simply a logic circuit.ppt

Upload: ibenk-myraldi

Post on 09-Oct-2015

11 views

Category:

Documents


0 download

DESCRIPTION

rangkaian logika

TRANSCRIPT

  • 5/20/2018 simply a logic circuit.ppt

    1/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-1 It is often possible to simplify a logic circuit such as that in part (a) to produce a more efficient implementation, shown in

    (b).

  • 5/20/2018 simply a logic circuit.ppt

    2/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-2 Example 4-1.

  • 5/20/2018 simply a logic circuit.ppt

    3/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-3 Example 4-5.

  • 5/20/2018 simply a logic circuit.ppt

    4/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-4 Circuit that produces a 1 output only for the A= 0, B= 1 condition.

  • 5/20/2018 simply a logic circuit.ppt

    5/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-5 An AND gate with appropriate inputs can be used to produce a 1 output for a specific set of input levels.

  • 5/20/2018 simply a logic circuit.ppt

    6/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-6 Each set of input conditions that is to produce a HIGH output is implemented by a separate AND gate. The AND outputs are

    ORed toproduce the final output.

  • 5/20/2018 simply a logic circuit.ppt

    7/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-7 Example 4-7.

  • 5/20/2018 simply a logic circuit.ppt

    8/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-8 Example 4-8.

  • 5/20/2018 simply a logic circuit.ppt

    9/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-9 Example 4-9.

  • 5/20/2018 simply a logic circuit.ppt

    10/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-10 Circuit of Figure 4-9(d) implemented using 74HC00 NAND chip.

  • 5/20/2018 simply a logic circuit.ppt

    11/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-11 Karnaugh maps and truth tables for (a) two, (b) three, and (c) four variables.

  • 5/20/2018 simply a logic circuit.ppt

    12/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-12 Examples of looping pairs of adjacent 1s.

  • 5/20/2018 simply a logic circuit.ppt

    13/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-13 Examples of looping groups of four 1s (quads).

  • 5/20/2018 simply a logic circuit.ppt

    14/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-14 Examples of looping groups of eight 1s (octets).

  • 5/20/2018 simply a logic circuit.ppt

    15/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-15 Examples 4-10 to 4-12.

  • 5/20/2018 simply a logic circuit.ppt

    16/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-16 The same K map with two equally good solutions.

  • 5/20/2018 simply a logic circuit.ppt

    17/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-17 Example 4-14.

  • 5/20/2018 simply a logic circuit.ppt

    18/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-18 Dont-care conditions should be changed to 0 or 1 to produce K-map looping that yields the simplest expression.

  • 5/20/2018 simply a logic circuit.ppt

    19/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-19 Example 4-15.

  • 5/20/2018 simply a logic circuit.ppt

    20/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-20 (a) Exclusive-OR circuit and truth table; (b) traditional XOR gate symbol; (c) IEEE/ANSI symbol for XOR gate.

  • 5/20/2018 simply a logic circuit.ppt

    21/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-21 (a) Exclusive-NOR circuit; (b) traditional symbol for XNOR gate; (c) IEEE/ANSI symbol.

  • 5/20/2018 simply a logic circuit.ppt

    22/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-22 Example 4-16.

  • 5/20/2018 simply a logic circuit.ppt

    23/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-23 Circuit for detecting equality of two two-bit binary numbers.

  • 5/20/2018 simply a logic circuit.ppt

    24/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-24 Example 4-18, showing how an XNOR gate may be used to simplify circuit implementation.

  • 5/20/2018 simply a logic circuit.ppt

    25/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-25 XOR gates used to implement (a) the parity generator and (b) the parity checker for an even-parity system.

  • 5/20/2018 simply a logic circuit.ppt

    26/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-26 Four basic gates can either enable or disable the passage of an input signal, A, under control of the logic level at control

    input B.

  • 5/20/2018 simply a logic circuit.ppt

    27/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-27 Examples 4-21 and 4-22.

  • 5/20/2018 simply a logic circuit.ppt

    28/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-28 Example 4-23.

  • 5/20/2018 simply a logic circuit.ppt

    29/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-29 (a) Dual-in-line package (DIP); (b) top view; (c) actual silicon chip is much smaller than the protective package; (d) PLCC

    package.

  • 5/20/2018 simply a logic circuit.ppt

    30/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-29 (continued) (a) Dual-in-line package (DIP); (b) top view; (c) actual silicon chip is much smaller than the protective

    package; (d) PLCC package.

  • 5/20/2018 simply a logic circuit.ppt

    31/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-30 (a) TTL INVERTER circuit; (b) CMOS INVERTER circuit. Pin numbers are given in parentheses.

  • 5/20/2018 simply a logic circuit.ppt

    32/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-31 Logic-level input voltage ranges for (a) TTL and (b) CMOS digital ICs.

  • 5/20/2018 simply a logic circuit.ppt

    33/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-32 Typical logic-circuit connection diagram.

  • 5/20/2018 simply a logic circuit.ppt

    34/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-33 Logic diagram using schematic capture.

  • 5/20/2018 simply a logic circuit.ppt

    35/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-34 A logic probe is used to monitor the logic level activity at an IC pin or any other accessible point in a logic circuit.

    Figure 4 35 (a) IC input internally shorted to ground; (b) IC input internally shorted to supply voltage These two types of failures force

  • 5/20/2018 simply a logic circuit.ppt

    36/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-35 (a) IC input internally shorted to ground; (b) IC input internally shorted to supply voltage. These two types of failures force

    the inputsignal at the shorted pin to stay in the same state. (c) IC output internally shorted to ground; (d) output internally shorted to supply

    voltage. These two failures do not affect signals at the IC inputs.

  • 5/20/2018 simply a logic circuit.ppt

    37/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-36 Example 4-24.

  • 5/20/2018 simply a logic circuit.ppt

    38/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-37 An IC with an internally open input will not respond to signals applied to that input pin. An internally open output will

    produce anunpredictable voltage at that output pin.

  • 5/20/2018 simply a logic circuit.ppt

    39/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-38 Example 4-26.

    h i i i ll h d h i l d i i h i f d b id i l d ll i l

  • 5/20/2018 simply a logic circuit.ppt

    40/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-39 When two input pins are internally shorted, the signals driving these pins are forced to be identical, and usually a signal

    with threedistinct levels results.

  • 5/20/2018 simply a logic circuit.ppt

    41/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-40 Example 4-27.

  • 5/20/2018 simply a logic circuit.ppt

    42/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-41 Example 4-28.

  • 5/20/2018 simply a logic circuit.ppt

    43/72

    Digital Systems: Principles and Applications, 10eBy Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice HallUpper Saddle River, NJ 07458

    Figure 4-42 A programmable array for selecting inputs as product terms.

  • 5/20/2018 simply a logic circuit.ppt

    44/72

    Digital Systems: Principles and Applications, 10e

    By Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice Hall

    Upper Saddle River, NJ 07458

    Figure 4-43 A PLD development system.

  • 5/20/2018 simply a logic circuit.ppt

    45/72

    Digital Systems: Principles and Applications, 10e

    By Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice Hall

    Upper Saddle River, NJ 07458

    Figure 4-44 Combining blocks developed using different description methods.

  • 5/20/2018 simply a logic circuit.ppt

    46/72

    Digital Systems: Principles and Applications, 10e

    By Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice Hall

    Upper Saddle River, NJ 07458

    Figure 4-45 Block diagram of a CD player.

  • 5/20/2018 simply a logic circuit.ppt

    47/72

    Digital Systems: Principles and Applications, 10e

    By Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice Hall

    Upper Saddle River, NJ 07458

    Figure 4-46 An organizational hierarchy chart.

  • 5/20/2018 simply a logic circuit.ppt

    48/72

    Digital Systems: Principles and Applications, 10e

    By Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice Hall

    Upper Saddle River, NJ 07458

    Figure 4-47 A timing simulation of a circuit described in HDL.

  • 5/20/2018 simply a logic circuit.ppt

    49/72

    Digital Systems: Principles and Applications, 10e

    By Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice Hall

    Upper Saddle River, NJ 07458

    Figure 4-48 PLD development cycle flowchart.

  • 5/20/2018 simply a logic circuit.ppt

    50/72

    Digital Systems: Principles and Applications, 10e

    By Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice Hall

    Upper Saddle River, NJ 07458

    Figure 4-49 Bit array notation.

    i 4 2 i l fl f ( ) / d (b) / / S

  • 5/20/2018 simply a logic circuit.ppt

    51/72

    Digital Systems: Principles and Applications, 10e

    By Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice Hall

    Upper Saddle River, NJ 07458

    Figure 4-52 Logical flow of (a) IF/THEN and (b) IF/THEN/ELSE constructs

    Fi 4 53 L i i i i il E l 4 8

  • 5/20/2018 simply a logic circuit.ppt

    52/72

    Digital Systems: Principles and Applications, 10e

    By Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice Hall

    Upper Saddle River, NJ 07458

    Figure 4-53 Logic circuit similar to Example 4-8.

    Fi 4 56 Fl h t f lti l d i i i IF/ELSIF

  • 5/20/2018 simply a logic circuit.ppt

    53/72

    Digital Systems: Principles and Applications, 10e

    By Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice Hall

    Upper Saddle River, NJ 07458

    Figure 4-56 Flowchart for multiple decisions using IF/ELSIF.

    Fi 4 57 T t i di t i it

  • 5/20/2018 simply a logic circuit.ppt

    54/72

    Digital Systems: Principles and Applications, 10e

    By Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice Hall

    Upper Saddle River, NJ 07458

    Figure 4-57 Temperature range indicator circuit.

    Figure 4 62 A coin detector circuit for a vending machine

  • 5/20/2018 simply a logic circuit.ppt

    55/72

    Digital Systems: Principles and Applications, 10e

    By Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice Hall

    Upper Saddle River, NJ 07458

    Figure 4-62 A coin detector circuit for a vending machine.

    Figure 4 63 An AHDL coin detector

  • 5/20/2018 simply a logic circuit.ppt

    56/72

    Digital Systems: Principles and Applications, 10e

    By Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice Hall

    Upper Saddle River, NJ 07458

    Figure 4-63 An AHDL coin detector.

    Figure 4 64 A VHDL coin detector

  • 5/20/2018 simply a logic circuit.ppt

    57/72

    Digital Systems: Principles and Applications, 10e

    By Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice Hall

    Upper Saddle River, NJ 07458

    Figure 4-64 A VHDL coin detector.

    Figure 4-65 Problems 4 2 and 4 3

  • 5/20/2018 simply a logic circuit.ppt

    58/72

    Digital Systems: Principles and Applications, 10e

    By Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice Hall

    Upper Saddle River, NJ 07458

    Figure 4-65 Problems 4-2 and 4-3.

    Figure 4-66 Problem 4-8

  • 5/20/2018 simply a logic circuit.ppt

    59/72

    Digital Systems: Principles and Applications, 10e

    By Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice Hall

    Upper Saddle River, NJ 07458

    Figure 4-66 Problem 4 8.

    Figure 4-67 Problem 4-11

  • 5/20/2018 simply a logic circuit.ppt

    60/72

    Digital Systems: Principles and Applications, 10e

    By Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice Hall

    Upper Saddle River, NJ 07458

    Figure 4 67 Problem 4 11.

    Figure 4-68 Problem 4-16

  • 5/20/2018 simply a logic circuit.ppt

    61/72

    Digital Systems: Principles and Applications, 10e

    By Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice Hall

    Upper Saddle River, NJ 07458

    Figure 4 68 Problem 4 16.

    Figure 4-69 Problem 4-17.

  • 5/20/2018 simply a logic circuit.ppt

    62/72

    Digital Systems: Principles and Applications, 10e

    By Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice Hall

    Upper Saddle River, NJ 07458

    Figure 4 69 Problem 4 17.

    Figure 4-70 Problem 4-20.

  • 5/20/2018 simply a logic circuit.ppt

    63/72

    Digital Systems: Principles and Applications, 10e

    By Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice Hall

    Upper Saddle River, NJ 07458

    g

    Figure 4-71 Problem 4-21.

  • 5/20/2018 simply a logic circuit.ppt

    64/72

    Digital Systems: Principles and Applications, 10e

    By Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice Hall

    Upper Saddle River, NJ 07458

    g

    Figure 4-72 Problem 4-25.

  • 5/20/2018 simply a logic circuit.ppt

    65/72

    Digital Systems: Principles and Applications, 10e

    By Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice Hall

    Upper Saddle River, NJ 07458

    g

    Figure 4-73 Problem 4-26.

  • 5/20/2018 simply a logic circuit.ppt

    66/72

    Digital Systems: Principles and Applications, 10e

    By Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice Hall

    Upper Saddle River, NJ 07458

    g

    Figure 4-74 Problem 4-30.

  • 5/20/2018 simply a logic circuit.ppt

    67/72

    Digital Systems: Principles and Applications, 10e

    By Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice Hall

    Upper Saddle River, NJ 07458

    Figure 4-75 Problem 4-37.

  • 5/20/2018 simply a logic circuit.ppt

    68/72

    Digital Systems: Principles and Applications, 10e

    By Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice Hall

    Upper Saddle River, NJ 07458

    Figure 4-76 Problem 4-40.

  • 5/20/2018 simply a logic circuit.ppt

    69/72

    Digital Systems: Principles and Applications, 10e

    By Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice Hall

    Upper Saddle River, NJ 07458

    Figure 4-77 Problems 4-47, 4-48, and 4-49.

  • 5/20/2018 simply a logic circuit.ppt

    70/72

    Digital Systems: Principles and Applications, 10e

    By Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice Hall

    Upper Saddle River, NJ 07458

    Figure 4-78 Problem 4-58.

  • 5/20/2018 simply a logic circuit.ppt

    71/72

    Digital Systems: Principles and Applications, 10e

    By Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss

    2007 Pearson Education, Inc.

    Pearson Prentice Hall

    Upper Saddle River, NJ 07458

    Figure 4-79 Problem 4-68.

  • 5/20/2018 simply a logic circuit.ppt

    72/72

    200 P Ed i I