC ε ε≈

2

0 00

8log 2

R RR

l rL

πμ μ⎛ ⎞

≈ ≈ −⎜ ⎟⎝ ⎠

densely stacked rings sparse rings

1 1mC S L S

SLCω∝ ∧ ∝ ⇒ = ∝

linearscaling

Page 8: Simulation and Understanding of Metamaterials

PRL 95, 223902 (2005),Opt. Lett. 31, 1259-1261 (2006).

Upper frequency limit of the SRRs?55 nm

Theory:Experiment:

Page 9: Simulation and Understanding of Metamaterials

2

2

1( )

21

2

e e e e

e

E n V m v

L I

=

=

21

2=m mE L I

ee

Iv

S e n=

2 2

1~e

ee

m VL

n e S a=

mL a∝ C a∝

Why saturation of ωm?

Key point: Kinetic energy of the electrons becomes comparable to magnetic energy in

small scale structures

1m

mL C=ω

1/m a∝ω (a: unit cell size)

V: wire effective volumeS: wire effective cross-sectionne: e- number density

Charge-carriers have non-zero mass !!

2

1 1

( ) .m

m eL L C a constω = ∝

+ +

Page 10: Simulation and Understanding of Metamaterials

Effective permeabilityCan be obtained by effective medium retrieval procedure from transmission & reflection

ordirectly via the magnetic moment of the SRR

1 11 , , 1

2 ( )metal

M r jM dV j i D

H Vμ ω

ε ω⎛ ⎞×

= + = =− −⎜ ⎟⎝ ⎠

Page 11: Simulation and Understanding of Metamaterials

Limits of simple LC picture

“magnetic”modes

circularcurrent

(anti-symmetric)

“electric”modes

linearcurrent

(symmetric)

Magneticcoupling

or Electriccoupling

Electriccoupling

current density (arrows) & charge density (color)

~ / 2λ ~ 3 / 2λ ~ 5 / 2λ

2 ~ λ×2 ~ / 2λ× 2 ~ 2λ×

Page 12: Simulation and Understanding of Metamaterials

Outline

1. Retrieval2. Breaking of Scaling3. Cut-wire pairs4. Diamagnetic response of SRR5. Anisotropic & Chiral metamaterials

Page 13: Simulation and Understanding of Metamaterials

Electric mode

of coupled electric resonancesMagnetic mode

of coupled electric resonances

Electric resonance

Page 14: Simulation and Understanding of Metamaterials
Page 15: Simulation and Understanding of Metamaterials
Page 16: Simulation and Understanding of Metamaterials

Periodic Short-wire Pair arrays

Lagarkov & Sarychev, PRB 53, 6318 (1996);Panina et al., PRB 66, 155411 (2002);Shalaev et al., Opt. Lett. 30, 3356 (2005).

Opt. Lett. 31, 3620 (2006),Opt. Lett. 30, 3198 (2005).

With periodicity:

Page 17: Simulation and Understanding of Metamaterials

12 13 14 15 16

-8

-6

-4

-2

0

2

4

10 11 12 13 14 15

1/101/10

Frequency (GHz)

a b

14 15 16 17 18

-6

-4

-2

0 (b)

Frequency (GHz)

-2

0

2

4

6

(a)

APL 88, 221103 (2006)

14 15 16 17 18

-2

0

2

4

Real

Frequency (GHz)

Imaginary

ε < 0 and μ < 0

1.01 1.02 1.03 1.04

12.0

12.5

13.0

13.5

14.0

14.5

15.0

a

ay/l

fe

fm

b

Lm LmCe

Cm

Ce

Cm

(b)

(c) (d)

L

C1 1

2 2

Le LeCe

Cm

Ce

Cm

(a)

2

1

b

ay

ax

l

magnetic resonance electric resonance

Opt. Lett. 31, 3620 (2006)

The cross-over of themagnetic and electric resonance frequenciesis difficult to achieve!

2

1 1e m m

m e e

L C

L C

ωω

⎛ ⎞ ⎛ ⎞= + <⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

1e

e eL Cω =

( )1

m

m m eL C Cω =

+

Lm LmCe

Cm

Ce

Cm

(b)

(c) (d)

L

C1 1

2 2

Le LeCe

Cm

Ce

Cm

(a)

2

1

b

ay

ax

l

Page 18: Simulation and Understanding of Metamaterials

“Fishnet” structure

Zhang et al., PRL 95, 137404 (2005).

With periodicity:

Opt. Lett. 31, 1800 (2006).

Realization n<0 at 1.5Realization n<0 at 1.5μμm, Karlsruhe & ISUm, Karlsruhe & ISU

Page 19: Simulation and Understanding of Metamaterials

Since the first demonstration of an artificial LHM in 2000, there has been rapid development of metamaterials over a broad range of frequencies.

A Brief History of Left-handed Metamaterials

Iowa State University involved in designing, fabrication and testingof LHMs from GHz to optical frequencies [4,6,7,10,11,13,14].

Open symbol: µ<0Solid symbol: n<0

n<0 for 1.5 µm (ISU & Karlsruhe)Science 312, 892 (2006)

n<0 for 780 nm (ISU & Karlsruhe)Opt. Lett. 32, 53 (2007)

µ<0 for 6 THz(ISU & Crete)Opt. Lett. 30, 1348 (2005)

n<0 for 4 GHz(ISU & Bilkent )Opt. Lett. 29, 2623 (2004)

Science 315, 47 (2007)

Page 20: Simulation and Understanding of Metamaterials

Outline

1. Retrieval2. Breaking of Scaling3. Cut-wire pairs4. Diamagnetic response of SRR5. Anisotropic & Chiral metamaterials

Page 21: Simulation and Understanding of Metamaterials

Magnetic moment around resonance

2

2 2( ) 1

m

F

i

ωμ ωω ω γω

= +− +

according to

μ(ω) should return to unity below and above the resonance?

Page 22: Simulation and Understanding of Metamaterials

Two types of diamagnetic response

0B = 0B =

below resonanceB eliminated from area of ring metal

above resonanceB eliminated from all enclosed area

at resonance

Page 23: Simulation and Understanding of Metamaterials

Diamagnetic & Resonant currents

below resonance at resonance(note: scale is 10x larger)

L=10μmf=300GHz

L=10μmf=3.2THz

1( ) 1 ( )

( )metal

j i Dω ω ωε ω

⎛ ⎞= −⎜ ⎟

⎝ ⎠

r urwe describe metal by Drude model permittivitythen current density is available as:

Skin-depth

Page 24: Simulation and Understanding of Metamaterials

goodconductor

lossy negative“dielectric”Im

Re

Metals at THz frequenciesDrude model permittivity qualitatively good description for Au, Ag, Cu up to optical frequencies

Aluminum

Copper

Gold

SilverSkin-depth saturatesat optical frequencies !

RatioSkin-depth/structure size

becomes larger !!

first ~ω1/2 then ~o(1)

Drude model parameters from Experimental data:

Johnson & Christy, PRB 6, 4370 (1972);El-Kady et al., PRB 62, 15299 (2000).

1/ 2

S

cl

μωσ⎛ ⎞

≈⎜ ⎟⎝ ⎠

1/ 22

2

1,

ImSl qq c

με ω⎛ ⎞≈ = ⎜ ⎟

⎝ ⎠

for f < 1THz

Page 25: Simulation and Understanding of Metamaterials

Diamagnetic response of open and closed SRR ring

dependence on the ring width

L=10μmf~3THz

L=100nmf~70THz

Page 26: Simulation and Understanding of Metamaterials

Outline

1. Retrieval2. Breaking of Scaling3. Cut-wire pairs4. Diamagnetic response of SRR5. Anisotropic & Chiral metamaterials

Page 27: Simulation and Understanding of Metamaterials

200 250 300 350 400 450 500 550 600 650

-10

0

10

20

30

40

50 Re(ε) Im(ε) Re(μ) Im(μ)

Permittivity

,Permeability

Frequency (THz)

ωp

200 250 300 350 400 450 500 550 600 650-10

-8

-6

-4

-2

0

2

4

Re(ε) Im(ε) Re(μ) Im(μ)

Permittivity

,Permeability

Frequency (THz)

ωp

Short wires: radius=30nm, length=300nm, Drude-model Gold: F=11%

Continuous wires: radius=30nm, Drude-model Gold, (130nm)2 unit cell: F=16%

Anisotropic Arrays of Continuous or Short Nanowires

500 550 600 650 700 750 800-1.0

-0.5

0.0

0.5

1.0

1.5

Re(ε) Im(ε) Re(μ) Im(μ)

Permittivity

,Permeability

Frequency (THz)

ωp

wiresEur

P

500 550 600 650 700 750 800

0

1

2

3

4

Permittivity

,Permeability

Frequency (THz)

Re(ε) Im(ε) Re(μ) Im(μ)

wiresHuur

P

Beware:Periodicityartifacts

Page 28: Simulation and Understanding of Metamaterials

1, ( 1, 0.5)+ + −

anisotropicnegativerefraction

1, ( 1, 1)+ + −

1, ( 1, 1)− − −

left-handednegativerefraction

Note that the hyperbolic dispersion supports propagatingmodes for arbitrarily high parallel momenta (which would be evanescent in air).

Page 29: Simulation and Understanding of Metamaterials

•Bilayer chiral metamaterialsexhibits strong gyrotropyat optical frequencies.

•Specific rotatory power:Wavelength λ (nm) 660, 980, 1310Optical activity (°/mm) 600, 670, 2500

Eigenmodes in chiral medium:right circularly polarized (RCP, +) andleft circularly polarized (LCP, -), whose wavenumbers and effective indices are:

0

0

( ),

/ ( )

k k n

n k k n

χχ

±

± ±

= ±= = ±

nχ >

0, 0,k n− −< <

If the chirality parameter is very large,

the refractive index for the LCP eigenmode becomes negative.

0 0

0 0

j

j

ε χ μ ε

μ χ μ ε

= −

= +

D E H

B H E

then

Constitutive relations

V. A. Fedotov, CLEO Europe 2007

50nm Al50nm dielectric

Chiral Metamaterials: large gyrotropy & negative index

Page 30: Simulation and Understanding of Metamaterials

Experimental results

2 2| | | |s st t++ −−Δ = −arg( ) arg( )s st tδ ++ −−= −

LCP

RCP

5.25 GHzAν =

6.50 GHzBν =

5.25 GHzAν =

Frequency (GHz)

Tra

nsm

issi

on

(d

B)

6.58 GHzBν =

Frequency (GHz)

Δ (

dB

)

Frequency (GHz)

δ (d

egre

e)

A.V. Rogacheva, et al., PRL 97, 177401 (2006)

Simulations, J. Dong et al.

DElectron

Elasticcoupling

Electron

I nductiveCo u pl ing

D_

Svirko-Zheludev-OsipovMetamaterial (APL 78, 498 (2001))

Circular Dichroism: Experiment & Simulation

Page 31: Simulation and Understanding of Metamaterials

Thanks for your attention