similarities and differences in the historical records of lava dome...

93
Similarities and differences in the historical records of lava dome-building volcanoes: implications for understanding magmatic processes and eruption forecasting Article Accepted Version Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0 Sheldrake, T. E., Sparks, R. S. J., Cashman, K. V., Wadge, G. and Aspinall, W. P. (2016) Similarities and differences in the historical records of lava dome-building volcanoes: implications for understanding magmatic processes and eruption forecasting. Earth Science Reviews, 160. pp. 240- 263. ISSN 0012-8252 doi: https://doi.org/10.1016/j.earscirev.2016.07.013 Available at http://centaur.reading.ac.uk/66290/ It is advisable to refer to the publisher’s version if you intend to cite from the work.  See Guidance on citing  . To link to this article DOI: http://dx.doi.org/10.1016/j.earscirev.2016.07.013 Publisher: Elsevier All outputs in CentAUR are protected by Intellectual Property Rights law, 

Upload: others

Post on 22-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

Similarities and differences in the historical records of lava dome­building volcanoes: implications for understanding magmatic processes and eruption forecasting Article 

Accepted Version 

Creative Commons: Attribution­Noncommercial­No Derivative Works 4.0 

Sheldrake, T. E., Sparks, R. S. J., Cashman, K. V., Wadge, G. and Aspinall, W. P. (2016) Similarities and differences in the historical records of lava dome­building volcanoes: implications for understanding magmatic processes and eruption forecasting. Earth Science Reviews, 160. pp. 240­263. ISSN 0012­8252 doi: https://doi.org/10.1016/j.earscirev.2016.07.013 Available at http://centaur.reading.ac.uk/66290/ 

It is advisable to refer to the publisher’s version if you intend to cite from the work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1016/j.earscirev.2016.07.013 

Publisher: Elsevier 

All outputs in CentAUR are protected by Intellectual Property Rights law, 

Page 2: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 

Reading’s research outputs online

Page 3: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

Title:Similaritiesanddifferencesinthehistoricalrecordsoflavadome-1buildingvolcanoes:implicationsforunderstandingmagmaticprocesses2anderuptionforecasting.34Authors:5Sheldrake,T.E.a,*16Sparks,R.S.J.a7Cashman,K.V.a8Wadge,G.b9Aspinall,W.P.a1011aSchoolofEarthSciences,UniversityofBristol,WillsMemorialBuilding,Queen’sRoad,12Bristol,BS81RJ,UK13bDepartmentofMeteorology,UniversityofReading,Reading,RG66AL,UK1415*[email protected](correspondingauthor)16171Currentaddress:SectionofEarthandEnvironmentalSciences,UniversityofGeneva,rue18desMaraîchers13,GenevaCH-1205,Switzerland192021Abstract:22Akeyquestionforvolcanichazardassessmentistheextenttowhichinformation23

canbeexchangedbetweenvolcanoes.Thisquestionisparticularlypertinentto24

hazardforecastingfordome-buildingvolcanoes,whereeffusiveactivitymaypersist25

foryearstodecades,andmaybepunctuatedbyperiodsofrepose,andsudden26

explosiveactivity.Herewereviewhistoricaleruptiveactivityoffifteenlavadome-27

buildingvolcanoesoverthepasttwocenturies,withthegoalofcreatingahierarchy28

ofexchangeable(i.e.,similar)behaviours.Eruptivebehaviourisclassifiedusing29

empiricalobservationsthatincludepatternsofSO2flux,eruptionstyle,andmagma30

composition.Weidentifytwoeruptiveregimes:(i)anepisodicregimewhere31

eruptionsaremuchshorterthaninterveningperiodsofrepose,anddegassingis32

temporallycorrelatedwithlavaeffusion;and(ii)apersistentregimewhere33

eruptionsarecomparableinlengthtoperiodsofreposeandgasemissionsdonot34

correlatewitheruptionrates.Acorollarytothesetwoeruptiveregimesisthatthere35

arealsotwodifferenttypesofrepose:(i)inter-eruptivereposeseparatesepisodic36

eruptions,andischaracterisedbynegligiblegasemissionsand(ii)intra-eruptive37

reposeisobservedinpersistentlyactivevolcanoes,andischaracterisedby38

Page 4: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

continuousgasemissions.Wesuggestthatthesedifferentpatternsofcanbeusedto39

inferverticalconnectivitywithinmush-dominatedmagmaticsystems.Wealsonote40

thatourrecognitionoftwodifferenttypesofreposeraisesquestionsabout41

traditionaldefinitionsofhistoricalvolcanismasapointprocess.Thisisimportant,42

becausetheontologyoferuptiveactivity(thatis,thedefinitionofvolcanicactivityin43

time)influencesbothanalysisofvolcanicdataand,byextension,interpretationsof44

magmaticprocesses.Ouranalysissuggeststhatoneidentifyingexchangeabletraits45

orbehavioursprovidesastartingpointfordevelopingrobustontologiesofvolcanic46

activity.Moreover,bylinkingeruptiveregimestoconceptualmodelsofmagmatic47

processes,weillustrateapathtowarddevelopingaconceptualframeworknotonly48

forcomparingdatabetweendifferentvolcanoesbutalsoforimprovingforecastsof49

eruptiveactivity.50

51

Keywords:Lava-domevolcanoes;Exchangeablebehaviours;Persistent;Episodic;52Magmaticprocesses;Forecasting.5354 55

Page 5: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

1.Introduction56

57

Volcanicactivitycanbemanifestedinmanydifferentways.Fromavolcanicrisk58

perspectiveoneimportantvarietyoferuptiveactivityisextrusionoflavadomesat59

intermediateandsilicicvolcanoes.Recurrenthazardsassociatedwithdome-60

buildingactivityinclude:pyroclasticflowsandvolcanicblastsassociatedwiththe61

collapseoflavadomesandedificeinstability;fountain-fedpyroclasticflows62

associatedwithVulcaniantosub-Plinianexplosions;andcopioustephrafall.63

Worldwide,suchvolcanicactivityhasbeenresponsibleforovertwothirdsof64

volcanicfatalitiessince1600C.E.(Aukeretal.,2013).65

66

WithintheSmithsonianGlobalVolcanismProgram(GVP)databasethereare20567

recordeddome-buildingvolcanoesthathavebeenactiveintheHolocene(Siebertet68

al.,2010).Ofthese,117haveeruptedinthelastmillenniumand89haveerupted69

since1900C.E.(Ogburnetal.,2015).Historicaleruptionshavelastedmanymonths,70

yearsorevendecades(NewhallandMelson,1983;Sparks,1997;Ogburnetal.,71

2015).Overhistoricaltimescalesvolcanicactivitycanberegardedascontinuous,72

albeitfluctuating,butmayalsoincludecomplexepisodicandsometimescyclic73

fluctuationsinintensity,duration,frequencyanderuptivestyle.74

75

Lavadomeformationrequiresparticularconditions,whichsuggeststhatmagmatic76

processesatdome-buildingvolcanoeshavesharedcharacteristics.Specifically,the77

lavasofdome-buildingvolcanoeshavelowaverageeruptionrates(~10-1to10-278

Page 6: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

km3yr-1)andhighviscosities(106to1011Pas;Yokayama,2005)thatarecommonly79

associatedwithhighgroundmasscrystallinity(Cashman,1992)and,consequently,80

substantialyieldstrength(Calderetal.,2015).Nevertheless,dome-building81

volcanoescanexhibitmarkedlydifferenteruptivehistories,includingboththe82

durationofindividualeruptiveepisodesandthepotentialforexplosiveactivity.This83

variabilityreflectsthegeneralconceptualtensionsinvolcanologywhere:(1)there84

isabeliefthatindividualvolcanoesareunique,asexhibitedbythecomplexnature85

oftheireruptiverecords,and(2)theconceptthateruptiveactivityisdrivenby86

commonmagmaticprocessesthatproducecertaineruptivestylesandvolcano87

morphologies(Cashman&Biggs,2014).88

89

Inthisreviewweidentifycharacteristicsoffifteenlava-domebuildingvolcanoes90

thataresimilar(exchangeable)orunique(notexchangeable),aswellasthosethat91

arecommononlytoasub-groupofvolcanicrecords.Involcanology,forexample,92

theconceptofexchangeablecharacteristicscanbeusedtodefinethecommontraits93

forallvolcanoes,andtoinfertheconceptualsystemthatthisdefinitionrepresents.94

Usingthisidea,thebasicexchangeablecharacteristicsofavolcanicsystem-implied95

bythedefinitionofavolcanobyBorgiaetal.(2010)-aresimplymagma,eruption,96

andedifice.Weallytothistheideathatthevolcanicsystem(andthusthe97

conceptualconstructofvolcanism)shouldbehierarchicallyorganized,suchthat98

identifyingandcharacterizingdifferenthierarchiesallowsindividualvolcanoesto99

bedistinguishedinspaceandtime(Szakács,2010).Forthisreason,wedevelopa100

hierarchyofdifferenteruptivebehavioursusingobservationsfromthehistorical101

Page 7: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

recordsoffifteenwell-characteriseddome-buildingvolcanoes.Bycharacterising102

exchangeablebehaviourswecanassessinaccessibleelements(e.g.,themagmatic103

system)fromobservedelements(e.g.,surfacephenomena).Asimilarapproachis104

employedinmedicalsciences,whereindividuals(i.e.humans)areunique,but105

differentgroupsofhumansareknowntohavesimilarhealthtraits(Spiegelhalter,106

1986;Bestetal.,2013).107

108

Usingahierarchicalconstructforeruptivebehavioursatdome-buildingvolcanoes109

weconsidertheconceptualsystemthatcanexplainthedifferentsetsofshared110

traitsandcharacteristics.Specifically,weaskwhetherthediversityinbehaviours111

canbeexplainedbysubsystemsofthemagmaticsystem(e.g.,shallowcrustal112

reservoirs)orwhetheritrequiresamoreholisticviewofcrustalmagmatic113

processes(i.e.,atranscrustalreservoirsystemthatextendsfromthesurface114

throughthecrustandintothemantle).Thisapproachallowsustoevaluate115

emergingparadigmsforeruptiveactivitybasedonthedestabilisationand116

reorganisationofigneousmushsystems(e.g.,CashmanandGiordano,2014;117

Christopheretal.,2015),andtointerprettheroleofconnectivitywithinamagmatic118

systemonthepatternandstyleoferuptiveactivityatdome-buildingvolcanoes.119

120

Anadditionalapplicationofourstudyrelatestotheimplicationsofahierarchical121

constructontheanalysisofvolcanicdatasets.Animportantissuerelatestothe122

conceptofvolcanicactivityasapoint-processofdiscreteeventsasthisinfluences123

howmagmaticprocessesareinterpretedandhowprobabilisticforecastsaremade.124

Page 8: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

Wealsoexaminetheimplicationsofdifferentpatternsoferuptivebehaviouron125

forecastingtheactivityofonevolcanousingobservationsfromother(perhaps126

bettercharacterized)volcanoesofthesametype.Wediscusstheissueswhen127

selectingevidencetomakeeruptiveforecastsandcontextualizethisinregardsof128

forecastingtheonsetoferuptiveactivity.129

130

2.Data131

132

Thefifteendome-buildingvolcanoesselectedforthisreviewarelistedinFigure1.133

Ourselectionisgovernedbythequalityofavailabledataandrelevantobservations,134

andguidedbytheprinciplethatourdatasetshouldcontainvolcanoesthatarewell-135

characterised,havelongrecordsofactivityandhavebeenrecentlyactive.Allfifteen136

volcanoessitinarcenvironments,anderuptmagmasthatarehydrousand137

intermediateincomposition.Asvolcanicgasemissionsareanimportantaspectof138

dome-buildingvolcanism,wealsoincludeonevolcanocharacterisedbypersistent139

gasemissionsbutnorecenteruptiveactivity.140

141

Toenablecomparisonofsimilardome-buildingbehaviour,werestrictedthe142

selectiontovolcanoesofintermediatecomposition,thusomittingdomesformedby143

theeruptionofcrystal-poorrhyolites(e.g.,Chaiten2008:Pallisteretal.,2013).To144

ensurethattheeruptiverecordsarecompleteandnotaffectedbyrecordingbiases145

(ColesandSparks,2006;Deligneetal.,2010),wereviewpatternsoferuptive146

activityonlybackto1800C.E.(Fig.2),aspriortothisdateeachoftheindividual147

Page 9: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

eruptiverecordsisassumedtobeincomplete.However,recentadvancesinthe148

abilitytomonitorandobserveeruptiveactivity(CashmanandSparks,2013)mean149

thatmuchofthedataderivefromeruptiveactivityinthelate20thandearly21st150

centuries.Datasourcesincludeeruptiondatabases(Siebertetal.,2010;Ogburn,151

2013),peer-reviewedpublications(e.g.,journalarticles,professionalpublications),152

andobservatorydataanddatabasesofvolcanicunrest(e.g.,WOVOdat;153

http://www.wovodat.org/).Detailedprofilesforthevolcanoescanbefoundinthe154

supplementarymaterial.155

156

Dataarecollatedfortwopurposes:(i)asempiricalevidenceoflong-term157

behavioursatdome-buildingvolcanoes,and(ii)asasemi-quantitativemeasureof158

theirbehaviour.Empiricalevidenceincludesobservationsofphenomenological159

behaviour,magmaticdegassing,andthebulkrockcharacteristicsoferupted160

products.Incontrasttofocussedstudiesattheindividualvolcanoes,wedonotuse161

theobservationsasdirectevidenceofspecificmagmaticprocessesorcharacteristics162

oftherespectivemagmaticsystems.Instead,weusethemonlytosubdivide163

individualvolcanoesintogroupsthatreflecttheirlong-termeruptivebehaviour.We164

thenexaminegeophysical(seismicityanddeformation)andpetrological165

observationswithingroupstocomparethebehaviourofthemagmaticsystems166

withinandbetweenvolcanogroups.167

168

2.1.Phenomenologicalbehaviour169

Page 10: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

Dome-buildingvolcanoesexhibitarangeofeffusiveandexplosivebehaviours170

(NewhallandMelson,1983;Sparks,1997;Ogburnetal.,2015).Bydefinition,171

however,themaineruptiveactivityinvolvesprotractedlavadomeextrusion,with172

extrusivephasesthatmaylastfrommonthstomanyyears;ourreferencevolcanoes173

havealsoexperiencedperiodsofquiescenceofmonthstodecades.Duringtimesof174

activity,lavadischargeratescanbeestimatedfromground-basedandsatellite-175

basedtechniques(e.g.,Sparks,1997;vanManenetal.,2010)andusedto176

characterisetheintensityofdomegrowthphases.Theeffusionrate,togetherwith177

themagmaviscosity,determineswhetherlavamovesawayfromtheventasalava178

floworbuildseitheranever-largerdomeandtalusapronoranear-solidlavaspine179

(Wattsetal.,2002;Cashmanetal.,2008).Wherelavaaccumulatesoverthevent,the180

increaseinmagma-staticheadcreatesabackpressurethatcanresistextrusionand181

influencethelonger-termdynamicsofthemagmaticsystem(Stasiuketal.1993;182

Scandoneetal.,2007).183

184

Phasesofextrusiveactivitycanbeinterspersedwithmoreexplosiveactivity,185

includingStrombolian,Vulcanianandsub-Plinianeruptionstyles.Theintensityand186

explosivityoferuptiveactivitycanbecharacterisedusingphenomenological187

observationssuchasashcolumnheight,pyroclasticrun-out,tephrafalldeposit188

volumes,someofwhichcanserveasproxiesformagnitude,intensityandexplosion189

style(NewhallandSelf,1982).Infrequently,dome-buildingvolcanoesalsohave190

large-magnitudeexplosions,includingPlinianeruptionsandlateralblasts(Ogburn191

etal.,2015).192

Page 11: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

193

2.2.Magmaticdegassing194

Asmagmaascendsthroughthecrust,volatilesexsolveandrisetothesurface195

(Wallace,2003;2005;Oppenheimeretal.,2011).Themostabundantvolatile196

speciesareH20andCO2.SO2,however,isthemostcommonlymonitoredvolatile197

becauseitisatracegasintheatmosphereandthusitsconcentrationcanbereadily198

measuredusingremotesensingtechniques(Roseetal.,2000;Edmondsetal.,2003;199

Galleetal.,2003;Carnetal.,2013).SO2fluxesarequantifiedusingultraviolet200

absorptionspectraandmeasuredintonnesperday(t/d);somedataforthelastfew201

decadesaresporadicallyavailableformostofthestudyvolcanoes.202

203

Priortothedevelopmentofultravioletspectroscopictechniques,gasfluxeswere204

estimatedbysamplingfumarolicgases(Giggenbach,1996).Introductionofthe205

correlationspectrometer(COSPEC)inthe1970sallowedSO2fluxmeasurements,206

althoughearlymeasurementswerepronetolargeerrors(Oppenheimeretal.,207

2011).Morerecently,fluxeshavebeenestimatedfromdifferentialoptical208

absorptionspectroscopy(DOAS;PlattandStutz,2008).Amajoradvantageofthis209

methodisthatspatiallydistributedmulti-beaminstrumentscanprovideprecise210

estimatesforplumevelocity,whichsignificantlyreducesmeasurementerrorsof211

flux(Oppenheimeretal.,2011,andreferenceswithin).Importantly,however,212

measurementsarerestrictedtosunlighthoursonlyandthequalityofgasdatafrom213

allremotesensingtechniquesdependsonmeteorologicalconditions(e.g.,low214

humidityandnoclouds).215

Page 12: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

216

Terrestrial-basedspectroscopicmeasurementsarenotfeasibleformeasuring217

volatileemissionsinmajorexplosiveeventsbecauseabundantashmasksthe218

signals.Consequently,themassofgasreleasedduringlargeeruptioneventsis219

measuredusingsatellite-basedtechniquesandthenconvertedtofluxes(Carnand220

Prata,2010;Carnetal.,2013).221

222

2.3.Bulkrockobservations223

Inourdataset,theproductsofdomebuildingvolcanoesrangeincompositionfrom224

basalticandesite(∼52-57wt.%SiO2)todacite(∼64-69wt.%SiO2;Table1).Whilst225

itisimpossibletoobservethelong-termdynamicsofmagmaticsystemsdirectly,226

macroscopicobservationsandbulkrockanalysiscanbeusedtointerpretthe227

compositional,andpotentiallythephysical,structureofmagmaticsystems(e.g.,228

Barclayetal.,2010;Larsenetal.,2010;Coombsetal.,2013;Scottetal.,2013;229

Turneretal.,2013).230

231

Magmarheologyisamajordeterminantofphysicalbehaviour,particularlyat232

shallowdepthswhereflowatthesurfacemaybeinhibitedbyhighyieldstrength.233

Magmaisamultiphasesystemandconsequentlyitsrheologyiscomplex(Maderet234

al.,2013).Rheologyisstronglycontrolledbythecrystallinityofthemagmas,which235

istypicallyhighinintermediatearcmagmas.Crystallizationisfurtherincreasedby236

syn-ascentdecompressionanddegassingandisthusmodulatedbyeruptionrate,237

thepressureofshallowstoragepriortoeruption,thebulkcompositionofthe238

Page 13: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

magmaandkineticfactorsassociatedwithbubbledynamics(JaupartandVergniolle,239

1989;GeschwindandRutherford,1995;NakadaandMotomura,1999;Hammeret240

al.,2000;CashmanandMcConnell,2005;Divouxetal.,2009;Wrightetal.,2012).241

Exsolvedgascanalsoleadtomarkedrheologicalvariationsasfunctionsofbubble242

sizedistributionandbubblecontent(Mangaetal.,1998;Maderetal.,2013).The243

interplaybetweenmagmaascent,decompression,gasexsolution,crystallizationand244

rheologycanleadtocomplexepisodicbehaviours(e.g.,JaupartandAllegre,1991;245

MelnikandSparks,1999;Michautetal.2013).246

247

2.4.Geophysicalobservations248

Foreachvolcanowereportcommongeophysicalobservations;forconsistency,we249

omitspecialisedobservations(e.g.,strainmeters,broadbandseismicity)madeat250

onlyoneortwovolcanoes.Geophysicalmonitoringobservationsaresusceptibleto251

spatialandtemporalbiasesassociatedwithnetworkcapacitiesandtechnological252

constraintsatvolcanoobservatories(Sparksetal.,2012).Therefore,itisimportant253

tounderstandthesebiasesandthustherobustnessandvalidityofcomparing254

records.Spatialbiasesarisefromvariationsinmonitoringcapacitiesduetoboth255

resourceavailabilityandaccessibility.Temporalbiasesareassociatedwith256

advancesintechnologythatimproveobservationthresholdsandtheprecisionof257

measurements.Thesearediscussedinmoredetailwithreferencetotheparticular258

observables.259

260

2.4.1.Seismicity261

Page 14: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

Volcanicseismicitycanbecategorisedeitherbyitsphysicalcause,ifoccurringatthe262

surface(e.g.,rockfalls,lahars,pyroclasticflows,etc.),oritswaveformandfrequency263

contentiforiginatingfromwithinthecrust(e.g.,highorlow-frequencysignals;264

Chouet,1996;Neuberg,2000;McNutt,2005;ChouetandMatoza,2013).High-265

frequency(volcano-tectonic)eventshaverecognisablePandSwavefirstarrivals266

andareattributedtobrittlefracturingrelatedtoopeningofnewpathwaysforeither267

magmaormagmaticfluids(Kilburn,2003).Low-frequency(long-periodandhybrid)268

eventsareassociatedwithmovementofmagmaandmagmaticfluids(McNutt,269

2005).Seismicityismostcommonlyassociatedwitheruptiveactivitybutisalso270

observedduringperiodsofquiescence,thatis,whenavolcanoisinanon-eruptive271

state,andcanbediagnosticofincipientunrest(Phillipsonetal.,2013)orpost-272

eruptivetectonicstressrecovery(e.g.,BarkerandMalone,1991).273

274

Althoughseismicitycanbecharacterisedusingarangeofmetrics,wefocusonthe275

numberofevents(dailycounts)asthisisthemostcommonlyrecordedobservation276

acrossthevolcanoesinthedataset.Wedonotcompareabsolutenumbersofseismic277

eventsorcumulativeseismicmomentbetweenvolcanoesduetorecordingbiases278

associatedwithvariationsinnetworkcapacitiesandsensitivities(e.g.,numberof279

andtypeofinstruments).Insteadwecomparepatternsoftotalseismicityandthe280

relativefrequencyofdifferenttypesofevents,primarilylong-periodandvolcano-281

tectonicearthquakes.282

283

2.4.2.Deformation284

Page 15: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

Theepisodicandsometimesrepetitivenatureoferuptiveactivityatmanydome-285

buildingvolcanoescommonlymanifestsastime-varyingdeformationofthecrust286

thatcanbemonitoredatthesurfaceusinggeodetictechniques.Greatvariabilityin287

instrumentationandnetworkdesigninthenear-fieldmonitoringofground288

deformation,however,makesdirectcomparisonsdifficult.Forthisreason,wefocus289

onlyonfar-fielddeformation(>5kmfromthevent).Thesedataalsoprovideuseful290

constraintsondeepermagmaticprocesses.Far-fielddeformationcanbemeasured291

bygeodeticnetworks(usingGPS),althoughthesemeasurementsrequireground-292

basedsupportandarerestrictedtoonlyafewofthevolcanoesinourdataset.On293

theotherhand,InterferometricSyntheticApertureRadar(InSAR)techniquesusing294

satellite-basedinstrumentsprovideaglobalapproachforobservingfar-field295

deformation(Biggsetal.,2014).Bycombiningobservationsfromthesetwo296

methodswecomparepatternsofdeformation(i.e.whetherthevolcanoisinflating,297

deflatingorneither)betweendifferentvolcanoesandrelatedeformationbehaviour298

toeruptiveandnon-eruptivephasesofactivity.299

300

2.5.Petrology301

Petrologicdataprovideinformationonthehomogeneityofthemagmaticsystem,302

temporalchangesofmagmacompositionandtheextenttowhicheruptiveactivityis303

influencedbytheascentofdiscretemagmabatches.Ofparticularinterestis304

evidencefortheinteractionofdifferentmagmas,whichcanoccuratarangeof305

scales.Macroscopicevidenceformagmaminglingincludesenclavesor306

compositionalbandingineruptedproducts.Microscopicdetailsofgeochemical307

Page 16: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

interactionsprovideinformationonthenatureandtimingofminglingevents.308

Analysisofindividualcrystalsandtheirmeltinclusionsprovidesinformationon309

bothintrinsicandextrinsicproperties(e.g.,temperature,pressureandvolatile310

inventories)ofmagmastorageregions(e.g.,Nakamura,1995;Zellmeretal.,2003a;311

Dirksenetal.,2006;Humphreysetal.,2006;Costaetal.,2013).Finally,petrological312

analysesandU-seriesgeochemistrycanconstrainthetimescalesofmagmatic313

processes(e.g.,VolpeandHammond,1991;Zellmeretal.,2003b;CooperandReid,314

2008;Dossetoetal.,2008;Claiborneetal.,2010)thatcontrolandsustaineruptive315

activityatdome-buildingvolcanoes.Quantificationofgroundmasscharacteristics316

(crystallinity,crystalsizeandshape)canfurtherconstrainratesofmagmaascentto317

thesurface(e.g.,Hammeretal.,2000;Toramaruetal.2008;Wrightetal.,2012).318

319

3.Patternsoferuptiveactivityatdome-buildingvolcanoes320

321

Weidentifyinourdatasettwotypesoflong-termbehaviourdefinedbytherelative322

timeavolcanoremainsinastateoferuptionorrepose(i.e.non-eruption):(1)323

activityisepisodicwhentimescaleoferuptionismuchlessthanthetimescaleof324

repose;and(2)activityispersistent,whenthetimescaleoferuptioniscomparable325

tothatofrepose(Fig.3a).Identificationofepisodicandpersistentregimes326

representsthefirstsub-levelinourhierarchicalconstructofhistoricaldome-327

buildingvolcanism(Fig.4).328

329

Page 17: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

Episodicandpersistentbehaviourcanbemanifestedoverdifferenttimescales(Fig.330

4)and,overtime,individualvolcanoescanshowbothtypesofbehaviour(Fig.3c).331

Overtheexaminedtimeperiodofthepast200years,forexample,manydome-332

buildingvolcanoesarecharacterisedbyepisodicbehaviour;however,withinthat333

broaddescription,somehaveremainedinapersistentregimeformultipledecades.334

Wecharacterisethesevolcanoesasbelongingtoamixedregime.Oververylong335

timeperiods,allthevolcanoesinoursamplecanbeviewedasmixed.336

337

PatternsofSO2degassingalsoprovideadditionalinsightintolong-termpatternsof338

volcanicactivity.ThelargestvolumesofSO2emissionsarealwaysassociatedwith339

majorexplosiveevents(e.g.,CarnandPrata,2010;Werneretal.,2013).Two340

patternsoflessenergeticdegassingcanbedefinedas:(1)SO2fluxthatisclosely341

correlatedwitheruptions(Fig.3b)and(2)degassingthatisnotcorrelatedwith342

eruptiveactivity(Fig.3a).Correlateddegassingiscommonatvolcanoesinan343

episodicregime;herebothgasandmagmafluxesdecreasewithtimeafteraninitial344

(oftenexplosive)maximum(Fig.5a).Poorcorrelationbetweendegassingand345

eruptiveactivity,incontrast,istypicalofpersistentactivity(Fig.5b).The346

correlationofdegassingpatternswitheruptivebehavioursuggeststhatmagmatic347

degassingconstitutesanimportantdistinctionbetweenpersistentandepisodic348

regimes(e.g.,Whelleyetal.,2015).349

350

Finally,weusedifferencesindegassingbehaviourtodistinguishtwostatesof351

repose:(1)inter-eruptivereposeseparatesepisodiceruptionsandischaracterised352

Page 18: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

bynegligibledegassing(Fig3a;5a);and(2)intra-eruptivereposeoccursinthe353

persistentregimeandischaracterisedbysustaineddegassing(Fig3b;5b).Wealso354

identifyanon-eruptivedegassingregimetodescribedome-buildingvolcanoesthat355

remaininastateoflong-termrepose(~decades)characterisedbylowlevelsof356

persistentdegassing.357

358

3.1.Episodicregime359

Volcanoesinanepisodicregimearecharacterisedbyperiodsoferuptiveactivity360

separatedbymuchlongerperiodsofrepose.Theonsetoferuptiveepisodesis361

explosive,withhighmagmadischargerates.BothmagmadischargeratesandSO2362

fluxesdecreasewithtimeduringeruptiveperiods(e.g.,Fig.6).Duringeruptive363

periods,thelaterstagesofactivityaretypicallycharacterisedbylowextrusionrates364

andassociatedextensivesyn-eruptivecrystallisationthatcombinetoproducelava365

spines(e.g.,Wattsetal.,2002;Cashmanetal.,2008).Wedistinguishtwodifferent366

timescalesforepisodicactivityinhistoricalrecords(Fig4):(1)volcanoeswhere367

eruptiveepisodeslastseveralyears,and(2)volcanoeswhereeruptiveepisodeslast368

afewmonthsatmost.Thesetwosubgroupscanbefurtherdistinguishedbythe369

homogeneityorheterogeneityoferuptedmagmacompositions.370

371

3.1.1.Eruptiveepisodeslastingyears372

Twovolcanoesinthisreviewhaveexperiencedepisodicactivitylastingseveral373

years(Fig.2;UNZ,PEL).Inbothcases,lavacompositionsarebroadlyhomogeneous.374

Thedurationofinter-eruptiveperiodsofreposeismultipledecadesorlonger.375

Page 19: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

376

(a) MountUnzen,Japan(UNZ),isacomplexdaciticvolcanothatlasterupted377

near-continuouslyfrom1991-1995(Fig.2).Noprevioushistoricactivityis378

knownalthoughamajorsectorcollapseeventofanolderdomeoccurredin379

1792(Uietal.,2000).Between1991and1995,thecompositionoferuptive380

productswas~65wt.%SiO2(NakadaandMotomura,1999)andtheaverage381

lavaeffusionratewas~1m3s−1,withhigherrates(∼4-6m3s−1)duringthe382

eruptiononset.Extrusionratesgenerallydiminishedwithtime,althougha383

secondarypeakwasobservedin1993(Nakadaetal.,1999;Fig.6).SO2384

fluxesaveraged137t/d,werecorrelatedwithextrusionrateanddiminished385

soonaftereruptiveactivityceased(Hirabayashietal.,1995).386

387

(b) MontPelée,Martinique(Fig.1),isanandesiticvolcanothathaserupted388

infrequently(Fig.2).Thebest-recordederuptiveactivityoccurredinthe389

earlypartofthe20thcentury,between1902-05and1929-32(Lacroix,1904;390

Perret,1937;Tanguy,1994).Duringbothperiods,lavafluxesdecreasedfrom391

>10m3s−1to∼1m3s−1(Tanguy,2004),withlaterstagescharacterisedby392

spineextrusion(Lacroix,1904;Perret,1937).Thecompositionoferuptive393

productsfromMontPeléeisquitehomogeneousat62wt.%(Fichautetal.,394

1989b;Gourgaudetal.,1989;SmithandRoobol,1990).395

396

3.1.2.Eruptiveepisodeslastingmonths397

Page 20: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

Twovolcanoesinthisreviewhaveexperiencederuptiveepisodeslastingafew398

months(Fig.2;RED,AUG).Incontrasttothevolcanoesinthepreviousgroup,the399

durationofinter-eruptiveperiodsofreposeisseveralyearstoafewdecades.400

Additionally,lavasofdifferentcompositionareeruptedcontemporaneously.401

402

(c) MountRedoubt,USA(RED),isanandesiticvolcanothathaserupted403

intermittentlyonfourseparateoccasionssince1902(Fig.2).Themost404

recenteruptiveepisodeshavebeenin1989-90and2009,eachlastingfor405

severalmonths(MillerandChouet,1994;BullandBuurman,2013).During406

eacheruptiveepisodeeruptiveproductsrangedfrom57to63wt.%SiO2,407

withthelaterstagesinvolvingthemoresiliciclava(Nyeetal.,1994;Coombs408

etal.,2013).SO2degassingishighlycorrelatedwithperiodsoferuptive409

activity.In1989-1990,extrusionratesvariedfrom2.1to26m3s−1,with410

averagedomegrowthoccurringat~5.8m3s−1(Miller,1994).Similar411

extrusionrateswereobservedin2009(2.2-35m3s−1)althoughtheaverage412

ratewasslightlyhigherat∼9.5m3s−1(Diefenbachetal.,2013).Inbothcases413

theinitialactivitywasthemostexplosiveandtheextrusionratedeclined414

duringeruptiveactivity(Miller,1994;Diefenbachetal.,2013).Initial415

explosiveactivityin2009wasassociatedwiththelargestSO2fluxes(∼3000416

to∼17000t/d).Subsequentactivityinvolvedmorecontinuousextrusion417

withSO2fluxes≤3000t/d(Hobbsetal.,1991;Casadevalletal.,1994;Werner418

etal.,2013).Inboth1990and2009,ittookseveralyearsforSO2fluxesto419

Page 21: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

returntoundetectablelevelsaftereruptiveactivityceased(Doukas,1995;420

Werneretal.,2013).421

422

(d) MountAugustine,USA(AUG),isanandesiticvolcanothathashadnineknown423

eruptiveepisodessince1812,withthemostrecentin1976,1986and2006424

(Fig2),eachlastingforseveralmonths(SwansonandKienle,1988;Poweret425

al.,2006;PowerandLalla,2010).Thecompositionoftheeruptedmagmahas426

rangedfrom56to64wt.%SiO2,withmoresilicicmagmapreferentially427

eruptedlaterineacheruptiveepisode(Harris,1994;Romanetal.,2006;428

Larsenetal.,2010).Duringthe2006eruptiveactivity,magmafluxesvaried429

from2to22m3s−1(Coombsetal.,2010).Notably,incontrasttoother430

volcanoesinepisodicregimes,thefinalstagesoferuptiveactivityat431

Augustinein2006werecharacterisedbyelevateddischargeratesandthe432

formationoflavaflows,althoughdischargerateswerestilllowerthanatthe433

onsetoferuptiveactivity(Coombsetal.,2010).Magmaticdegassingis434

correlatedwitheruptiveactivity,withthelargestfluxescommonly435

associatedwithexplosiveactivity(Stithetal.,1978,Roseetal.,1988;McGee436

etal.,2010).In2006,however,thehighestSO2fluxes(∼9000t/d)were437

associatedwithabriefhiatusineruptiveactivity,althoughSO2fluxeswere438

high(∼3000t/d)throughouttheeruptiveepisode(McGeeetal.,2010),andit439

took1-2yearsaftertheendoferuptiveepisodesin1986and2006forSO2440

fluxestoreturntoundetectablelevels(Symondsetal.,1990;Doukas,1995;441

McGeeetal.,2010).442

Page 22: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

443

3.2.Persistentregime444

Weidentifyeightvolcanoesinthisreviewthathaveremainedinapersistentregime445

fordecadesorlonger.Volcanoesinapersistentregimeexhibitbroadlyconsistent446

behaviourassociatedwithstablelong-termlavafluxes.Forexample,althoughrates447

oflavaeffusionatBezymianny,Kamchatka,havevariedovertheshortterm,they448

havebeenapproximatelyconstantoverthepastseveraldecades(Fig.5).The449

eruptiveactivityofanindividualvolcanocanalsoshow‘typical’(repeatable)450

patternsofbehaviour,asillustratedbySantiaguito,Guatemala,wheretypical451

behaviourcomprises“smalltomoderateexplosionsofsteamandash,small452

pyroclasticflows...andeffusionofblockylavadomesandflows”(Scottetal.,2012).453

TypicalintermittentbehaviouratMerapi,Indonesia,incontrast,ischaracterisedby454

eruptiveactivitythatis“lowinexplosivitywithVEI-3orless...[that]involvethe455

formationofalavadome”(Ratdomopurboetal.,2013).456

457

Wedistinguishtwodifferentvariantsoflong-termpersistentbehaviour(Fig.4).458

Firstly,therearevolcanoesthathaveremainedinapersistentregimeatleastthe459

19thcentury.Thesevolcanoesproducelavaswithanapproximatelyconstantbulk460

composition.Secondly,therearevolcanoesthathaveenteredapersistentregime461

followingalongperiodofinastateofrepose.Volcanoesinthisgrouptypicallyhave462

bulkcompositionsthatshowadecreaseinSiO2contentwithtime.463

464

3.2.1.Long-termpersistentregimes465

Page 23: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

Fourofthedome-buildingvolcanoesinthisstudyhavebeeninapersistentregime466

throughoutthe19th,20thand21stcenturies;thesevolcanoesarecharacterisedby467

frequent,intermittentphasesofdome-growth(Fig.2;MER,COL,LAS,SHI).Thestyle468

oferuptiveactivityisgenerallyconsistentthroughtimeandcharacterisedby469

definable‘typical’behaviour,exceptforrarelarge-magnitudeexplosions(Fig.2).470

Interestingly,theseexplosiveeventscommonlyinvolvemagmathatismoremafic471

thaneruptedduringtheeffusivephases.Activityateachvolcanoisdescribedin472

detailbelow.473

474

(a) Merapi,Indonesia(MER),isabasalticandesitevolcanothathasbeeninan475

eruptivestateeveryfewyearssinceatleastthe18thcentury.Eruptive476

activityischaracterisedbyminorexplosionsassociatedwiththeextrusionof477

viscouslavadomesandcouléesthatcancollapsetoformblock-and-ash478

pyroclasticflows(Voightetal.,2000).Lavaextrusionratesare479

approximatelyconstantoverhistoricalrecordsat∼0.5m3s-1(Siswowidjoyo480

etal.,1995).Persistenteffusiveactivityhasbeenpunctuatedbyatleasttwo481

majorexplosionsthathaveproducedhigh-energypyroclasticdensity482

currents(Suronoetal.,2012).Thebulkrocklavacompositionrangesfrom483

52to56wt.%SiO2(Andreastutietal.,2000;GertisserandKeller,2003)and484

showsnotemporaltrend,althoughexplosiveeventsappeartoinvolvedeeply485

sourced,volatile-richmagmas(Costaetal.,2013),whichmaybemoremafic486

(GertisserandKeller,2003).SO2degassingiscontinuouswithfluxesbetween487

50and250t/d(Humaida,2008),althoughinstantaneousfluxescanbemuch488

Page 24: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

larger(∼10,000’st/d)duringmajorexplosiveevents(Suronoetal.,2012).489

Importantly,SO2fluxesanderuptiveactivityappeardecoupled,withSO2flux490

peaksobservedduringinter-eruptiveperiods,andsometimesassociated491

withashventing(Ratdomopurboetal.,2013).492

493

(b) Colima,Mexico(COL),isanandesitevolcanothathasbeenerupting494

intermittentlysincethe18thcentury.Periodsofintra-eruptiverepose495

normallylastontheorderofyears,althoughlongerperiodswithout496

apparenteruptiveactivityhavefollowedmajorexplosiveeventsin1818and497

1913.Theselongerperiodsofreposeprobablyinvolvedendogenousgrowth498

belowthecraterrim(Robinetal.,1991;Gonzálezetal.,2002),soweinfer499

thatColimaremainedinapersistentregimeduringpost-explosionperiods.500

Eruptiveactivityischaracterisedbylavadomeextrusion,Vulcanian501

explosionsandoccasionalblock-and-ashflows(Zobinetal.,2002).Short-502

termlavaeffusionratesvaryfrom<1to>5m3s−1(Varleyetal.,2010),but503

long-termaveragesarepoorlyconstrained.Thelavacompositionranges504

from59to62wt.%SiO2withnocleartemporaltrend(LuhrandCarmichael,505

1980;1990;Savovetal.,2008),exceptthatproductsofmajorexplosive506

eventsaremoremafic(SiO2=55-58wt.%;LuhrandCarmichael,1990;Reubi507

andBlundy,2009;Crummyetal.,2014).SO2degassingiscontinuous,with508

fluxestypicallybetween50and1000t/d(Casadevalletal.,1984;Engberg,509

2009),althoughsometimesashighas5000t/d(Taranetal.,2002;Varley510

andTaran,2003).Magmaticdegassingappearsdecoupledfromeruptive511

Page 25: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

activity(Zobinetal.,2008),butthelargestSO2fluxesareassociatedwith512

moreexplosiveevents(Taranetal.,2002).513

514

(c) Lascar,Chile(LAS),isanandesiticvolcanothathasbeenerupting515

intermittentlyatyearlytodecadaltimescalesthroughoutmuchofitshistory.516

Lavadomegrowthhasbeenconfinedwithinalargesummitcrater.Four517

periodsofnear-continuousdomegrowthoccurredbetween1984and1993;518

eachculminatedinlavadomesubsidenceandexplosiveevents,includinga519

PlinianexplosioninApril1993(Matthewsetal.,1997).Long-termlava520

extrusionratesarepoorlyconstrainedbutarelikelytobe<0.1m3s-1521

(Matthewsetal.,1997).Since1993,activityhascomprisedepisodic522

Vulcanianexplosionsthathavedecreasedinbothintensityandfrequency;523

thelastexplosionoccurredin2007.Juvenilepyroclastsfrom1993canbe524

separatedbycompositionintotwogroups:57.6-58.7or60.4-61.4wt.%SiO2525

(Matthewsetal.,1999);similaritiestopreviouslyeruptedlavas(Deruelle,526

1985)suggestthatthemagmacompositionhasremainedconstant527

throughoutitshistory.Lascarhasexhibitedcontinuousfumarolicactivity528

(Casertano,1963;Gardeweg&Medina,1994)withrecentSO2fluxes529

sustainedbetween150and940t/d(Henneyetal.,2012,Menardetal.,530

2014).Duringmoreexplosiveactivity,fluxeshavereached2300t/d(Andres531

etal.,1991;Matheretal.,2004).SO2fluxeshaveshownanirregularpattern532

ofdegassingduringperiodsofintra-eruptivereposeandthereforeappear533

decoupledfrommagmaflux(Menardetal.,2014).534

Page 26: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

535

(d) Shiveluch,Russia(SHI)isanandesiticvolcanothathasbeenerupting536

intermittentlysinceamajorexplosiveeventin1854.Evenpriorto1854,537

sparseobservationssuggestthatperiodsofreposelastednomorethanafew538

decades.Recentphasesoferuptiveactivityhavevariedindurationfrom539

monthstoseveralyears,andShiveluchhasbeeninanear-continuous540

eruptivestatesince2000(Belousov,1995;ZharinovandDemyanchuk,541

2008).Between1980and2007theaveragelavadischargeratewas∼0.4542

m3s−1,althoughfluxesfluctuatedconsiderably(ZharinovandDemyanchuk,543

2008).Explosiveactivityhasbeenofvariablemagnitude,withmajorPlinian544

eventsin1854and1964(Belousov,1995).Theeruptiveproductscontain545

56-62wt.%SiO2andshownotemporaltrends(Dirksenetal.,2006;546

Humphreysetal.,2006;GorbachandPortnyagin,2011).Fumarolicactivity547

hasbeensustainedthroughoutbotheruptiveactivityandintra-eruptive548

repose(Belousov,1995;Gorelchiketal.,1997;ZharinovandDemyanchuk,549

2008),butSO2fluxeshavenotbeendocumented.550

551

3.2.2.Long-durationreposeprecedingalong-termpersistentregime552

Twovolcanoesinthisstudyhaveinitiatedpersistentbehaviourafterexplosive553

eruptionsthatfollowedalongperiodinastateofrepose(∼millennia;Fig.2;SAN,554

BEZ).TheonsetofapersistentregimeatthesevolcanoesischaracterisedbyPlinian555

andlateralblastexplosions.Incontrasttothepreviousgroup,themostevolved556

Page 27: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

pyroclastsinthisgroupareassociatedwithmajorexplosiveevents;theSiO2content557

ofsubsequentlavasdecreasessystematicallythroughtime.558

559

(e) Santiaguito(SantaMaria),Guatemala(SAN),isadomecomplexthathasbeen560

activesince1922;effusiveactivityfollowedthePlinianeruptionofitsparent561

volcano,SantaMaria,in1902(Rose,1972).Effusiveactivityhasbeennearly562

continuousatlong-termratesof~0.46m3s−1,withmarkedfluctuationsthat563

havebeenclassifiedintoeightdistinctphases(Rose,1973;Harrisetal.,564

2003;Scottetal.,2013).Eachphasehasinitiatedwithhighrates(0.5-2.1565

m3s−1)andhasbeenfollowedbylow,sustainedextrusionratesof<0.2m3s−1566

(Harrisetal.,2003;Ebmeieretal.,2012).Thelavasaredacitictosilicic567

andesiteincomposition,withSiO2contentsthathavedecreased568

systematicallyfrom∼66to∼62wt.%since1922.SO2degassingis569

continuouswithaveragefluxesbetween80and120t/d(Andresetal.,1993;570

Rodríguezetal.,2004).571

572

(f) Bezymianny,Russia(BEZ),isanandesitevolcanothathasbeenerupting573

near-continuouslytointermittentlysincealateralblastandassociatedsector574

collapsein1956(Belousovetal.,2007).Between1956and1977,eruptive575

activitywaslimitedtoperiodsofendogenouslavadomegrowthassociated576

withsustainedfumarolicactivity(Gorshkov,1959;Bogoyavlenskayaetal.,577

1985;Belousov,1996).After1977,domegrowthoccurredexogenouslyand578

includedoccasionalexplosions(vanManenetal.,2010).Morerecently,579

Page 28: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

eruptivephaseshavedecreasedindurationandhavebecomeincreasingly580

explosive(West,2013).Thelong-termaverageextrusionratewas0.6m3s−1581

between1956and1976(Belousovetal.,2002)and1993to2008(van582

Manenetal.,2010).Since1956theeruptiveproductshavebecomesteadily583

lessevolvedwithtime,varyingfrom60.4to56.8wt.%SiO2584

(Bogoyavlenskayaetal.,1985;Turneretal.,2013).SO2degassinghasbeen585

sustained.Fluxeshavebeenmeasuredat140to280t/dduringthree586

campaignsconductedduringperiodsofloweruptiveactivity(Lopezetal.,587

2013).Thesemeasurementsarenotsufficienttoassessrelationsbetween588

degassingandmagmadischarge.589

590

3.3.Mixederuptiveregime591

Persistentandepisodicregimescanmanifestoverdifferenttimescalesatindividual592

volcanoes.Consequently,thehistoricalrecordsofsomedome-buildingvolcanoes593

exhibitpatternsoferuptiveactivitythatarecharacteristicofbothregimes:they594

exhibitpersistentbehaviouroverseveraldecadesbutarealsocharacterisedbylong595

periodsofinter-eruptiverepose.Weidentifyfourvolcanoesthatfitthiscategory596

anddefinethemas‘mixed’regimevolcanoes(Fig.2;MSH,SHV,TUN,POP).597

598

Theeruptivebehaviouratthesevolcanoesvariesmarkedly,withpersistentactivity599

overshorttimescalesbutepisodicactivityovertimescalesofdecadestocenturies600

andpersistentactivityovershortertimescales.Mixedactivityissufficientlyvaried,601

however,thatitcannotbeconsideredexchangeable.Forexample,MountStHelens602

Page 29: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

showedpersistentactivitythroughoutmostofthe1980’swithdegassingthatwas603

wellcorrelatedtemporallywithlavaextrusion.Tungurahua,incontrast,has604

remainedinapersistentregimesince1999,withdegassingthathasbeenpoorly605

correlatedwithlavaextrusion.Acommonobservationatallofthesevolcanoes,606

however,isintermittentashventing.607

608

(a) MountSt.Helens,USA(MSH),isadaciticvolcanothathasexperiencedtwo609

eruptiveepisodesinrecenttimes:1980to1986,and2004to2008(Swanson610

andHolcomb,1990;Scottetal.,2008),followinganinter-eruptiveperiodof611

reposelasting136years(Fig.2).Eruptiveactivityin1980initiatedwith612

endogenousgrowthoftheedifice(LipmanandMullineaux,1981)thatcaused613

amajorflankcollapseaccompaniedbysub-Plinianexplosiveactivity(Voight614

etal.,1983;Glicken,1998).Thiswasfollowedbysub-PliniantoVulcanian615

explosionsinthesummerof1980thatsteadilydecreasedinmagnitudeand616

duration(ScandoneandMalone,1985).Subsequenteffusiveactivity617

transitionedbetweendiscreteandcontinuouseruptionsofvariably618

crystallinelavas(Cashman,1992).Between1980and1986,extrusionrates619

variedfrom1.4to40m3s−1,withalong-termaverageof∼0.4m3s−1620

(AndersonandFink,1990;SwansonandHolcomb,1990).Renewed621

continuouseffusionin2004occurredatratesthatdecreasedsteadilyuntil622

2008,withamaximumof<5.9m3s−1andalong-termaverageof0.1m3s−1623

(Schillingetal.,2008;Majoretal.,2009).Between1980and1986magma624

compositionswerebroadlyhomogeneousat62-64wt.%SiO2(Cashman,625

Page 30: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

1992;Pallisteretal.,1992;Blundyetal.,2008;Pallisteretal.,2008).Lavas626

eruptedbetween2004and2008weresimilarlyhomogenousat63-65wt.%627

SiO2(Blundyetal.,2008;Pallisteretal.,2008).Duringbotheruptiveperiods,628

degassingwascontinuousandlargelycoupledwithmagmaextrusion.The629

largestSO2fluxeswereassociatedwithexplosiveactivityintheearly1980’s,630

whentheyfrequentlyexceeded1000t/d(GerlachandMcGee,1994).The631

lowestSO2fluxes(∼70t/d)wereassociatedwiththedome-buildingactivity632

in1982-86and2004-2008(GerlachandMcGee,1994;Gerlachetal.,2008).633

Followingthecessationofeacheruptiveepisode,SO2fluxesdecreased634

rapidlytonegligiblelevels.Inthe1990’s,however,detectablegasemissions635

(Gerlachetal.,2008)wereobservedconcurrentlywithelevatedshallowVT636

seismicityandexplosiveemissionsofnon-juveniletephra(Mastin,1994).637

638

(b) SoufrièreHillsVolcano,Montserrat(SHV),isanandesiticvolcanothat639

eruptedin1995followingseveralcenturiesofnoeruptiveactivity.Since640

1995ithasexhibitedintermittentactivitywithfivephasesoferuptive641

activitylastingseveralmonthstoyears(Youngetal.,1998;Sparksand642

Young,2002;Wadgeetal.,2010;2014),withthelastphaseendingin2010.643

Theeruptiveactivityhasincludedlavadomeextrusion,block-and-ashflows644

andVulcanianexplosions;periodsofreposehavebeencharacterisedbyash645

ventingandcontinuousdegassing(Wadgeetal.,2014).Thetime-averaged646

lavaextrusionhasbeen3m3s−1,althoughratesexceeding10m3s−1have647

characterisedsomephasesofdomeextrusion(Wadgeetal.,2010;Wadgeet648

Page 31: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

al.,2014).TheSiO2contentofhistoricallyeruptedproductshasvariedfrom649

58to62wt.%(Murphyetal.,2000;Zellmeretal.,2003b;Barclayetal.,2010;650

Christopheretal.,2014).TheaverageSO2emissionratefrom1995to2010651

was∼530t/d(Christopheretal.,2010)andlargelydecoupledfromeruptive652

activity(Christopheretal.,2010;Edmondsetal.,2010;Christopheretal.,653

2015).SoufrièreHillsVolcanocontinuestodegasat~430t/d(Christopher654

etal.,2015).Duringperiodsofintra-eruptiverepose,peaksindegassingof655

severalthousandt/dhavebeenassociatedwithburstsinseismicity(VTs)656

andaresometimesaccompaniedbyashventing(Coleetal.,2014).657

658

(c) Tungurahua,Ecuador(TUN),eruptedin1999following81yearsofno659

eruptiveactivity.Slowlavaextrusionandfrequentexplosiveactivityduring660

phasesoferuptiveactivityhavelimitedlavadomegrowth.Between1999661

and2006Tungurahuaalternatedbetweenexplosive(Strombolianto662

Vulcanian)eruptionsandrelativelyquietperiodsdominatedbyashventing663

andfumarolicactivity.ThemostexplosiveactivityoccurredduringJulyand664

August2006(Arellanoetal.,2008),afterwhichactivityreturnedtofrequent665

low-intensityStrombolianexplosions(Steffkeetal.,2010).Whilstthemagma666

supplyratehasvariedovertimescalesofmonths(Wrightetal.,2012),the667

long-termemissionrateofashhasbeenapproximatelyconstantat>0.2668

m3s−1,andpossibly>0.4m3s−1(LePennecetal.,2012).Theeruptiveproducts669

havecompositionsof56-59wt.%SiO2andshownosystematicvariationwith670

timeoreruptivestyle(Samaniegoetal.,2011),exceptthatmajorexplosive671

Page 32: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

eventsin1866and2006haveincludedaminordaciticcomponent672

(Samaniegoetal.,2011).Between1999and2006,SO2fluxesvariedfrom673

severalhundredtothousandsoft/d;degassinghasbeenlargelydecoupled674

fromeruptiveactivity(Arellanoetal.,2008),althoughsince2006dailySO2675

fluxeshavedecreasedandappeartobebettercorrelatedwitheruptive676

activity.677

678

(d) Popocatépetl,Mexico(POP),hasexperiencedseveralperiodsoferuptive679

activityinthe20thcentury.Mostrecently,eruptiveactivitywasrenewedin680

1994andhasinvolvedrepeatedperiodsofdomegrowththathave681

culminatedinexplosiveeruptionsanddomecollapse.Extrusionrateshave682

rangedfrom0.5to4.1m3s−1duringdome-growthin1996and1997;the683

long-termaveragehasbeen0.24m3s−1(Delgado-Granadosetal.,2001).Prior684

to1995,Popocatépetllasteruptedbetween1920and1927(Delgado-685

Granadosetal.,2001)followedbyseveraldecadesofminordegassingand686

ashventing(Brennan,2007).Pyroclastseruptedbetween1996and1998687

rangedinbulkcompositionfrom∼59to64wt.%SiO2(Athanasopoulos,688

1997;StraubandMartin-DelPozzo,2001),withallcompositionserupted689

contemporaneously(Witteretal.,2005).In1994,averageSO2fluxeswere690

severalthousandt/d.SimilarlyhighSO2fluxes(30,000-50,000t/d)marked691

explosiveactivitybetween1996and1998(Goffetal.,1998;Delgado-692

Granadosetal.,2001).DOASmeasurementsoftheplumein2006providean693

Page 33: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

averagefluxof2450t/d,withlargedailyvariationsnotalwaysassociated694

witheruptiveactivity(Grutteretal.,2008).695

6963.4.Non-eruptivedegassingregime697

Atvolcanoesthathaveremainedinapersistentregimethroughoutthe20thand21st698

centuries(section3.1.1),fumarolicactivitymaybesustainedduringperiodsof699

reposelastingyearsorevendecades(e.g.,Lascar;Gardeweg&Medina,1994).One700

volcanoinourdatabasehasnoteruptedduringthe20thand21stcenturiesbuthas701

exhibitedsustainedandpersistentdegassingofSO2.702

703

(a) Kudryavy(Moyorodake/Medvezhia),Russia(KUD),isabasalticandesite704

volcanothathasbeeninapersistentstateofhightemperaturefumarolic705

degassingandphreaticactivitysinceitslastmagmaticeruptionin1883706

(Fischeretal.,1998;Korzhinskyetal.,2002).Theonlymeasurementscome707

fromasinglecampaignin1995,whichmeasuredSO2fluxesof73±15t/d708

(Fischeretal.,1998).709

7104.Magmaticbehaviourinpersistentandepisodicregimes711

712

Geochemicalanalysisoferuptedproductsandgeophysicalobservationscanprovide713

semi-empiricalevidencefordifferentmagmaticprocesses.Wesummarisethese714

dataforthefifteendome-buildingvolcanoes,withaparticularfocusonsystematic715

variationsinthebehaviourofvolcanoesinthedifferentregimes.716

717

Page 34: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

4.1.Interactionofmagmas718

Evidenceofmixingandminglingbetweendifferentbatchesofmagmaareobserved719

inall14volcanoesinourdatabasethathaveeruptedinthe20thcentury(Table2720

andreferencestherein).Differentmagmabatchestypicallyvaryincomposition,721

althoughinteractionsarealsoobservedbetweenmagmasormeltsthataresimilar722

incompositionbutdifferintemperatureandcrystallinity(CashmanandBlundy,723

2013;Costaetal.,2013;Trolletal.,2013).Evidenceformagmainteractionover724

shorttimescales(daystoyears)isubiquitousandincludes:(1)disequilibrium725

mineralassemblages;(2)disequilibriabetweenmineralassemblagesandmatrix726

glass;and(3)phenocrystzoning(Table2).Zoningpatterns,inparticular,provide727

evidencethatmagmamixingissustainedoverarangeoftimes.Discretemagma728

mixingeventsmaybeassociatedwithsingleexplosiveevents(Pallisteretal.,2008;729

Samaniegoetal.,2011;Scottetal.,2013)orindividualphasesofeffusiveactivity730

lastingmonths(Dirksenetal.,2006).Frequentandnear-continuousmagmamixing731

mayaccompanysustainedlavaeffusion(Nakamura,1995;Barclayetal.,2010;732

Turneretal.,2013).733

734

Thedegreeofmixingrangesfromcontemporaneouseruptionofdifferentmagma735

compositionstotheeruptionoflavasthatarehomogeneousinbulkcompositionbut736

heterogeneousonathinsectionscale.Evidenceforincompletemixingincludes737

bandedlavaorpumice,ormaficenclavesinmoresilicichostlavas.Where738

incompletemixingisobserved,historicalactivitytendstobeepisodicwith739

moderatetolongperiodsofinter-eruptiverepose.Persistentactivity,incontrast,740

Page 35: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

tendstoproducehomogeneouslavas;hereevidenceformagmamixingispreserved741

onlyatthemicro-scale,inmeltinclusions,disequilibriummineralassemblages,742

polymodalmineralcompositions,andphenocrystzonation(Table2).743

744

4.2.Geophysicalobservations745

4.2.1.Seismicity746

Similarpatternsofseismicityareobservedacrossallthevolcanoesinthisreview,747

withnoapparentcorrelationwitheruptiveregime.Mostvolcanicearthquakesoccur748

priortoandduringeruptiveactivity.Renewederuptiveactivityisgenerally749

precededbyelevatedVTseismicity,withelevatedLPseismicityimmediatelyprior750

toeruptioninitiation.LevelsofLPseismicityarehighestatvolcanoesinpersistent751

regimeswheredegassingratesarehigh(e.g.,Lascar,Popocatépetl;Aschetal.,752

1996).Hybridevents(LPseismicitywithclearP&Swavearrivals)arecommonly753

associatedwithdome-growth(e.g.,Milleretal.,1998;Umakoshietal.,2008).754

755

Onceavolcanohasremainedinastateofreposeformorethanafewmonths,the756

levelofseismicitydecreases,althoughepisodicincreasesinVTseismicityare757

commonandareoftenassociatedwithelevateddegassingandashventing(Mastin,758

1994;Ratdomopurboetal.,2013;Budi-Santosoetal.,2013;Sernageomin,2013;759

Coleetal.,2014).Seismiccrisescanoccurduringinter-eruptiverepose;thesemay760

lastforseveralmonthstoseveralyearswithmultiplefeltearthquakesandno761

eruptionofmagma(JapanMeteorologicalAgency,1996,Youngetal.,1998).762

763

Page 36: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

4.2.2.Deformation764

Geodeticmeasurementsoffar-fielddeformationaremorecommonatvolcanoesin765

anepisodicregimethanatthoseinapersistentregime(Table3),althoughthis766

apparentcorrelationcouldbecoincidental,sincemanyofthevolcanoesinour767

datasetthatexhibitepisodicbehaviourarelocatedindevelopedcountries,which768

tendtohavewell-establishedmonitoringandresearchcapabilities(e.g.,USAand769

Japan).Alternatively,volcanoesinapersistentregimemaylackfar-field770

observationsbecauseonlynear-fieldobservationsarerequiredforshort-term771

forecasting.Atepisodicvolcanoes,periodsofreposemayshowinflation,whereas772

deflationisprimarilyassociatedwithphasesofdomegrowth(Table3).The773

timescalesofinflationvaryfromyears(e.g.,Augustine,Redoubt;Cervellietal.,2010;774

Grapenthinetal.,2013a)todecades(e.g.,Augustine,Unzen;Kohnoetal.,2008;Lee775

etal.,2010).SoufrièreHillsVolcano,whichhasremainedinapersistentregime776

since1995,alsoexhibitscyclesoffar-fieldinflationanddeflationcoincidentwith777

eruptiveandnon-eruptivecyclesofmonthstoyears(Odbertetal.,2014a).Where778

persistentbehaviourincludesshortphasesoflavaeffusionandexplosiveeruption779

(e.g.,Bezymianny,Merapi,Colima),InSARmeasurementssuggestnegligiblefar-field780

deformation(Chaussardetal.,2013;Grapenthinetal.,2013b).781

782

5.Conceptualmagmaticmodelsfordome-buildingvolcanism783

784

Theinterpretationofmagmaticprocessesandtheirrelationtovolcanismrequiresa785

conceptualmodelforvolcanicactivity.Fromthisperspective,understandingthe786

Page 37: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

geometryofpre-eruptivemagmastorageiscritical.Awidespread,butnotuniversal,787

observationaboutdome-buildingvolcanoesisthatmagmaissuppliedfromstorage788

regionsintheshallowcrust(Table5andreferencestherein),whichhasstimulated789

modelsoferuptiveactivitymodulatedbyshallowmagmachambers(Gourgaudet790

al.,1989;Murphyetal.,2000;Moraetal.,2002;Humphreysetal.,2008;Robergeet791

al.,2009;Larsenetal.,2010;Samaniegoetal.,2011;Shcherbakovetal.,2011;792

Coombsetal.,2013;Turneretal.,2013).Thereisalsoevidence,however,fordeeper793

levelsofmagmastorage,includingmid-tolowercrustalearthquakesassociated794

withvolcanism(McNutt,2005;Poweretal.,2013),deepsourcesofdeformation795

(PritchardandSimons,2002;Elsworthetal.,2008),anddeepsourcesofgas(Troll796

etal.,2013;Hautmannetal.,2014;Christopheretal.2015).Petrologicaland797

geochemicaldatahelptoquantifytheimportanceofdeepigneousprocesses798

(Hildreth,2004;Trolletal.,2013;Edmondsetal.,2014),includingmineral799

assemblagesthatrecordmultiplecrystallisationdepths(Matthewsetal.,1994;800

Marteletal.,1998;Scottetal.,2012;CashmanandBlundy,2013;Turneretal.,801

2013)andgeochronologyevidenceforlongcrustalresidencetimes(Volpeand802

Hammond,1991;Zellmeretal.,2003b;CooperandReid,2008;Dossetoetal.,2008;803

Claiborneetal.,2010).Finally,tomographicimagesofarcvolcanoessuggestmagma804

storageoccursatdifferentdepthsthroughoutthecrust(e.g.,Koulakovetal.,2013).805

806

Hereweplacegeochemicalandgeophysicalevidencefortranscrustalmagmatic807

systemsinthecontextofourcategorisationoftemporalvariationsinthehistorical808

recordsoflavadome-buildingvolcanoes.Specifically,weaddressthequestionofthe809

Page 38: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

extenttowhichobservedregimesareconsistentwithnon-linearprocesses810

associatedwithashallowmagmachamber,orwhethertheyrequireinvolvementof811

verticallyextensivecrustalprocesses.Importantly,ouraimisnottoattributethe812

behaviourofanindividualvolcanooreruptiveeventtoeitherparadigm,butinstead813

toinvestigatetheextenttowhichdifferenteruptiveregimesmayreflect814

fundamentallydifferentsubsurfaceconditions,atleastwithregardtotheextentand815

connectivityofindividualmagmalenses.Weconcludethatwhilststorageofmagma816

intheuppercrustexertsanimportantcontrolonwhenandwhateruptiveactivity817

occurs,overhistoricaltimescalesdifferentpatternsofvolcanismcanbebetter818

ascribedtoaconceptualmodelbasedoncomplexbehavioursofverticallyextensive819

magmastorageregions.820

821

5.1.Shallowchamberparadigm822

Acommonmodelforeruptiveactivityatdome-buildingvolcanoesisashallowmelt-823

dominatedmagmachamberthatisreplenishedfromdepthandperiodically824

dischargesmagma(Fig.7).Inthisparadigm,intrusionofmaficmagmafromdepthis825

assumedtotriggertheeruptionofshallowmagmabodies(Gourgaudetal.,1989;826

Murphyetal.,2000;Moraetal.,2002;Humphreysetal.,2008;Robergeetal.,2009;827

Larsenetal.,2010;Samaniegoetal.,2011;Shcherbakovetal.,2011;Coombsetal.,828

2013;Turneretal.,2013).Theconceptofmafictriggersderivesprimarilyfrom829

near-ubiquitousevidenceformagmamixing(Table2).Intrudingmaficmagmaalso830

providesanexplanationforobservationsofexcessSO2(thatis,emissionofSO2in831

excessofamountsdissolvedintheeruptedmagma;Andresetal.,1991;Wallace,832

Page 39: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

2003;Shinohara,2008;Christopheretal.,2010;WallaceandEdmonds,2011),as833

SO2ismuchmoresolubleinmaficmagmasthatinsilicicmagmas(Wallace,2005).834

Petrologicevidenceforshallowmagmastoragecomesfromsaturationpressures835

recordedinmeltinclusions,aswellasphaseassemblagesconsistentwithstorage836

pressures≤200MPa(e.g.,MooreandCarmichael,1998;BlundyandCashman,837

2001;Couchetal.,2001).838

839

Themodulatingeffectofshallowmagmaticsystemsoneruptiveprocessesis840

supportedbygeophysicaldata.Deflationduringeruptiveperiodscanberelatedto841

magmadischargefromupper-ormid-crustalmagmachambers(Nishietal.,1999;842

Elsworthetal.,2008;Cervellietal.,2010;Mattiolietal.,2010;Grapenthinetal.,843

2013a).Furthermore,mostseismicityassociatedwithunrestanderuptiveactivityis844

restrictedtodepthsof<10kilometres(RatdomopurboandPoupinet,2000;Moran845

etal.,2008;PowerandLalla,2010;Thelanetal.,2010;Petrosinoetal.,2011).846

Seismicityiscommonlyinferredtorecordthestresseffectsoftheformationof847

magmatransportpathways(Kilburn,2003;Scandoneetal.,2007)andriseof848

magmaticfluidsfromshallowmagmachambers(Neuberg,2000;McNutt,2005;849

ChouetandMatoza,2013).Shallowseismicityisalsoassociatedwithshallow850

magmaintrusion(Moranetal.,2011),pressurisationandpre-eruptiveinflation.851

852

Patternsofrechargehavebeenusedtoexplainpulsatoryandcyclicbehaviour853

(MelnikandSparks,1999;Barminetal.,2002).Indeeditislikelythatvolcanismis854

modulated,jointly,bydifferentpartsofthevolcanicsystem,includingshallow855

Page 40: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

magmachambers.However,becausethemechanismforreplenishmentinthe856

shallowchamberparadigmispoorlyunderstood,itcannotcompletelyexplainthe857

hierarchyofcommonbehavioursandsimilarpatternsandstylesoferuptiveactivity.858

859

5.2.Transcrustaldestabilisation860

Ashallowmagmachambercanbeenvisagedastheuppermanifestationofamuch861

largertranscrustalsystem(Marsh,2000;Cañón-TapiaandWalker,2004),which862

mayextendthroughoutthecrustandevenintothemantle(Fig.8).Sucha863

conceptualmodelimpliesthatmechanismsforunrestanderuptionmayinvolve864

morecomplexprocessesthandiscreteintrusions.Specifically,magmaticsystems865

canbeviewedascomprisingextensivebodiesofcrystal-richmagma(mush)with866

interspersedlensesofmeltandmagmaticfluidsthatareformedbyrepeated867

intrusionofmaficmeltsfromthemantle(Solanoetal.,2012;Connollyand868

Podladchikov,2013;Christopheretal.2015).Fromthisperspective,meltandfluid869

layersaresusceptibletodestabilisation,andreorganisationoftheselayersmay870

provideatriggerforeruptiveactivityinmafic(Tarasewiczetal.,2012;Neaveetal.,871

2013)andlargecalderasystems(CashmanandGiordano,2014).Similarly,872

transcrustalprocessescanexplainapparentlyanomalousactivityinsomedome-873

buildingvolcanoes(Christopheretal.,2015),whilstalsoprovidingasourceofdeep874

magmaandmagmaticfluids.Keyistheconceptofthemeta-stabilityoftranscrustal875

magmaticsystemsanddestabilisationeventsthatinvolveeitherallorpartofthe876

melt-bearingregion(Fig.8a,b),withorwithoutcontemporaneouseruptiveactivity877

(Fig.8c).878

Page 41: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

879

Temporalandspatialvariationsinthesusceptibilityofverticallyextensive880

magmaticsystemstodestabilisationcanalsoexplainlong-termpatternsoferuptive881

activityatdome-buildingvolcanoes.Firstwereturntothequestionofmafic882

eruptiontriggers,particularlyasevidencedbyvaryingintensitiesof883

magmamixingintheeruptiveproducts.Mixinghaslongbeenusedtodescribethe884

homogenisationoftwomelts,asmanifestedinlineartwo-elementgeochemical885

diagrams.Mixing,however,isincreasinglyviewedasinvolvingcomplexinteractions886

betweenmeltsandcrystalmushes(Blundyetal.,2008;Humphreysetal.,2009;887

CashmanandBlundy,2013).Fromthisperspective,theroleofmixingasaprimary888

mechanismoferuptiontriggeringislessclear.Infact,mixingmaybeaneffect,as889

muchasacause,oferuptiveactivity,particularlyiftriggeredinitiallyby890

destabilisationofthemagmaticsystem.Destabilisationcouldoccurfromthebottom891

up,withdeepleveldisturbancespropagatingintotheuppercrust(e.g.,Christopher892

etal.,2015).Alternativelydestabilisationcouldpropagatedownward,drivenbya893

downwardpropagatingdecompressionwavecausedbyearlyeruptiveactivity(e.g.,894

Tarasewiczetal.,2012).Ineithercase,destabilisationofacomplexmagmatic895

systemcanforceinteractionamongmeltlensesandinterveningcrystalmushzones896

(e.g.,CashmanandGiordano,2014).897

898

Anotherimportantaspectofdome-buildingvolcanoesinhydrousarcsystemrelates899

totheevolutionandmigrationofvolatiles.Fractionationofdeeplysourcedarc900

basalts(Annenetal.,2006)cancausesulphursaturationofmoreevolvedfelsic901

Page 42: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

meltsinthemiddleandlowercrust(Wallace,2005).Thisoccursbecause,although902

sulphurishighlysolubleinbasalticmelts,itismuchlesssolubleinfelsicmelts903

(Lesneetal.,2011).Asaconsequence,SO2degassingcanstartdeepwithinthecrust,904

wellbelowlevelsofshallowmagmastorage.ThesameistrueofCO2,wherestrong905

pressure-dependencemaypromoteCO2exsolutionthroughoutthecrust(e.g.,906

Blundyetal.,2010).Differentvolatileelementscanthereforebefractionatedand907

storedindependentlyatmultiplecrustallevelsduringinter-eruptiveperiodsof908

repose.Separationofvolatilesfromtheirparentalmagmasduringtheseperiodsof909

reposecanexplainboththeexcessSO2degassinganddecouplingofgasandmagma910

fluxesobservedindome-buildingvolcanoesinthepersistentregime.Ascentof911

magmaticfluidsfromdepthcanalsoexplaindecouplingofshallowseismicityfrom912

eruptiveactivity(Moran,1994;Romanetal.,2004;Gironaetal.,2014;Hautmannet913

al.,2014,Christopheretal.,2015).Similarly,deep(20to40km),longperiod914

earthquakesinarcscanbeexplainedbyexsolutionandmigrationofinsolublegases915

likeCO2(McNutt,2005;Nicholsetal.,2011).Finally,independentriseofmagmatic916

fluidsmaycausethesurfacedeformationobservedatpassivelydegassingvolcanoes917

(Gironaetal.,2014),andcanhelptoexplainvaryingtimescalesoffar-fieldinflation918

atdome-buildingvolcanoes.919

920

5.3.Persistentdome-buildingbehaviour921

Thepersistentregimecombinespulsatoryphasesofeffusiveeruptionand922

homogeneousmagmacompositionswithsustained,anddecoupled,degassing923

(section3.1.1),andistypicalof‘open’systembehaviour(e.g.,Chaussardetal.,924

Page 43: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

2013).Theseobservationsappeartorequireadynamicallyconnected,through-925

goingmagmaticsystemtosustainapersistentregime,especiallyoverlong926

timescales.Largeexplosiveeruptionsinthesesystemsinvolvemagmathatismore927

mafic(deeper,morevolatile-rich)thanthatproducedduringeffusiveactivity.928

Transitionsbetweenpersistentshallow-seatedeffusivebehaviourandintermittent929

deep-seatedexplosionsthussuggestthatmagmaticsystemsatthesevolcanoesare930

verticallyextensiveand(transiently)dynamicallyconnected,atleasttomid-crustal931

levels(Fig.8a).Moregenerally,rapidtransportofdeep,maficandvolatile-rich932

magmasiscommonlyinvokedforparoxysmaleventsatopen-systembasaltic933

volcanoes(e.g.,Métrichetal.,2010;Sidesetal.,2014).934

935

Eruptiveactivityatasecondgroupofvolcanoesinthepersistentregime(section936

3.1.2)reactivatedwithmajorexplosiveeventsthatfollowedlongperiodsofinter-937

eruptiverepose.Inthesevolcanoes,theexplosivelyeruptedmagmaismoreevolved938

thansubsequentextrusivelavas,whichshowgradualdecreasesinSiO2withtime.939

Progressivevariationinthecompositionoferuptedproductscanbeexplainedbya940

verticallyextensiveandconnectedmagmaticsystem,althoughamoretraditional941

zonedmagmachambermodel(e.g.,Scottetal.,2013)cannotbeexcludedonthe942

basisofthesecharacteristicsalone.Mostimportantfromavolcanichazards943

perspective,however,arethecompositionalhomogeneityandpaucityofmafic944

enclaves(Scottetal.,2013;Turneretal.,2013)thatcharacteriseactivity.This945

suggeststhatthesepersistentlyactivevolcanoeshaverelativelystablemagmatic946

Page 44: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

systemsthatarelesssusceptibletolarge-scaledestabilisationthanduringinter-947

eruptiveperiodsofrepose.948

949

Theobservationthatexplosiveeruptionsmaybeeithermoreorlessevolvedthan950

magmaeruptedeffusivelyfromthesamesystemprovidesinsightintoexplosive951

eruptiontriggers.‘Top-down’destabilisationisobservedincasesofedificecollapse952

followingeitheralongdurationinastateofinter-eruptiverepose(Bezymianny,953

Santiaguito,MountSt.Helens)orsustainedeffusiveactivityanddomegrowth954

(Lascar).Top-downtriggeringtapsevolvedmagmafromhighinthecrust.‘Bottom-955

up’destabilisation,incontrast,explainsexplosiveeventsthatappeartobetriggered956

bytherapidriseofdeep-derivedmagmas(Merapi,Colima,Shiveluch).957

958

Persistenteruptiveregimesrequirethatthemagmaticsystemis‘open’,orvertically959

connected.Undertheseconditions,eruptiveactivitymaybeneitherstrictly‘top960

down’nor‘bottomup’butinsteadreflecttheintrinsicinstabilityofcomplex961

magmaticsystems.Onemechanismofinstabilityrelatestothebehaviourofcrystal-962

meltsuspensions,whichsegregatetoformseparatelayersofmeltand/orvolatiles.963

Wesuggestthatthese(unstable)layerscanreorganiserapidlytotriggerabrupt964

changesineruptionpatterns.Layerdestabilisationmayoccurbecauseofexternal965

triggers,suchasregionaltectonicsoreruptionsofneighbouringvolcanoes(e.g.,966

Walteretal.,2007;DelaCruz-Reynaetal.,2010;Biggsetal.,2016).Alternatively,967

passivevolatilereleaseduringastateofreposemaycausethepressuredistribution968

sufficientlytocausereplenishmentofmagmafromdepth(Gironaetal.,2015).Such969

Page 45: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

mechanismsarenotrestrictedtodome-buildingvolcanoes,andhavebeenobserved970

atbasalticarcsystemsthatareverticallywell-connectedandexhibitcomplex971

feedbackmechanismsformagmadischarge(e.g.,Stromboli;Ripepeetal.,2015).972

973

5.4.Episodicdome-buildingbehaviour974

Dome-buildingvolcanoesthatshowepisodicbehaviourarecharacterisedby975

diminishingeruptionrateswithtimeandcorrelationsbetweenlavaextrusionand976

volatileemission.Bothcharacteristicsareindicativeofclosedsystembehaviour,977

whichlikelyreflectstheformationandascentofdiscretemagmabatches.Inmanyof978

thesevolcanoes,however,thereisevidencefortheinteractionofdifferentmelts979

(Table3),whicharguesagainstdiscretemeltbatches.Infact,volcanoesinan980

episodicregimethateruptfrequently(e.g.,Augustine,Redoubt)eruptawiderange981

ofcompositionsduringanyindividualeruption.Thissuggeststhatsmallmelt982

batchesevolveindependentlyandinteractonlyduringeruptions(e.g.,Romanetal.,983

2006).Morehomogeneousmagmacompositionsproducedbyvolcanoesthaterupt984

lessfrequently(e.g.,MontPelée,Unzen),incontrast,suggeststhatmagmamixing985

mayoccurpriorto,aswellasduring,eruptiveepisodes(Browneetal.,2006).986

987

Amagmaticmodelbasedontheshallowchamberparadigmsuggeststhatifmagmas988

aregeneratedataconstantrateatdepth,thenthedurationavolcanoremainsina989

stateofreposewillcontrolthevolumeofmagmacomponents(volatiles,melt,and990

crystalmush)thatcanaccumulate;thistime-dependentvolumemay,inturn,991

influencethedurationavolcanoremainsinaneruptivestate.Incontrast,underthe992

Page 46: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

transcrustalparadigm,variationsinfrequencyanddurationoferuptiveepisodes993

couldreflectpatternsofdestabilisationwithinthedeepersystem.Stabilitymaybe994

controlledbyphysicalproperties,suchasthesizeofmagmaticsystems,or995

fundamentalparameterssuchasthefluxofmagmaatdepth(Caricchietal.,2014).996

997

5.5.Large-magnitudeexplosiveeruptions998

Thedynamicnatureoferuptiveactivityatdome-buildingvolcanoessuggeststhat999

pastbehaviourislikelytoinfluencestabilityofthemagmaticsystem,andfuture1000

patternsoferuptiveactivity.Forexample,edificecollapseassociatedwithlarge1001

magnitudeexplosionsisknowntoreducestoragepressures(Pinel&Albino,2013)1002

andenabletheeruptionofdenser,moremaficmagmas,whichwouldotherwisestall1003

atshallowdepths(Pinel&Jaupart,2000;2005).Indeed,volcanoesinourdataset1004

wheretheonsetoferuptiveactivityinvolvededificecollapsemaywellhaveshown1005

differentlong-termpatternsoferuptiveactivityiftheonsetoferuptiveactivityhad1006

beeneffusive.Conversely,whereedificecollapseoccurredafteralongdurationina1007

stateofrepose(~millenia),persistentactivityappearstolastformanydecades(e.g.1008

Bezymianny,Santiaguito;Fig.2).Removaloftheedificeduringtheselarge1009

magnitudeeventsthusappearstodestabilisethesystem(Pinel&Albino,2013).1010

1011

AdifferentsituationoccurredatMountSt.Helensin1980,wheretheinitial1012

explosiveeruptionwasrelatedtoedificecollapse,butthepriorreposeintervalwas1013

onlyslightlymorethanacentury.Inthiscase,persistentbehaviourcontinuedfor1014

onlysixyears.Itisnoteworthythatthevolcanoreactivatedbetween2004-20081015

Page 47: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

(Fig.2)aftertwointerveningepisodesofinferredrechargefromdeeperinthe1016

system(Moran,1994;Musumecietal.,2002).Thelimitedpersistentactivityof1017

MountSt.HelenscomparedtoBezymiannyandSantiaguitomaybesimplyaresult1018

ofshorterinter-eruptiverepose,whichcouldlimittheaccumulationoferuptible1019

magma.Alternatively,itmayberelatedtothedaciticcompositionofmagmaat1020

MountSt.Helens,comparedtotheandesiticmagmasofBezymiannyand1021

Santiaguito.1022

1023

6.Conceptualisingvolcanismintime1024

1025

Recordsoferuptiveactivityinformourunderstandingofmagmaticprocessesand1026

arecommonlythebasisforforecastsoferuptiveactivity.Traditionally,volcanismis1027

conceptualisedasaseriesofdiscreteeruptions(Siebertetal.,2010)thatare1028

characterisedbymeasureablepropertiessuchasmagnitude,duration,intensityand1029

eruptivestyle(Mercalli,1907;NewhallandSelf,1982;Pyle,2000).Theintervals1030

betweeneruptionsareusuallyreferredtoasreposeperiodsandatthesetimesthe1031

volcanoiscommonlyinterpretedtobeinadormantstate.Thisontologyofvolcanic1032

activityasapointprocessstemsfromgeologicalrecordsthatcompriseapunctuated1033

seriesofdistinctdeposits,andhistoricalrecordsthatarebiasedtowardsoccasional1034

memorable,andgenerallyexplosive,individualevents(SzakácsandCañón-Tapia,1035

2010).1036

1037

Page 48: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

Adifferentperspectiveemergesfromouranalysisoflong-termeruptivebehaviours1038

atfifteenwell-studieddome-buildingvolcanoes.Insteadofidentifyingdiscrete1039

eruptions,wesuggestthatperiodsoferuptiveactivitybeclassifiedinthecontextof1040

theeruptivehistory.Forexample,attwodifferentvolcanoes,periodsofdome1041

extrusionmayhavesimilarlavavolumes,ratesofextrusion,andduration,butcan1042

occurinverydifferentsituations(e.g.,asperiodofepisodicactivityoraphaseof1043

lavaextrusioninapersistentregime).Includingtimeasakeyparameterhighlights1044

theshortcomingsofviewingvolcanoesasinonlyeitheran“eruptive”or“non-1045

eruptive”state.Critically,thisontologyofvolcanicactivityshouldinfluence1046

interpretationofbothvolcanicdataandinferredmagmaticprocesses.1047

1048

Theevidencefordifferentstatesofreposeprovidedbyourcasestudiessuggests1049

thatlavadome-buildingvolcanoescanbecharacterisedbythree,ratherthantwo,1050

states:(i)astateofdormancywithoutabnormalgeochemicalorgeophysicalsignals1051

(inter-eruptive);(ii)anactivestateinwhichmagmaiserupted;and(iii)astateof1052

unrestwhereperturbationsinthesystematdepthcausemarkedandmeasurable1053

departuresfromabackground(dormant)state(intra-eruptive).Historicalrecords1054

allowvolcanoclassificationbyone,twoorallthreeofthesestates.Overgeological1055

timescales,weassumeallvolcanoesexperienceperiodsofdormancyorinter-1056

eruptivereposeperiods.Intra-eruptivereposeperiodscanbemoredifficultto1057

identify,andpresentthegreatestchallengesforvolcanichazardassessment.1058

1059

Page 49: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

Inter-eruptivereposeoccursatvolcanoesthatshowepisodicbehaviour,meaning1060

thattheyconformmorecloselytothetraditionalinterpretationofvolcanismasa1061

sequenceofdiscreteeruptions.Thedurationofinter-eruptivereposecanvaryfrom1062

manyyears(e.g.,Augustine,Redoubt)tocenturies(e.g.,MountUnzen),butinall1063

casesthevolcanoisdeemedtobeinadormantstatebetweeneruptiveperiods.1064

Volcanoesclassifiedasdormantcanmoveintotheunreststatewithincreasesin1065

geophysical(e.g.,seismicity,anddeformation)andfumarolicactivity.Forexample,1066

priorto1992,SoufrièreHillsVolcanohadbeeninadormantstateforover3501067

years,buthadmovedintoastateofunrestin1896-97,1933-37and1966-67,as1068

evidencedbyelevatedfumarolicactivityandintermittentseismiccrises(Shepherd1069

etal.,1971;Odbertetal.,2014b).Similarseismiccriseswerealsoobserved1070

throughoutthe20thcenturyatMtUnzenpriortoeruptiononsetin1991(Japan1071

MeteorologicalAgency,1996).1072

1073

Intra-eruptivereposeisobservedatvolcanoesinapersistentregimewhere1074

intervalsbetweenpulsesoferuptiveactivitycanlastformonthstoyearsoreven1075

decades,especiallyfollowingmajorexplosiveevents(e.g.,Bezymianny,Colima,1076

Lascar,Santiaguito).Atthesevolcanoes,however,periodsofreposeare1077

characterisedbysustaineddegassing,intermittentseismicityandashventing,allof1078

whichindicatemagmaticunrestthatisnotconsistentwithdormancy.Importantly,1079

unrestundertheseconditionsdoesnotimplyimminenteruptiveactivity,as1080

observedintheexampleofKudryavywhereapersistentstateofhightemperature1081

Page 50: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

fumarolicdegassingandphreaticactivityisinferredsinceitslastmagmaticeruption1082

in1883(Fischeretal.,1998;Korzhinskyetal.,2002).1083

1084

Bycharacterisingexchangeabletraitsofvolcanicbehaviour,wedemonstratethat1085

thecasehistoriesinthisreviewchallengethedepictionofvolcanismasapoint1086

processintime,andraisequestionsaboutwhatitmeanstosaythatavolcanois1087

dormantandhowtoviewperiodsofnon-eruptivevolcanicunrest.Importantly,1088

severalofourcasestudyvolcanoesshowunrestsignalsthataregreatlyelevated1089

aftereruptiveactivity,incomparisontounrestsignalswhenavolcanoisinaperiod1090

oflongerdormancy(e.g.,Merapi,Lascar,Bezymianny).Forthisreason,wesuggest1091

thatthestateofunrestbeusedtoclassifyvolcanicactivity,withthecaveatthatitis1092

importanttorecognisewhenthedistinctionbetweenunrestanddormancyis1093

determinedbyachangeindetectionthresholdsandnotbytruechangesinthestate1094

ofamagmaticsystem.1095

1096

Theconceptualisationoferuptionsasdiscreteeventshasbeen,andstillis,1097

fundamentaltovolcanoclassification,volcanodatabases,dataselectionin1098

probabilisticforecastsandtheinterpretationofmagmaticprocesses.TheGVP1099

database(Siebertetal.,2010)istheonlycomprehensiveglobalcompilationof1100

activevolcanoes,andiswidelyusedtocharacterisevolcanism,inform1101

interpretationsofvolcanicprocessesandprovideevidenceforeruptiveforecasts.1102

Thecatalogueispredicated,however,onviewingvolcanismasanalternationoftwo1103

differentevents,reposeperiodanderuption.TheGVPfurtherdefinesreposeasany1104

Page 51: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

cessationineruptiveactivitythatexceeds3months.Thisdefinitionworkswellfor1105

someofourcasestudies(e.g.,Augustine,Redoubt),butisproblematicforvolcanoes1106

showingprolongedintermittentactivity(e.g.,Bezymianny,MountSt.Helens,1107

Merapi,SoufrièreHillsVolcano).Morecritically,theGVPdatabasestructuredoes1108

notrecordinformationthatisusefulforbothcharacterisingandinterpretingstates1109

oferuptionandunrest.1110

1111

7.Informationexchangeabilityinforecastingvolcanicactivity1112

1113

Inrecentdecadesprobabilisticmethodshavebecomeestablishedastheprincipal1114

approachtoforecastingvolcanicactivity.Importantly,theycancaptureboth1115

aleatoryandepistemicuncertaintiesandincludemultiplestrandsofevidenceand1116

differentkindsofdata(e.g.,NewhallandHoblitt,2002;Aspinalletal.,2003;1117

Marzocchietal.,2004;SparksandAspinall,2004;Nerietal.,2008;Sobradeloetal.,1118

2013;AspinallandWoo,2014;Hincksetal.,2014;SobradeloandMartí,2015).1119

Probabilisticapproaches,however,havehighlightedspecificchallengesassociated1120

witheruptiveforecastsatdome-buildingvolcanoes.Themostacuteproblemrelates1121

toalackofdata,especiallyatvolcanoeswithinfrequenteruptiveactivityinepisodic1122

regimes.Theissueofsparsedata,however,canalsomanifestatvolcanoesina1123

persistentregime,whenforecastingalongperiodofdormancy.Consequently,an1124

importantquestioninvolcanologyiswhetherobservationsfromanumberofwell-1125

studiedvolcanoescanbeusedtoreduceuncertaintyassociatedwithalackofdataat1126

anindividualvolcano.Thisisespeciallypertinentwiththedevelopmentofglobal1127

Page 52: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

databases(e.g.,SmithsonianGVP;LaMEVE;WovoDAT)andglobalapproachesto1128

datacollection(e.g.,Biggsetal.,2014;Carnetal.,2016).1129

1130

Importantly,theprincipleofusingobservationsfrommultiplevolcanoesrequires1131

anassumptionofinformationordataexchangeability(e.g.,Bebbington,2014;1132

Sheldrake,2014).FromaBayesianperspective,exchangeabilityrequiresa1133

(subjective)levelofsimilarity,butimportantly,doesnotrequirethebehavioursof1134

theobjectstobeidentical(Bernado,1996;Gelmanetal.,2013).Hence,similar1135

behavioursandtraitsbasedonphenomenologicalobservationsidentifiedinthis1136

reviewcouldbeabasisforassumptionsofexchangeability.1137

1138

7.1.Approachestoassumingexchangeability1139

Oneapproachtotheproblemoflimiteddataisthroughexpertjudgement(Aspinall1140

andCooke,2013),whereexperiencedscientistsassesskeyparametersand1141

likelihoodsoffutureeventsbasedupontheirownknowledge,experienceand1142

judgements.Inprinciple,theexpertsshouldalsoestimatetheuncertaintyoftheir1143

likelihoodassessment(Aspinall,2010).Issuesofexchangeabledataarisewhen1144

comparisonswithothervolcanoesenterintothesediscussions,atleastinformally.1145

Inmanyvolcanoemergencies,forexample,suchassessmentsareadhocand1146

executedlargelythroughunstructureddiscussionwithinavolcanoobservatory1147

team.Theseeffortscanbeimprovedbyformalisedmethodsforpoolingexpert1148

judgements,asillustratedbyhazardassessmentsforSoufrièreHillsVolcano(Wadge1149

andAspinall,2014).Importantly,theexperienceofanexpertinpreviousvolcanic1150

Page 53: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

criseswilllikelyinfluencetheirviews.Thisillustratesamajordisadvantageinthe1151

informalapproach,wherethebasisforassessmentmaybeanecdotalandbiased1152

towardspreviouslywitnesseddiscreteevents.Moreover,eventhemostexperienced1153

volcanologistisunlikelytohavewitnessedmorethanahandfuloferuptiveevents,1154

sothesecomparisonswarrantamorerigorousapproachtoidentifyingappropriate1155

analoguevolcanoesandtowhatextentcomparisonsarejustified.1156

1157

Broadclassificationsforvolcano‘type’basedoncharacteristicssuchasmorphology1158

(Rittmann,1962;Siebertetal.,2010)oreruptivestyle(e.g.,Hawaiian,Strombolian,1159

Peléean,VulcanianandPlinian;Bullard,1962)provideanaturalframeworkfor1160

assumptionsofexchangeability.However,astheanalysisinthisreviewhas1161

outlined,thehistoricalrecordsofdome-buildingvolcanoesareonlypartially1162

exchangeable.Thus,whilstexchangeabilitymaybeassumedbasedonvolcano‘type’1163

(e.g.,lava-domebuilding),thelimitationsandsourcesofaleatoryuncertaintyof1164

probabilisticforecaststhatarisefromthisassumptionmustbeaddressedby1165

identifyingboththeunderlyingconceptualmodelandthecommonprocessthat1166

togetherformthebasisforexchangeability.Itisequallyimportanttorecognisekey1167

differenceswhenapplyingexchangeability.Thisisevidentinacladisticsanalysisof1168

Japanesearcvolcanoes(Honeetal.,2007)thatidentifiedthreebroadvolcanotypes1169

groupedbycomposition,eruptiveproductsandmorphologicalcharacteristics.1170

Differencesarealsoidentifiedinastudyofmagnitude-frequencyrelationsthat1171

treatsseparatelyclosed-andopen-ventstratovolcanoes(Whelleyetal.,2015).1172

1173

Page 54: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

7.2.Volcanicunrest1174

Theconceptofexchangeabilitycanbeusedtointerpretvolcanicunrest,whichisan1175

almostaubiquitousprecursortovolcanicactivity.Signsofunrestaretypically1176

monitoredusinggeodetic,geophysicalandgeochemicalsurveys(e.g.,Swansonetal.,1177

1983;Sparks,2003;Sandrietal.,2004;Jaquetetal.,2006;ChouetandMatoza,1178

2013).Critically,thesemonitoringdataareusedtoinfermagmaticprocesses(e.g.,1179

Voight,1988;Kilburn,2003;Smithetal.,2007;Lavalléeetal.,2008),anapproach1180

thatrequiresimplicit,ifnotexplicit,comparisonswithunrestfrompreviousactivity.1181

1182

Thesimplestapproachtocomparingvolcanicunrestamongvolcanoesistoconsider1183

allsignalsofunrestasweaklyexchangeable,withvariationsintheduration,pattern1184

andoccurrencetheresultofaleatoryuncertainty,reflectingthenaturalvariabilityof1185

volcanicsystems.Astrongerassumptionofexchangeabilitycomparessignsof1186

unrestbetweenvolcanoesofaspecifictype(e.g.,Phillipsonetal.,2013),withthe1187

underlyingassumptionthatdifferenttypesofvolcanoesshouldbehaveinsimilar1188

ways.Ourworkshows,however,thatevenparticularvolcano‘types’canvary1189

greatlyinbehaviour.Inparticular,wehaveshownthatintra-reposeunrestofa1190

volcanoinapersistentregimemayreflectaverydifferentstateofactivitythan1191

inter-reposeunrestintheepisodicregime,whichmayheraldtheonsetofexplosive1192

activity.Inthisway,ourcategorizationoferuptiveactivityatdome-building1193

volcanoesasepisodic(closed-system)orpersistent(open-system)couldhelpto1194

furtherrefineclassificationsofunrest,particularlywithregardtotheproblemof1195

distinguishingbetweennon-eruptiveunrestandunrestrelatedtoreawakeningofa1196

Page 55: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

volcanoinrepose(e.g.,Phillipsonetal.,2013).Furthermore,byattemptingto1197

understanddifferencesinepisodicandpersistentbehaviourintermsofmagmatic1198

processes,thisprovidesanopportunitytointerpretpatternsofvolcanicunrestin1199

termsofthesemagmaticprocesses,ratherthanpurelytheoutcomeoferuptive1200

activity(e.g.,Hincksetal.,2014).1201

1202

8.Conclusions1203

1204

Wehaveshownthatdome-buildingvolcanoesshowtwofundamentallydifferent1205

patternsoferuptivebehavioursthatwetermepisodicandpersistent.Episodic1206

behaviourischaracterisedbydiscreteepisodescomprisinganexplosiveonset1207

followedbyeffusionanddomeformation.Inthisregime,explosivelyerupted1208

magmamayhavemoreevolvedcompositionsthanlater-eruptedlava.Excessgas1209

emissionsmaybeobservedduringexplosiveactivity,butSO2fluxesarecorrelated1210

withtheeruptionoflavaanddiminishtonegligiblelevelsfollowingtheendofeach1211

eruptiveepisode.Persistentbehaviour,incontrast,ischaracterisedbyfrequent1212

(~yearly)phasesoferuptiveactivityandsustainedgasfluxesduringperiodsof1213

intra-eruptiverepose.Eruptedmaterialisoftencompositionallyhomogeneous,1214

exceptduringexplosive(paroxysmal)eruptions,whichofteninvolvedeep,more1215

primitive,magmacompositions.Alternatively,atvolcanoesthathavenoterupted1216

foralongtime(~millenia),largeexplosivePlinianeruptionscanbefollowedby1217

persistentbehaviourwherelavacompositionsbecomelessevolvedwithtime.1218

Importantly,allvolcanicactivityisepisodicifviewedoversufficientlylongtimes.1219

Page 56: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

1220

Weexplainthevarietyofepisodicandpersistentbehaviourthroughthelensof1221

verticallyextensivemagmaticsystems,wheretheextentofconnectivitywithinthe1222

systemdictatesepisodicorpersistentbehaviour(e.g.,Christopheretal.,2015).1223

Importantly,open-systembehaviourinvolvestransient,dynamicallytriggered1224

magmatransferfromdepthbutcontinuousgastransferthroughthesystem.1225

Episodicbehaviour,incontrast,recordseruptionandgaslossfromamagmabatch1226

thatisquicklyisolatedfromdeeper(mid-crustal)reservoir.Aninterestingquestion1227

relatestotheimportanceofvolatilesandvolatile-richmeltsindeterminingthe1228

stabilityofamagmaticsystem,particularlytransitionsbetweenepisodicand1229

persistentregimes,anderuptiontriggeringinepisodicregimes(e.g.,Borisovaetal.,1230

2014;Christopheratal.,2015;Gironaetal.,2015).1231

1232

Fromahazardforecastingperspective,our15casestudiesshowthatdome-building1233

volcanicactivitycannotbecharacterisedbyapointprocess.Thisobservation1234

highlightsakeyontologicalissueforvolcanology.Discreteeruptiveeventscan1235

appearsimilarinnatureinbothanepisodicandpersistentregime,butare1236

associatedwithdifferentstatesofreposeandlong-termbehaviour.Therefore,when1237

analysingvolcanicdata,andinterpretingmagmaticprocesses,itisimportantto1238

characteriseeruptiveactivityinthecontextofthelonger-termbehaviourofa1239

volcanicsystem.Wehaveshownthatgasdata,inparticular,mayhelpto1240

discriminatebetweeninter-andintra-eruptiverepose.Alsoimportantarepatterns1241

Page 57: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

ofseismicity,whichprovideinformationonthedepthandvolumeofmagmastorage1242

(e.g.,WhiteandMcCausland,2016).1243

1244

Alsoimportantforhazardforecastingisdevelopingamethodtodeterminehow1245

monitoringdatafromwell-observedvolcanoescanbeusedtoinform1246

interpretationsofmonitoringdatafromperiodsofunrestatless-studiedvolcanoes.1247

Suchanapproachisfeasible,butrequiresanunderstandingoftheextenttowhich1248

themonitoringdatacanbeconsideredexchangeable.Wesuggestthat1249

exchangeabilitycanbeformalisedbyassessingtemporalpatternsinvolcanic1250

phenomena(especiallyrelativepatternsoferuption,degassingandrepose),evenif1251

thedatasetshavedifferentspatialandtemporaldata.Fromatheoreticalstandpoint,1252

linkingassumptionsofexchangeability(e.g.,episodicvs.persistent)toconceptual1253

modelsofvolcanicsystems(e.g.,closedvs.open)providesamechanismtointerpret1254

monitoringdatausingaframeworkofmagmaticprocesses.1255

1256

Importantly,theapproachemployedinthisreviewcannotbeusedtoidentify1257

uniquemagmaticprocessesatindividualvolcanoes,andinthatsensecannotreplace1258

‘in-depth’studiesofindividualvolcanicsystems.However,itprovidesaconceptual1259

frameworkforinterpretingcommonprocessesatdome-buildingvolcanoes.Froma1260

broaderperspective,ourworkdemonstratesthevalueofconstructingahierarchical1261

frameworkforvolcanicactivitybasedonexchangeablebehaviours.Wesuggestthat1262

thisapproachcouldbeextendedtovolcanoeswithothertypesofcharacteristic1263

activity,andthusprovidesaholisticapproachtoanalysingglobalvolcanicrecords.1264

Page 58: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

1265

Acknowledgements1266

ManythankstoProf.JontyRougierintheSchoolofMathematics,Universityof1267Bristol,whoprovidedadviceonthedefinitionandapplicationofexchangeability,1268bothinageneralcontextandmorespecificallyatvolcanoes.12691270Wealsothanktwoanonymousreviewerswhoserevisionsandsuggestionshelped1271usmoreclearlyexplainthemethodologythathasbeenused,andclarifyspecific1272aspectsofthediscussion.12731274TESandRSJSweresupportedbyaEuropeanResearchGrant,Voldies.WPAwas1275supportedinpartbytheNaturalEnvironmentResearchCouncilthroughthe1276ConsortiumonRiskintheEnvironment:Diagnostics,Integration,Benchmarking,1277LearningandElicitation(CREDIBLE;NE/J017450/1).KVCwassupportedbythe1278AXAResearchFundandaRoyalSocietyWolfsonMeritAward.127912801281References:1282

1283

Almeev,R.R.,Holtz,F.,Ariskin,A.A.,Kimura,J-I.,2013.Storageconditionsof1284BezymiannyVolcanoparentalmagmas:resultsofphaseequilibriaexperimentsat1285100and700MPa.ContributionstoMineralogyandPetrology166,1389-1414.1286

Anderson,S.,Fink,J.,1990.TheDevelopmentandDistributionofSurfaceTexturesat1287theMountSt.HelensDome.In:Fink,J.H.(Ed.),LavaFlowsandDomes.Vol.2of1288IAVCEIProceedingsinVolcanology.SpringerBerlinHeidelberg,pp.25-46.1289Andreastuti,S.,Alloway,B.,Smith,I.,2000.Adetailedtephrostratigraphic1290frameworkatMerapiVolcano,CentralJava,Indonesia:implicationsforeruption1291predictionsandhazardassessment.JournalofVolcanologyandGeothermal1292Research100,51-67.1293

Andres,R.,Rose,W.,Stoiber,R.,Williams,S.,Matías,O.,Morales,R.,1993.A1294summaryofsulfurdioxideemissionratemeasurementsfromGuatemalan1295volcanoes.BulletinofVolcanology55,379-388.1296

Andres,R.,Rose,W.,Kyle,P.,DeSilva,S.,Francis,P.,Gardeweg,M.,Roa,H.M.,1991.1297ExcessivesulfurdioxideemissionsfromChileanvolcanoes.JournalofVolcanology1298andGeothermalResearch46,323-329.1299

Annen,C.,Blundy,J.D.,Sparks,R.S.J,2006.TheGenesisofIntermediateandSilicic1300MagmasinDeepCrustalHotZones.JournalofPetrology47,505-539.1301

Arellano,S.,Hall,M.,Samaniego,P.,LePennec,J-L.,Ruiz,A.,Molina,I.,Yepes,H.,13022008.DegassingpatternsofTungurahuavolcano(Ecuador)duringthe1999-20061303

Page 59: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

eruptiveperiod,inferredfromremotespectroscopicmeasurementsofSO21304emissions.JournalofVolcanologyandGeothermalResearch176,151-162.1305Asch,G.,Wylegalla,K.,Hellweg,M.,Seidl,D.,Rademacher,H.,1996.Observationsof1306rapid-fireeventtremoratLascarvolcano,Chile.AnnalsofGeophysics39.1307Aspinall,W.,2010.Aroutetomoretractableexpertadvice.Nature463,294-295.1308

Aspinall,W.,Woo,G.,2014.Santoriniunrest2011-2012:animmediateBayesian1309beliefnetworkanalysisoferuptionscenarioprobabilitiesforurgentdecision1310supportunderuncertainty.JournalofAppliedVolcanology3.1311

Aspinall,W.P.,Cooke,R.M.,2013.Expertelicitationandjudgement.In:Riskand1312UncertaintyAssessmentforNaturalHazards.CambridgeUniversityPress,Ch.4,pp.131364-99.1314

Aspinall,W.,Woo,G.,Voight,B.,Baxter,P.,2003.Evidence-basedvolcanology:1315applicationtoeruptioncrises.JournalofVolcanologyandGeothermalResearch128,1316273-285.1317

Athanasopoulos,P.,1997.Theoriginandascenthistoryofthe1996daciticdome,1318VolcánPopocatépetl,Mexico.B.Sc.thesis,UniversityofManitoba,Winnipeg.1319

Atlas,Z.D.,Dixon,J.E.,Sen,G.,Finny,M.,Martin-DelPozzo,A.L.,2006.Melt1320inclusionsfromVolcánPopocatépetlandVolcándeColima,Mexico:Meltevolution1321duetovapor-saturatedcrystallizationduringascent.JournalofVolcanologyand1322GeothermalResearch153,221-240.1323Auker,M.,Sparks,R.S.,Siebert,L.,Crosweller,H.S.,Ewert,J.,2013.Astatistical1324analysisoftheglobalhistoricalvolcanicfatalitiesrecord.JournalofApplied1325Volcanology2.1326Barclay,J.,Herd,R.A.,Edwards,B.R.,Christopher,T.,Kiddle,E.J.,Plail,M.,Donovan,1327A.,2010.Caughtintheact:Implicationsfortheincreasingabundanceofmafic1328enclavesduringtherecenteruptiveepisodesoftheSoufrièreHillsVolcano,1329Montserrat.GeophysicalResearchLetters37.1330

Barclay,J.,Rutherford,M.J.,Carroll,M.R.,Murphy,M.D.,Devine,J.D.,Gardner,J.,1331Sparks,R.S.J.,1998.Experimentalphaseequilibriaconstraintsonpre-eruptive1332storageconditionsoftheSoufrièreHillsmagma.GeophysicalResearchLetters25,13333437-3440.1334Barker,S.E.,Malone,S.D.,1991.MagmaticsystemgeometryatMountSt.Helens1335modeledfromthestressfieldassociatedwithposteruptiveearthquakes.Journalof1336GeophysicalResearch:SolidEarth96,11883-11894.1337

Barmin,A.,Melnik,O.,Sparks,R.,2002.Periodicbehaviorinlavadomeeruptions.1338EarthandPlanetaryScienceLetters199,173-184.1339Beauducel,F.,Cornet,F.H.,1999.Collectionandthree-dimensionalmodelingofGPS1340andtiltdataatMerapivolcano,Java.JournalofGeophysicalResearch:SolidEarth1341104,725-736.1342

Page 60: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

Bebbington,M.,2014.Long-termforecastingofvolcanicexplosivity.Geophysical1343JournalInternational197,1500-1515.1344Belousov,A.,1996.Depositsofthe30March1956directedblastatBezymianny1345volcano,Kamchatka,Russia.BulletinofVolcanology57,649-662.1346Belousov,A.B.,1995.TheShiveluchvolcaniceruptionof12November1964-1347explosiveeruptionprovokedbyfailureoftheedifice.JournalofVolcanologyand1348GeothermalResearch66,357-365.1349Belousov,A.,Voight,B.,Belousova,M.,2007.Directedblastsandblast-generated1350pyroclasticdensitycurrents:acomparisonoftheBezymianny1956,MountSt1351Helens1980,andSoufrièreHills,Montserrat1997eruptionsanddeposits.Bulletin1352ofVolcanology69,701-740.1353

Belousov,A.,Voight,B.,Belousova,M.,Petukhin,A.,2002.Pyroclasticsurgesand1354flowsfromthe8-10May1997explosiveeruptionofBezymiannyvolcano,1355Kamchatka,Russia.BulletinofVolcanology64,455-471.1356

Bernardo,J.M.(1996).Theconceptofexchangeabilityanditsapplications.FarEast1357JournalofMathematicalSciences4,111-121.1358

Best,N.,Ashby,D.,Dunstan,F.,Foreman,D.,McIntosh,N.,2013.ABayesianapproach1359tocomplexclinicaldiagnoses:acase-studyinchildabuse.JournaloftheRoyal1360StatisticalSociety:SeriesA(StatisticsinSociety)176,53-96.1361

Biggs,J.,Robertson,E.,Cashman,K.,2016,Thelateralextentofvolcanicinteractions1362duringunrestanderuption.NatureGeoscience9,308-311.1363

Biggs,J.,Ebmeier,S.K.,Aspinall,W.P.,Lu,Z.,Pritchard,M.E.,Sparks,R.S.J.,Mather,1364T.A.,2014.Globallinkbetweendeformationandvolcaniceruptionquantifiedby1365satelliteimagery.NatureCommunications5.1366

Blundy,J.,Cashman,K.,Rust,A.,Witham,F.,2010.AcaseforCO2-richarcmagmas.1367EarthandPlanetaryScienceLetters290,289-301.1368

Blundy,J.,Cashman,K.V.,Berlo,K.,2008.EvolvingMagmaStorageConditions1369BeneathMountSt.HelensInferredfromChemicalVariationsinMeltInclusionsfrom1370the1980-1986andCurrent(2004-2006)Eruptions.In:Sherrod,D.R.,Scott,W.E.,1371Stauffer,P.H.(Eds.),AVolcanoRekindled:TheRenewedEruptionofMountSt.1372Helens,2004-2006.U.S.GeologicalSurveyProfessionalPaper1750,Ch.33,pp.755-1373790.1374

Blundy,J.,Cashman,K.,2001.Ascent-drivencrystallisationofdacitemagmasat1375MountStHelens,1980-1986.ContributionstoMineralogyandPetrology140,631-1376650.1377

Bogoyavlenskaya,G.,Braitseva,O.,Melekestsev,I.,Kiriyanov,V.,Miller,C.D.,1985.1378Catastrophiceruptionsofthedirected-blasttypeatMountSt.Helens,Bezymianny1379andShiveluchvolcanoes.JournalofGeodynamics3,189-218.1380Borgia,A.,Aubert,M.,Merle,O.,vanWykdeVries,B.,2010.Whatisavolcano?1381GeologicalSocietyofAmericaSpecialPapers470,1-9.1382

Page 61: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

Borisova,AY.,Toutain,J-P,Dubessy,J.,Pallister,J.,Zwick,A.,Salvi,S.,2014.H2O-CO2-1383Sfluidtriggeringthe1991MountPinatuboclimacticeruption(Philippines).Bulletin1384ofVolcanology76.1385

Bullard,F.M.,1962.VolcanoesinHistory,inTheory,inEruption.Austin,University1386ofTexasPress.1387

Brennan,C.,2007.Thefarsideofthesky.DankatPublishing.1388

Browne,B.L.,Eichelberger,J.C.,Patino,L.C.,Vogel,T.A.,Dehn,J.,Uto,K.,Hoshizumi,1389H.,2006.GenerationofPorphyriticandEquigranularMaficEnclavesDuringMagma1390RechargeEventsatUnzenVolcano,Japan.JournalofPetrology47,301-328.1391

Budi-Santoso,A.,Lesage,P.,Dwiyono,S.,Sumarti,S.,Subandriyo,Surono,Jousset,P.,1392Metaxian,J-P.,2013.Analysisoftheseismicactivityassociatedwiththe20101393eruptionofMerapiVolcano,Java.JournalofVolcanologyandGeothermalResearch1394261,153-170.1395

Bull,K.F.,Buurman,H.,2013.Anoverviewofthe2009eruptionofRedoubtVolcano,1396Alaska.JournalofVolcanologyandGeothermalResearch259,2-15.1397Cabral-Cano,E.,Correa-Mora,F.,Meertens,C.,2008.DeformationofPopocatépetl1398volcanousingGPS:Regionalgeodynamiccontextandconstraintsonitsmagma1399chamber.JournalofVolcanologyandGeothermalResearch170,24-34.1400Calder,E.S.,Lavallée,Y.,Kendrick,J.E.,Bernstein,M.,2015.Chapter18-LavaDome1401Eruptions.In:Sigurdsson,H.etal.,(Eds.),TheEncyclopediaofVolcanoes,2nd1402Edition.AcademicPress,pp.343-362.1403

Cañón-Tapia,E.,Walker,G.P.L.,2004.Globalaspectsofvolcanism:theperspectives1404of“platetectonics”and“volcanicsystems”.Earth-ScienceReviews66,163-182.1405Caricchi,L.,Annen,C.,Blundy,J.,Simpson,G.,Pinel,V.,2014.Frequencyand1406magnitudeofvolcaniceruptionscontrolledbymagmainjectionandbuoyancy.1407NatureGeoscience7,126-130.1408

Carn,S.A.,Clarisse,L.,Prata,A.J.,2016.Multi-decadalsatellitemeasurementsof1409globalvolcanicdegassing.JournalofVolcanologyandGeothermalResearch311,99-1410134.1411

Carn,S.A.,Krotkov,N.A.,Yang,K.,Krueger,A.J.,2013.Measuringglobalvolcanic1412degassingwiththeOzoneMonitoringInstrument(OMI).GeologicalSociety,London,1413SpecialPublications380.1414

Carn,S.A.,Prata,F.J.,2010.Satellite-basedconstraintsonexplosiveSO2release1415fromSoufrièreHillsVolcano,Montserrat.GeophysicalResearchLetters37(19).1416

Casadevall,T.,Doukas,M.,Neal,C.,McGimsey,R.,Gardner,C.,1994.Emissionratesof1417sulfurdioxideandcarbondioxidefromRedoubtVolcano,Alaska,duringthe1989-14181990eruptions.JournalofVolcanologyandGeothermalResearch62,519-530.1419

Casadevall,T.J.,Rose,W.I.,Fuller,W.H.,Hunt,W.H.,Hart,M.A.,Moyers,J.L.,1420Woods,D.C.,Chuan,R.L.,Friend,J.P.,1984.Sulfurdioxideandparticlesinquiescent1421

Page 62: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

volcanicplumesfromPoás,Arenal,andColimaVolcanos,CostaRicaandMexico.1422JournalofGeophysicalResearch:Atmospheres89,9633-9641.1423Casertano,L.,1963.Catalogueoftheactivevolcanoesoftheworld;PartXV,Chilean1424continent.IAVCEI55pp.1425Cashman,K.,Biggs,J.,2014.Commonprocessesatuniquevolcanoes-a1426volcanologicalconundrum.FrontiersinEarthScience2.1427

Cashman,K.V.,Giordano,G.,2014.Calderasandmagmareservoirs.Journalof1428VolcanologyandGeothermalResearch288,28-45.1429

Cashman,K.,Blundy,J.,2013.Petrologicalcannibalism:thechemicalandtextural1430consequencesofincrementalmagmabodygrowth.ContributionstoMineralogyand1431Petrology166,703-729.1432

Cashman,K.V.,Sparks,R.S.J.,2013.Howvolcanoeswork:A25yearperspective.1433GeologicalSocietyofAmericaBulletin.1434

Cashman,K.V.,Thornber,C.R.,Pallister,J.S.,2008.FromDometoDust:Shallow1435CrystallizationandFragmentationofConduitMagmaDuringthe2004-2006Dome1436ExtrusionofMountSt.Helens,Washington.In:Sherrod,D.R.,Scott,W.E.,Stauffer,P.1437H.(Eds.),AVolcanoRekindled:TheRenewedEruptionofMountSt.Helens,2004-14382006.U.S.GeologicalSurveyProfessionalPaper1750,Ch.19,pp.387-414.1439Cashman,K.,McConnell,S.,2005.Multiplelevelsofmagmastorageduringthe19801440summereruptionsofMountSt.Helens,WA.BulletinofVolcanology68,57-75.1441Cashman,K.V.,1992.GroundmasscrystallizationofMountSt.Helensdacite,1980-14421986:atoolforinterpretingshallowmagmaticprocesses.Contributionsto1443MineralogyandPetrology109,431-449.1444Cervelli,P.F.,Fournier,T.J.,Freymueller,J.T.,Power,J.A.,Lisowski,M.,Pauk,B.A.,14452010.GeodeticConstraintsonMagmaMovementandWithdrawlDuringthe20061446EruptionofAugustineVolcano.In:Power,J.A.,Coombs,M.L.,Freymueller,J.T.1447(Eds.),The2006EruptionofAugustineVolcano,Alaska.U.S.GeologicalSurvey1448ProfessionalPaper1769,Ch.17,pp.427-452.1449Chaussard,E.,Amelung,F.,Aoki,Y.,2013.Characterizationofopenandclosed1450volcanicsystemsinIndonesiaandMexicousingInSARtimeseries.Journalof1451GeophysicalResearch:SolidEarth118,3957-3969.1452Chouet,B.A.,1996.Long-periodvolcanoseismicity:itssourceanduseineruption1453forecasting.Nature380,309-316.1454Chouet,B.A.,Matoza,R.S.,2013.Amulti-decadalviewofseismicmethodsfor1455detectingprecursorsofmagmamovementanderuption.JournalofVolcanologyand1456GeothermalResearch252,108-175.1457Christopher,T.,Blundy,J.,Cashman,K.,Cole,P.,Edmonds,M.,Smith,P.,R.S.J,S.,1458Stinton,A.,2015.Crustal-scaledegassingduetomagmasystemdestabilisationand1459magma-gasdecouplingatSoufrièreHillsVolcano,Montserrat.Geochemistry,1460Geophysics,Geosystems16,2797-2811.1461

Page 63: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

Christopher,T.E.,Humphreys,M.C.S.,Barclay,J.,Genareau,K.,DeAngelis,S.M.H.,1462Plail,M.,Donovan,A.,2014.Petrologicalandgeochemicalvariationduringthe1463SoufrièreHillseruption,1995to2010.GeologicalSociety,London,Memoirs39,317-1464342.1465Christopher,T.,Edmonds,M.,Humphreys,M.,Herd,R.,2010.Volcanicgasemissions1466fromSoufrièreHillsVolcano,Montserrat1995-2009,withimplicationsformafic1467magmasupplyanddegassing.GeophysicalResearchLetters37.1468Claiborne,L.L.,Miller,C.F.,Flanagan,D.M.,Clynne,M.A.,Wooden,J.L.,2010.Zircon1469revealsprotractedmagmastorageandrecyclingbeneathMountSt.Helens.Geology147038,1011-1014.1471Cole,P.D.,Smith,P.,Komorowski,J-C.,Alfano,F.,Bonadonna,C.,Stinton,A.,1472Christopher,T.,Odbert,H.M.,Loughlin,S.,2014.Ashventingoccurringbothpriorto1473andduringlavaextrusionatSoufrièreHillsVolcano,Montserrat,from2005to2010.1474GeologicalSociety,London,Memoirs39,71-92.1475

Coles,S.G.,Sparks,R.S.J.,2006.Extremevaluemethodsformodellinghistorical1476seriesoflargevolcanicmagnitudes.In:Mader,H.M.,Coles,S.G.,Connor,C.B.,1477Connor,L.J.(Eds.),StatisticsinVolcanology.Vol.1ofSpecialPublicationsofIAVCEI.1478GeologicalSociety,London,pp.47-56.1479Connolly,J.,Podladchikov,Y.,2013.AHydromechanicalModelforLowerCrustal1480FluidFlow.In:MetasomatismandtheChemicalTransformationofRock.Lecture1481NotesinEarthSystemSciences.SpringerBerlinHeidelberg,pp.599-658.1482

Coombs,M.L.,Sisson,T.W.,Bleick,H.A.,Henton,S.M.,Nye,C.J.,Payne,A.L.,1483Cameron,C.E.,Larsen,J.F.,Wallace,K.L.,Bull,K.F.,2013.Andesitesofthe20091484eruptionofRedoubtVolcano,Alaska.JournalofVolcanologyandGeothermal1485Research259,349-372.1486Coombs,M.L.,Bull,K.F.,Vallance,J.W.,Schneider,D.J.,Thoms,E.E.,Wessels,R.L.,1487McGimsey,R.G.,2010.Timing,Distribution,andVolumeofProximalProductsofthe14882006EruptionofAugustineVolcano.In:Power,J.A.,Coombs,M.L.,Freymueller,J.T.1489(Eds.),The2006EruptionofAugustineVolcano,Alaska.U.S.GeologicalSurvey1490ProfessionalPaper1769,Ch.8,pp.145-186.1491

Cooper,K.M.,Reid,M.R.,2008.Uranium-seriesCrystalAges.ReviewsinMineralogy1492andGeochemistry69,479-544.1493

Costa,F.,Andreastuti,S.,deMaisonneuve,C.B.,Pallister,J.S.,2013.Petrological1494insightsintothestorageconditionsandmagmaticprocessesthatyieldedthe1495centennial2010Merapiexplosiveeruption.JournalofVolcanologyandGeothermal1496Research261,209-235.1497Couch,S.,Sparks,R.,Carroll,M.,2001.Mineraldisequilibriuminlavasexplainedby1498convectiveself-mixinginopenmagmachambers.Nature411,1037-1039.1499Crummy,J.M.,Savov,I.P.,Navarro-Ochoa,C.,Morgan,D.J.,Wilson,M.,2014.High-K1500MaficPlinianEruptionsofVolcándeColima,Mexico.JournalofPetrology55,2155-15012192.1502

Page 64: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

DelaCruz-Reyna,S.,Tárraga,M.,Ortiz,R.,Martínez-Bringas,A.,2010.Tectonic1503earthquakestriggeringvolcanicseismicityanderuptions.Casestudiesat1504TungurahuaandPopocatépetlvolcanoes.JournalofVolcanologyandGeothermal1505Research193,37-48.1506Delgado-Granados,H.,González,L.C.,Sánchez,N.P.,2001.Sulfurdioxideemissions1507fromPopocatépetlvolcano(Mexico):casestudyofahigh-emissionrate,passively1508degassingeruptingvolcano.JournalofVolcanologyandGeothermalResearch108,1509107-120.1510

Deligne,N.I.,Coles,S.G.,Sparks,R.S.J.,2010.Recurrenceratesoflargeexplosive1511volcaniceruptions.JournalofGeophysicalResearch:SolidEarth115.1512Deruelle,B.,1985.LeVolcanLascar:GeologieetPetrologie.IVCongresoGeologico1513Chileno,Agosto1985.1514DeShon,H.R.,Thurber,C.H.,Rowe,C.,2007.High-precisionearthquakelocationand1515threedimensionalPwavevelocitydeterminationatRedoubtVolcano,Alaska.1516JournalofGeophysicalResearch:SolidEarth112.1517Diefenbach,A.K.,Bull,K.F.,Wessels,R.L.,McGimsey,R.G.,2013.Photogrammetric1518monitoringoflavadomegrowthduringthe2009eruptionofRedoubtVolcano.1519JournalofVolcanologyandGeothermalResearch259,308-316.1520Dirksen,O.,Humphreys,M.,Pletchov,P.,Melnik,O.,Demyanchuk,Y.,Sparks,R.,1521Mahony,S.,2006.The2001-2004dome-formingeruptionofShiveluchvolcano,1522Kamchatka:Observation,petrologicalinvestigationandnumericalmodelling.1523JournalofVolcanologyandGeothermalResearch155,201-226.1524

Divoux,T.,Bertin,E.,Vidal,V.,Géminar,J.C.,2009.Intermittentoutgassingthrougha1525non-Newtonianfluid.PhysicalReviewE79.1526

Dosseto,A.,Turner,S.P.,Sandiford,M.,Davidson,J.,2008.Uranium-seriesisotope1527andthermalconstraintsontherateanddepthofsilicicmagmagenesis.Geological1528Society,London,SpecialPublications304,169-181.1529

Doukas,M.,1995.Acompilationofsulfurdioxideandcarbondioxideemission-rate1530datafromCookInletvolcanoes(Redoubt,Spurr,Iliamna,andAugustine),Alaska1531duringtheperiodfrom1990to1994.Tech.rep.,U.S.GeologicalSurveyOpen-File1532ReportOF95-0055,15pp.1533Ebmeier,S.,Biggs,J.,Mather,T.,Elliott,J.,Wadge,G.,Amelung,F.,2012.Measuring1534largetopographicchangewithInSAR:Lavathicknesses,extrusionrateand1535subsidencerateatSantiaguitovolcano,Guatemala.EarthandPlanetaryScience1536Letters335-336,216-225.1537

Edmonds,M.,Humphreys,M.C.S.,Hauri,E.H.,Herd,R.A.,Wadge,G.,Rawson,H.,1538Ledden,R.,Plail,M.,Barclay,J.,Aiuppa,A.,Christopher,T.E.,Giudice,G.,Guida,R.,15392014.Chapter16:Pre-eruptivevapouranditsroleincontrollingeruptionstyleand1540longevityatSoufrièreHillsVolcano.GeologicalSociety,London,Memoirs39,291-1541315.1542

Page 65: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

Edmonds,M.,Aiuppa,A.,Humphreys,M.,Moretti,R.,Giudice,G.,Martin,R.S.,Herd,1543R.A.,Christopher,T.,2010.Excessvolatilessuppliedbyminglingofmaficmagmaat1544anandesitearcvolcano.Geochemistry,Geophysics,Geosystems11.1545

Edmonds,M.,Herd,R.,Galle,B.,Oppenheimer,C.,2003.Automated,hightime-1546resolutionmeasurementsofSO2fluxatSoufrièreHillsVolcano,Montserrat.Bulletin1547ofVolcanology65,578-586.1548

Elsworth,D.,Mattioli,G.,Taron,J.,Voight,B.,Herd,R.,2008.ImplicationsofMagma1549TransferBetweenMultipleReservoirsonEruptionCycling.Science322,246-248.1550

Engberg,E.,2009.SO2EmissionsatVolcandeColima,2003-2007.Master’sThesis,1551MichiganTechnologicalUniversity.1552Fichaut,M.,Marcelot,G.,Clocchiatti,R.,1989a.MagmatologyofMt.Pelée1553(Martinique,F.W.I.).II:petrologyofgabbroicanddioriticcumulates.Journalof1554VolcanologyandGeothermalResearch38,171-187.1555

Fichaut,M.,Maury,R.,Traineau,H.,Westercamp,D.,Joron,J.,Gourgaud,A.,Coulon,1556C.,1989b.MagmatologyofMt.Pelée(Martinique,F.W.I.).III:Fractional1557crystallizationversusmagmamixing.JournalofVolcanologyandGeothermal1558Research38,189-213.1559

Fischer,T.P.,Giggenbach,W.F.,Sano,Y.,Williams,S.N.,1998.Fluxesandsourcesof1560volatilesdischargedfromKudryavy,asubductionzonevolcano,KurileIslands.Earth1561andPlanetaryScienceLetters160,81-96.1562Galle,B.,Oppenheimer,C.,Geyer,A.,McGonigle,A.J.,Edmonds,M.,Horrocks,L.,15632003.AminiaturisedultravioletspectrometerforremotesensingofSO2fluxes:a1564newtoolforvolcanosurveillance.JournalofVolcanologyandGeothermalResearch1565119,241-254.1566

Gardeweg,M.C.,Medina,E.,1994.Laerupcionsubplinianadel19-20deAbrilde15671993delVolcanLascar,NdeChile.Actas7thCongresoGeologicoChileno,Santiago,15681:299-304.1569

Gelman,A.,Carlin,J.B.,Stern,H.S.,Rubin,D.B.,2004.BayesianDataAnalysis.2nd1570Edition.Chapman&Hall/CRC,BocaRaton.1571

Gerlach,T.M.,McGee,K.A.,Doukas,M.P.,2008.UseofDigitalAerophotogrammetry1572toDetermineRatesofLavaDomeGrowth,MountSt.Helens,Washington,2004-15732005.In:Sherrod,D.R.,Scott,W.E.,Stauffer,P.H.(Eds.),AVolcanoRekindled:The1574RenewedEruptionofMountSt.Helens,2004-2006.U.S.GeologicalSurvey1575ProfessionalPaper1750,Ch.26,pp.543-572.1576

Gerlach,T.M.,McGee,K.A.,1994.Totalsulfurdioxideemissionsandpre-eruption1577vaporsaturatedmagmaatMountSt.Helens,1980-88.GeophysicalResearchLetters157821,2833-2836.1579

Gertisser,R.,Keller,J.,2003.TemporalvariationsinmagmacompositionatMerapi1580Volcano(CentralJava,Indonesia):magmaticcyclesduringthepast2000yearsof1581explosiveactivity.JournalofVolcanologyandGeothermalResearch123,1-23.1582

Page 66: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

Geschwind,C-H.,Rutherford,M.,1995.Crystallizationofmicrolitesduringmagma1583ascent:thefluidmechanicsof1980-1986eruptionsatMountStHelens.Bulletinof1584Volcanology57,356-370.1585

Giggenbach,W.,1996.ChemicalCompositionofVolcanicGases.In:Monitoringand1586MitigationofVolcanoHazards.SpringerBerlinHeidelberg,pp.221-256.1587

Girona,T.,Costa,F.,Schubert,G.,2015.Degassingduringquiescenceasatriggerof1588magmaascentandvolcaniceruptions.ScientificReports5.1589Girona,T.,Costa,F.,Newhall,C.,Taisne,B.,2014.Ondepressurizationofvolcanic1590magmareservoirsbypassivedegassing.JournalofGeophysicalResearch:Solid1591Earth119,8667-8687.1592Glicken,H.,1998.Rockslide-debrisavalancheofMay18,1980,MountSt.Helens1593volcano.Washington:BulletinoftheGeologicalSurveyofJapan49,55-106.1594Goff,F.,Janik,C.J.,Delgado,H.,Werner,C.,Counce,D.,Stimac,J.A.,Siebe,C.,Love,S.1595P.,Williams,S.N.,Fischer,T.,Johnson,L.,1998.Geochemicalsurveillanceof1596magmaticvolatilesatPopocatépetlvolcano,Mexico.GeologicalSocietyofAmerica1597Bulletin110,695-710.1598

González,M.B.,Ramírez,J.J.,Navarro,C.,2002.Summaryofthehistoricaleruptive1599activityofVolcánDeColima,Mexico1519-2000.JournalofVolcanologyand1600GeothermalResearch117,21-46.1601

Gorbach,N.,Portnyagin,M.,2011.Geologyandpetrologyofthelavacomplexof1602YoungShiveluchVolcano,Kamchatka.Petrology19,134-166.1603

Gorelchik,V.,Shirokov,V.,Firstov,P.,Chubarova,O.,1997.Shiveluchvolcano:1604seismicity,deepstructureandforecastingeruptions(Kamchatka).Journalof1605VolcanologyandGeothermalResearch78,121-137.1606

Gorshkov,G.,1959.GiganticeruptionofthevolcanoBezymianny.Bulletin1607Volcanologique20,77-109.1608

Gottsmann,J.,Odbert,H.,2014.Theeffectsofthermomechanicalheterogeneitiesin1609islandarccrustontime-dependentpreeruptivestressesandthefailureofan1610andesiticreservoir.JournalofGeophysicalResearch:SolidEarth119,4626-4639.1611

Gourgaud,A.,Fichaut,M.,Joron,J-L.,1989.MagmatologyofMt.Pelée(Martinique,1612F.W.I.).I:Magmamixingandtriggeringofthe1902and1929Peleannuéesardentes.1613JournalofVolcanologyandGeothermalResearch38,143-169.1614

Grapenthin,R.,Freymueller,J.T.,Kaufman,A.M.,2013a.Geodeticobservations1615duringthe2009eruptionofRedoubtVolcano,Alaska.JournalofVolcanologyand1616GeothermalResearch259,115-132.1617

Grapenthin,R.,Freymueller,J.T.,Serovetnikov,S.S.,2013b.Surfacedeformationof1618BezymiannyVolcano,Kamchatka,recordedbyGPS:theeruptionsfrom2005to16192010andlong-term,long-wavelengthsubsidence.JournalofVolcanologyand1620GeothermalResearch263,58-74.1621

Page 67: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

Grutter,M.,Basaldud,R.,Rivera,C.,Harig,R.,Junkerman,W.,Caetano,E.,Delgado-1622Granados,H.,2008.SO2emissionsfromPopocatépetlvolcano:emissionratesand1623plumeimagingusingopticalremotesensingtechniques.AtmosphericChemistryand1624Physics8,6655-6663.1625Hammer,J.,Cashman,K.,Voight,B.,2000.Magmaticprocessesrevealedbytextural1626andcompositionaltrendsinMerapidomelavas.JournalofVolcanologyand1627GeothermalResearch100,165-192.1628Harris,A.J.,Rose,W.I.,Flynn,L.P.,2003.Temporaltrendsinlavadomeextrusionat1629Santiaguito1922-2000.BulletinofVolcanology65,77-89.1630

Harris,G.W.,1994.Thepetrologyandpetrographyoflavafromthe1986eruption1631ofAugustinevolcano.Master’sThesis,Fairbanks,Alaska,131p.1632

Hautmann,S.,Witham,F.,Christopher,T.,Cole,P.,Linde,A.T.,Sacks,I.S.,Sparks,R.1633S.J.,2014.StrainfieldanalysisonMontserrat(W.I.)astoolforassessingpermeable1634flowpathsinthemagmaticsystemofSoufrièreHillsVolcano.Geochemistry,1635Geophysics,Geosystems15,676-690.1636Henney,L.,Rodríguez,L.,Watson,I.,2012.AcomparisonofSO2retrievaltechniques1637usingmini-UVspectrometersandASTERimageryatLascarvolcano,Chile.Bulletin1638ofVolcanology74,589-594.1639Hildreth,W.,2004.VolcanologicalperspectivesonLongValley,MammothMountain,1640andMonoCraters:severalcontiguousbutdiscretesystems.JournalofVolcanology1641andGeothermalResearch136,169-198.1642

Hincks,T.,Komorowski,J-C.,Sparks,S.,Aspinall,W.,2014.Retrospectiveanalysisof1643uncertaineruptionprecursorsatLaSoufrièrevolcano,Guadeloupe,1975-77:1644volcanichazardassessmentusingaBayesianBeliefNetworkapproach.Journalof1645AppliedVolcanology3,3.1646Hirabayashi,J.,Ohba,T.,Nogami,K.,Yoshida,M.,1995.DischargerateofSO2from1647Unzenvolcano,Kyushu,Japan.GeophysicalResearchLetters22,1709-1712.1648

Hobbs,P.V.,Radke,L.F.,Lyons,J.H.,Ferek,R.J.,Coffman,D.J.,Casadevall,T.J.,1991.1649Airbornemeasurementsofparticleandgasemissionsfromthe1990volcanic1650eruptionsofMountRedoubt.JournalofGeophysicalResearch:Atmospheres96,165118735-18752.1652Hone,D.,Mahony,S.,Sparks,R.,Martin,K.,2007.Cladisticanalysisappliedtothe1653classificationofvolcanoes.BulletinofVolcanology70,203-220.1654Humaida,H.,2008.SO2EmissionMeasurementByDoas(DifferentialOptical1655AbsorptionSpectroscopy)andCospec(CorrelationSpectroscopy)AtMerapi1656Volcano(Indoensia).IndonesianJournalofChemistry8,151-157.1657Humphreys,M.,Christopher,T.,Hards,V.,2009.Microlitetransferbydisaggregation1658ofmaficinclusionsfollowingmagmamixingatSoufrièreHillsvolcano,Montserrat.1659ContributionstoMineralogyandPetrology157,609-624.1660

Page 68: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

Humphreys,M.,Blundy,J.,Sparks,R.,2008.Shallow-leveldecompression1661crystallisationanddeepmagmasupplyatShiveluchVolcano.Contributionsto1662MineralogyandPetrology155,45-61.1663

Humphreys,M.C.S.,Blundy,J.D.,Sparks,R.S.J.,2006.MagmaEvolutionandOpen-1664SystemProcessesatShiveluchVolcano:InsightsfromPhenocrystZoning.Journalof1665Petrology47,2303-2334.1666

JapanMeteorologicalAgency,1996.Unzendake,NationalCatalogueoftheActive1667VolcanoesinJapan,secondEdition.JapanMeteorologicalAgency,inJapanese.1668

Jaquet,O.,Carniel,R.,Sparks,S.,Thompson,G.,Namar,R.,Cecca,M.D.,2006.DEVIN:1669AforecastingapproachusingstochasticmethodsappliedtotheSoufrièreHills1670Volcano.JournalofVolcanologyandGeothermalResearch153,97-111.1671

Jaupart,C.,Allègre,C.J.,1991.Gascontent,eruptionrateandinstabilitiesoferuption1672regimeinsilicicvolcanoes.EarthandPlanetaryScienceLetters102,413-429.1673

Jaupart,C.,Vergniolle,S.,1989.Thegenerationandcollapseofafoamlayeratthe1674roofofabasalticmagmachamber.JournalofFluidMechanics,203,347-380.1675Kienle,J.,Lalla,D.,Pearson,C.,Barrett,S.,1979.Searchforshallowmagma1676accumulationsatAugustinevolcano.Tech.rep.,GeophysicalInstitute,Universityof1677AlaskaFairbanks,finalreporttoU.S.DepartmentofEnergy,157pp.1678Kilburn,C.R.,2003.Multiscalefracturingasakeytoforecastingvolcaniceruptions.1679JournalofVolcanologyandGeothermalResearch125,271-289.1680Kohno,Y.,Matsushima,T.,Shimizu,H.,2008.PressuresourcesbeneathUnzen1681VolcanoinferredfromlevelingandGPSdata.JournalofVolcanologyandGeothermal1682Research175,100-109.1683Korzhinsky,M.A.,Botcharnikov,R.E.,Tkachenko,S.I.,Steinberg,G.S.,2002.Decade-1684longstudyofdegassingatKudriavyvolcano,Iturup,KurileIslands(1990-1999):Gas1685temperatureandcompositionvariations,andoccurrenceof1999phreaticeruption.1686Earth,PlanetsandSpace54,337-347.1687

Koulakov,I.,Gordeev,E.I.,Dobretsov,N.L.,Vernikovsky,V.A.,Senyukov,S.,1688Jakovlev,A.,Jaxybulatov,K.,2013.Rapidchangesinmagmastoragebeneaththe1689Klyuchevskoygroupofvolcanoesinferredfromtime-dependentseismic1690tomography.JournalofVolcanologyandGeothermalResearch263,75-91,Magma1691SystemResponsetoEdificeCollapse.1692

Lacroix,A.,1904.LaMontagnePeléeetseséruptions.MassonetCie,Paris.1693Larsen,J.F.,Nye,C.J.,Coombs,M.L.,Tilman,M.,Izbekov,P.,Cameron,C.,2010.1694PetrologyandGeochemistryofthe2006EruptionofAugustineVolcano.In:Power,J.1695A.,Coombs,M.L.,Freymueller,J.T.(Eds.),The2006EruptionofAugustineVolcano,1696Alaska.U.S.GeologicalSurveyProfessionalPaper1769,Ch.15,pp.335-382.1697

Lavallée,Y.,Meredith,P.G.,Dingwell,D.B.,Hess,K-U.,Wassermann,J.,Cordonnier,1698B.,Gerik,A.,Kruhl,J.H.,2008.Seismogeniclavasandexplosiveeruptionforecasting.1699Nature453,507-510.1700

Page 69: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

LePennec,J-L.,Ruiz,G.A.,Ramón,P.,Palacios,E.,Mothes,P.,Yepes,H.,2012.Impact1701oftephrafallsonAndeancommunities:Theinfluencesoferuptionsizeandweather1702conditionsduringthe1999-2001activityofTungurahuavolcano,Ecuador.Journal1703ofVolcanologyandGeothermalResearch217-218,91-103.1704Lee,C-W.,Lu,Z.,Jung,H-S.,Won,J-S.,Dzurisin,D.,2010.SurfaceDeformationof1705AugustineVolcano,1992-2005,fromMultiple-InterferogramProcessingUsinga1706RefinedSmallBaselineSubset(SBAS)InterferometricSyntheticApertureRadar1707(InSAR)Approach.In:Power,J.A.,Coombs,M.L.,Freymueller,J.T.(Eds.),The20061708EruptionofAugustineVolcano,Alaska.U.S.GeologicalSurveyProfessionalPaper17091769,Ch.18,pp.453-467.1710Lesne,P.,Kohn,S.C.,Blundy,J.,Witham,F.,Botcharnikov,R.E.,Behrens,H.,2011.1711ExperimentalSimulationofClosed-SystemDegassingintheSystemBasalt-H2O-CO2-1712S-Cl.JournalofPetrology52,1737-1762.1713

Lipman,P.W.,Mullineaux,D.R.,1981.The1980EruptionsofMountSt.Helens,1714Washington.U.S.1250.GeologicalSurveyProfessionalPaper.1715Lisowski,M.,Dzurisin,D.,Denlinger,R.P.,Iwatsubo,E.Y.,2008.AnalysisofGPS-1716MeasuredDeformationAssociatedwiththe2004-2006Dome-BuildingEruptionof1717MountSt.Helens,Washington.In:Sherrod,D.R.,Scott,W.E.,Stauffer,P.H.(Eds.),A1718VolcanoRekindled:TheRenewedEruptionofMountSt.Helens,2004-2006.U.S.1719GeologicalSurveyProfessionalPaper1750,Ch.15,pp.301-334.1720Lopez,T.,Ushakov,S.,Izbekov,P.,Tassi,F.,Cahill,C.,Neill,O.,Werner,C.,2013.1721Constraintsonmagmaprocesses,subsurfaceconditions,andtotalvolatilefluxat1722BezymiannyVolcanoin2007-2010fromdirectandremotevolcanicgas1723measurements.JournalofVolcanologyandGeothermalResearch263,92-107.1724

Luhr,J.F.,2002.Petrologyandgeochemistryofthe1991and1998-1999lavaflows1725fromVolcándeColima,México:implicationsfortheendofthecurrenteruptive1726cycle.JournalofVolcanologyandGeothermalResearch117,169-194.1727

Luhr,J.F.,Carmichael,I.S.,1990.Petrologicalmonitoringofcyclicaleruptiveactivity1728atVolcánColima,Mexico.JournalofVolcanologyandGeothermalResearch42,235-1729260.1730

Luhr,J.F.,Carmichael,I.S.,1980.TheColimaVolcanicComplex,Mexico.I.Post-1731CalderaAndesitesFromVolcánColima.ContributionstoMineralogyandPetrology173271,343-372.1733Mader,H.,Llewellin,E.,Mueller,S.,2013.Therheologyoftwo-phasemagmas:A1734reviewandanalysis.JournalofVolcanologyandGeothermalResearch257,135-1735158.1736Major,J.,Dzurisin,D.,Schilling,S.,Poland,M.,2009.Monitoringlava-domegrowth1737duringthe2004-2008MountSt.Helens,Washington,eruptionusingoblique1738terrestrialphotography.EarthandPlanetaryScienceLetters286,243-254.1739

Manga,M.,Castro,J.,Cashman,K.V.,Loewenberg,M.,1998.Rheologyofbubble-1740bearingmagmas.JournalofVolcanologyandGeothermalResearch87,15-28.1741

Page 70: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

Marsh,B.D.,2015.Chapter8-MagmaChambers.In:Sigurdsson,H.etal.,(Eds.),The1742EncyclopediaofVolcanoes,2ndEdition.AcademicPress,pp.343-362.1743Martel,C.,Ali,A.R.,Poussineau,S.,Gourgaud,A.,Pichavant,M.,2006.Basalt-1744inheritedmicrolitesinsilicicmagmas:EvidencefromMountPelée(Martínique,1745FrenchWestIndes).Geology34,905-908.1746

Martel,C.,Pichavant,M.,Bourdier,J-L.,Traineau,H.,Holtz,F.,Scaillet,B.,1998.1747Magmastorageconditionsandcontroloferuptionregimeinsilicicvolcanoes:1748experimentalevidencefromMt.Pelée.EarthandPlanetaryScienceLetters156,89-174999.1750

Marzocchi,W.,Sandri,L.,Gasparini,P.,Newhall,C.,Boschi,E.,2004.Quantifying1751probabilitiesofvolcanicevents:theexampleofvolcanichazardatVesuvius.Journal1752ofGeophysicalResearch109,3-20.1753Mastin,L.G.,1994.ExplosivetephraemissionsatMountSt.Helens,1989-1991:The1754violentescapeofmagmaticgasfollowingstorms?GeologicalSocietyofAmerica1755Bulletin106,175-185.1756Mather,T.A.,Tsanev,V.I.,Pyle,D.M.,McGonigle,A.J.S.,Oppenheimer,C.,Allen,A.1757G.,2004.CharacterizationandevolutionoftroposphericplumesfromLascarand1758Villarricavolcanoes,Chile.JournalofGeophysicalResearch:Atmospheres109.1759Matthews,S.J.,Sparks,R.S.J.,Gardeweg,M.C.,1999.ThePiedrasGrandes-Soncor1760Eruptions,LascarVolcano,Chile;EvolutionofaZonedMagmaChamberinthe1761CentralAndeanUpperCrust.JournalofPetrology40,1891-1919.1762

Matthews,S.J.,Gardeweg,M.C.,Sparks,R.S.J.,1997.The1984to1996cyclic1763activityofLascarVolcano,northernChile:cyclesofdomegrowth,domesubsidence,1764degassingandexplosiveeruptions.BulletinofVolcanology59,72-82.1765

Matthews,S.J.,Jones,A.P.,Gardeweg,M.C.,1994.LascarVolcano,NorthernChile;1766EvidenceforSteady-StateDisequilibrium.JournalofPetrology35,401-432.1767

Mattioli,G.S.,Herd,R.A.,Strutt,M.H.,Ryan,G.,Widiwijayanti,C.,Voight,B.,2010.1768LongtermsurfacedeformationofSoufrièreHillsVolcano,MontserratfromGPS1769geodesy:Inferencesfromsimpleelasticinversemodels.GeophysicalResearch1770Letters37.1771

McGee,K.A.,Doukas,M.P.,McGimsey,R.G.,Neal,C.A.,Wessels,R.L.,2010.Seismic1772PrecursorstoVolcanicExplosionsDuringthe2006EruptionofAugustineVolcano.1773In:Power,J.A.,Coombs,M.L.,Freymueller,J.T.(Eds.),The2006Eruptionof1774AugustineVolcano,Alaska.U.S.GeologicalSurveyProfessionalPaper1769,Ch.26,1775pp.609-627.1776

McNutt,S.R.,2005.VolcanicSeismology.AnnualReviewofEarthandPlanetary1777Sciences33,461-491.1778

Melnik,O.,Sparks,R.S.J.,1999.Nonlineardynamicsoflavadomeextrusion.Nature,177937-41.1780

Page 71: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

Menard,G.,Moune,S.,Vlastélic,I.,Aguilera,F.,Valade,S.,Bontemps,M.,González,R.,17812014.GasandaerosolemissionsfromLascarvolcano(NorthernChile):Insightsinto1782theoriginofgasesandtheirlinkswiththevolcanicactivity.JournalofVolcanology1783andGeothermalResearch287,51-67.1784Mercalli,G.,1907.VulcaniAttiviDellaTerra.Milano:UlricoHoefli.1785

Métrich,N.,Bertagnini,A.,DiMuro,A.,2010.ConditionsofMagmaStorage,1786DegassingandAscentatStromboli:NewInsightsintotheVolcanoPlumbingSystem1787withInferencesontheEruptiveDynamics.JournalofPetrology51,603-626.1788

Michaut,C.,Ricard,Y.,Bercovici,D.,Sparks,R.S.J.,2013.Eruptioncyclicityatsilicic1789volcanoespotentiallycausedbymagmaticgaswaves.NatureGeoscience6,856-860.1790Miller,A.D.,Stewart,R.C.,White,R.A.,Luckett,R.,Baptie,B.J.,Aspinall,W.P.,1791Latchman,J.L.,Lynch,L.L.,Voight,B.,1998.Seismicityassociatedwithdomegrowth1792andcollapseattheSoufriereHillsVolcano,Montserrat.GeophysicalResearch1793Letters25,3401-3404.1794

Miller,T.,Chouet,B.,1994.The1989-1990eruptionsofRedoubtVolcano:an1795introduction.JournalofVolcanologyandGeothermalResearch62,1-10.1796

Miller,T.P.,1994.Domegrowthanddestructionduringthe1989-1990eruptionof1797Redoubtvolcano.JournalofVolcanologyandGeothermalResearch62,197-212.1798Molina,I.,Kumagai,H.,LePennec,J.L.,Hall,M.,2005.Three-dimensionalP-wave1799velocitystructureofTungurahuaVolcano,Ecuador.JournalofVolcanologyand1800GeothermalResearch147,144-156.1801

Moore,G.,Carmichael,I.S.E.,1998.Thehydrousphaseequilibria(to3kbar)ofan1802andesiteandbasalticandesitefromwesternMexico:constraintsonwatercontent1803andconditionsofphenocrystgrowth.ContributionstoMineralogyandPetrology1804130,304-319.1805Mora,J.,Macías,J.,Saucedo,R.,Orlando,A.,Manetti,P.,Vaselli,O.,2002.Petrologyof1806the1998-2000productsofVolcándeColima,México.JournalofVolcanologyand1807GeothermalResearch117,195-212.1808Moran,S.C.,Newhall,C.,Roman,D.C.,2011.Failedmagmaticeruptions:late-stage1809cessationofmagmaascent.BulletinofVolcanology73,115-122.1810

Moran,S.C.,Malone,S.D.,Qamar,A.I.,Thelen,W.A.,Wright,A.K.,Caplan-Auerbach,1811J.,2008.SeismicityAssociatedwithRenewedDomeBuildingatMountSt.Helens,18122004-2005.In:Sherrod,D.R.,Scott,W.E.,Stauffer,P.H.(Eds.),AVolcanoRekindled:1813TheRenewedEruptionofMountSt.Helens,2004-2006.U.S.GeologicalSurvey1814ProfessionalPaper1750,Ch.2,pp.27-60.1815

Moran,S.C.,1994.SeismicityatMountSt.Helens,1987-1992:Evidencefor1816repressurizationofanactivemagmaticsystem.JournalofGeophysicalResearch:1817SolidEarth99,4341-4354.1818

Page 72: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

Musumeci,C.,Gresta,S.,Malone,S.D.,2002.MagmasystemrechargeofMountSt.1819Helensfrompreciserelativehypocenterlocationofmicroearthquakes.Journalof1820GeophysicalResearch,107.1821

Murphy,M.D.,Sparks,R.S.J.,Barclay,J.,Carroll,M.R.,Brewer,T.S.,2000.1822RemobilizationofAndesiteMagmabyIntrusionofMaficMagmaattheSoufrière1823HillsVolcano,Montserrat,WestIndies.JournalofPetrology41,21-42.1824

Nakada,S.,Motomura,Y.,1999.Petrologyofthe1991-1995eruptionatUnzen:1825effusionpulsationandgroundmasscrystallization.JournalofVolcanologyand1826GeothermalResearch89,173-196.1827

Nakada,S.,Shimizu,H.,Ohta,K.,1999.Overviewofthe1990-1995eruptionatUnzen1828Volcano.JournalofVolcanologyandGeothermalResearch89,1-22.1829

Nakamura,M.,1995.Continuousmixingofcrystalmushandreplenishedmagmain1830theongoingUnzeneruption.Geology23,807-810.1831

Neave,D.A.,Passmore,E.,Maclennan,J.,Fitton,G.,Thordarson,T.,2013.Crystal-1832MeltRelationshipsandtheRecordofDeepMixingandCrystallizationintheAD18331783LakiEruption,Iceland.JournalofPetrology.1834

Neri,A.,Aspinall,W.,Cioni,R.,Bertagnini,A.,Baxter,P.,Zuccaro,G.,Andronico,D.,1835Barsotti,S.,Cole,P.,EspostiOngaro,T.,Hincks,T.,Macedonio,G.,Papale,P.,Rosi,M.,1836Santacroce,R.,Woo,G.,2008.DevelopinganEventTreeforprobabilistichazardand1837riskassessmentatVesuvius.JournalofVolcanologyandGeothermalResearch178,1838397-415.1839

Neuberg,J.,2000.Characteristicsandcausesofshallowseismicityinandesite1840volcanoes.PhilosophicalTransactionsoftheRoyalSocietyofLondonA:1841Mathematical,PhysicalandEngineeringSciences358,1533-1546.1842

Newhall,C.G.,Hoblitt,R.P.,2002.Constructingeventtreesforvolcaniccrises.1843BulletinofVolcanology64,3-20.1844

Newhall,C.,Melson,W.,1983.Explosiveactivityassociatedwiththegrowthof1845volcanicdomes.JournalofVolcanologyandGeothermalResearch17,111-131.1846Newhall,C.G.,Self,S.,1982.Thevolcanicexplosivityindex(VEI)anestimateof1847explosivemagnitudeforhistoricalvolcanism.JournalofGeophysicalResearch:1848Oceans87,1231-1238.1849Nichols,M.,Malone,S.,Moran,S.,Thelen,W.,Vidale,J.,2011.Deeplong-period1850earthquakesbeneathWashingtonandOregonvolcanoes.JournalofVolcanologyand1851GeothermalResearch200,116-128.1852

Nishi,K.,Ono,H.,Mori,H.,1999.Globalpositioningsystemmeasurementsofground1853deformationcausedbymagmaintrusionandlavadischarge:the1990-19951854eruptionatUnzendakevolcano,Kyushu,Japan.JournalofVolcanologyand1855GeothermalResearch89,23-34.1856

Page 73: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

Núñez-Cornú,F.,Nava,F.,DelaCruz-Reyna,S.,Jiménez,Z.,Valencia,C.,García-1857Arthur,R.,1994.Seismicactivityrelatedtothe1991eruptionofColimaVolcano,1858Mexico.BulletinofVolcanology56,228-237.1859

Nye,C.J.,Swanson,S.E.,Avery,V.F.,Miller,T.P.,1994.Geochemistryofthe1989-18601990eruptionofRedoubtvolcano:PartI.Whole-rockmajorandtrace-element1861chemistry.JournalofVolcanologyandGeothermalResearch62,429-452.1862

Odbert,H.M.,Ryan,G.A.,Mattioli,G.S.,Hautmann,S.,Gottsmann,J.,Fournier,N.,1863Herd,R.A.,2014a.VolcanogeodesyattheSoufrièreHillsVolcano,Montserrat:a1864review.GeologicalSociety,London,Memoirs39,195-217.1865

Odbert,H.M.,Stewart,R.C.,Wadge,G.,2014b.CyclicphenomenaattheSoufrière1866HillsVolcano,Montserrat.GeologicalSociety,London,Memoirs39,41-60.1867

Ogburn,S.,Loughlin,S.,Calder,E.,2015.Theassociationoflavadomegrowthwith1868majorexplosiveactivity(VEI4):DomeHaz,aglobaldataset.BulletinofVolcanology186977.1870

Ogburn,S.E.,2013.DomeHaz:Dome-formingeruptionsdatabase.VHub.1871https://vhub.org/groups/domedatabase.1872

Oppenheimer,C.,Scaillet,B.,Martin,R.S.,2011.SulfurDegassingFromVolcanoes:1873SourceConditions,Surveillance,PlumeChemistryandEarthSystemImpacts.1874ReviewsinMineralogyandGeochemistry73,363-421.1875

Ozerov,A.,Ariskin,A.,Kyle,P.,Bogoyavlenskaya,G.,Karpenko,S.,1997.1876Petrologicalgeochemicalmodelforgeneticrelationshipsbetweenbasalticand1877andesiticmagmatismofKlyuchevskoyandBezymiannyvolcanoes,Kamchatka.1878Petrology5,550-569.1879Pallister,J.S.,Diefenbach,A.K.,Burton,W.C.,Muñoz,J.,Griswold,J.P.,Lara,L.E.,1880Lowenstern,J.B.,Valenzuela,C.E.,2013.TheChaiténrhyolitelavadome:Eruption1881sequence,lavadomevolumes,rapideffusionratesandsourceoftherhyolite1882magma.AndeanGeology40,277-294.1883

Pallister,J.S.,Thornber,C.R.,Cashman,K.V.,Clynne,M.A.,Lowers,H.A.,Mandeville,1884C.W.,Brownfield,I.K.,Meeker,G.P.,2008.Petrologyofthe2004-2006MountSt.1885HelensLavaDome-ImplicationsforMagmaticPlumbingandEruptionTriggering.In:1886Sherrod,D.R.,Scott,W.E.,Stauffer,P.H.(Eds.),AVolcanoRekindled:TheRenewed1887EruptionofMountSt.Helens,2004-2006.U.S.GeologicalSurveyProfessionalPaper18881750,Ch.30,pp.647-702.1889Pallister,J.S.,Hoblitt,R.P.,Crandell,D.R.,Mullineaux,D.R.,1992.MountSt.Helensa1890decadeafterthe1980eruptions:magmaticmodels,chemicalcycles,andarevised1891hazardassessment.BulletinofVolcanology54,126-146.1892Perret,F.,1937.TheeruptionofMt.Pelée,1929-1932.CarnegieInstituteof1893WashingtonPublication,v.458,126pp.1894

Page 74: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

Petrosino,S.,Cusano,P.,LaRocca,M.,Galluzzo,D.,Orozco-Rojas,J.,Bretón,M.,1895Ibáñez,J.,DelPezzo,E.,2011.SourcelocationoflongperiodseismicityatVolcánde1896Colima,México.BulletinofVolcanology73,887-898.1897

Phillipson,G.,Sobradelo,R.,Gottsmann,J.,2013.Globalvolcanicunrestinthe21st1898century:Ananalysisofthefirstdecade.JournalofVolcanologyandGeothermal1899Research264,183-196.1900

Pinel,V.,Albino,F.,2013.Consequencesofvolcanosectorcollapseonmagmatic1901storagezones:Insightsfromnumericalmodeling.JournalofVolcanologyand1902GeothermalResearch252,29-37.1903

Pinel,V.,Jaupart,C.,2005.Someconsequencesofvolcanicedificedestructionfor1904eruptionconditions.JournalofVolcanologyandGeothermalResearch145,68-80.1905

Pinel,V.,Jaupart,C.,2000.Theeffectofedificeloadonmagmaascentbeneatha1906volcano.PhilosophicalTransactionsoftheRoyalSocietyofLondonA:Mathematical,1907PhysicalandEngineeringSciences358,1515-1532.1908

Plail,M.,Barclay,J.,Humphreys,M.C.S.,Edmonds,M.,Herd,R.A.,Christopher,T.E.,19092014.Chapter18Characterizationofmaficenclavesintheeruptedproductsof1910SoufrièreHillsVolcano,Montserrat,2009to2010.GeologicalSociety,London,1911Memoirs39,343-360.1912Platt,U.,Stutz,J.,2008.DifferentialAbsorptionSpectroscopy.In:DifferentialOptical1913AbsorptionSpectroscopy.PhysicsofEarthandSpaceEnvironments.SpringerBerlin1914Heidelberg,pp.135-174.1915

Power,J.A.,Lalla,D.J.,2010.SeismicObservationsofAugustineVolcano,1970-19162007.In:Power,J.A.,Coombs,M.L.,Freymueller,J.T.(Eds.),The2006Eruptionof1917AugustineVolcano,Alaska.U.S.GeologicalSurveyProfessionalPaper1769,Ch.1,pp.19183-40.1919Power,J.A.,Stihler,S.D.,Chouet,B.A.,Haney,M.M.,Ketner,D.M.,2013.Seismic1920observationsofRedoubtVolcano,Alaska-1989-2010andaconceptualmodelofthe1921Redoubtmagmaticsystem.JournalofVolcanologyandGeothermalResearch259,192231-44.1923

Power,J.A.,Nye,C.J.,Coombs,M.L.,Wessels,R.L.,Cervelli,P.F.,Dehn,J.,Wallace,K.1924L.,Freymueller,J.T.,Doukas,M.P.,2006.ThereawakeningofAlaska’sAugustine1925volcano.Eos,TransactionsAmericanGeophysicalUnion87,373-377.1926

Pritchard,M.E.,Simons,M.,2002.Asatellitegeodeticsurveyoflarge-scale1927deformationofvolcaniccentresinthecentralAndes.Nature418,167-171.1928

Pyle,D.,2000.Sizesofvolcaniceruptions.In:Sigurdsson,H.(Ed.),Encyclopaediaof1929Volcanoes.Academic,Sydney,pp.263-269.1930Ratdomopurbo,A.,Beauducel,F.,Subandriyo,J.,Nandaka,I.M.A.,Newhall,C.G.,1931Suhama,Sayudi,D.S.,Suparwaka,H.,Sunarta,2013.Overviewofthe2006eruption1932ofMt.Merapi.JournalofVolcanologyandGeothermalResearch261,87-97.1933

Page 75: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

Ratdomopurbo,A.,Poupinet,G.,2000.AnoverviewoftheseismicityofMerapi1934volcano(Java,Indonesia),1983-1994.JournalofVolcanologyandGeothermal1935Research100,193-214.1936

Reubi,O.,Blundy,J.,2009.Adearthofintermediatemeltsatsubductionzone1937volcanoesandthepetrogenesisofarcandesites.Nature461,1269-1273.1938

Ripepe,M.,Donne,D.D.,Genco,R.,Maggio,G.,Pistolesi,M.,Marchetti,E.,Lacanna,G.,1939Ulivieri,G.,Poggi,P.,2015.Volcanoseismicityandgrounddeformationunveilthe1940gravity-drivenmagmadischargedynamicsofavolcaniceruption.Nature1941Communications6.1942

Rittmann,A.,1962.VolcanoesandtheirActivity.NewYork:JohnWiley&Sons.1943Roberge,J.,Delgado-Granados,H.,Wallace,P.J.,2009.Maficmagmarecharge1944supplieshighCO2andSO2gasfluxesfromPopocatépetlvolcano,Mexico.Geology37,1945107-110.1946

Robin,C.,Camus,G.,Gourgaud,A.,1991.EruptiveandmagmaticcyclesatFuegode1947Colimavolcano(Mexico).JournalofVolcanologyandGeothermalResearch45,209-1948225.1949

Rodríguez,L.A.,Watson,I.M.,Rose,W.I.,Branan,Y.K.,Bluth,G.J.,Chigna,G.,Matías,1950O.,Escobar,D.,Carn,S.A.,Fischer,T.P.,2004.SO2emissionstotheatmospherefrom1951activevolcanoesinGuatemalaandElSalvador,1999-2002.JournalofVolcanology1952andGeothermalResearch138,325-344.1953Roman,D.C.,Cashman,K.V.,Gardner,C.A.,Wallace,P.J.,Donovan,J.J.,2006.1954Storageandinteractionofcompositionallyheterogeneousmagmasfromthe19861955eruptionofAugustineVolcano,Alaska.BulletinofVolcanology68,240-254.1956Roman,D.C.,Power,J.A.,Moran,S.C.,Cashman,K.V.,Doukas,M.P.,Neal,C.A.,1957Gerlach,T.M.,2004.EvidencefordikeemplacementbeneathIliamnaVolcano,1958Alaskain1996.JournalofVolcanologyandGeothermalResearch130,265-284.1959

Rose,W.I.,1973.PatternandmechanismofvolcanicactivityattheSantiaguito1960VolcanicDome,Guatemala.BulletinofVolcanology37,73-94.1961Rose,W.I.,J.,1972.Notesonthe1902eruptionofSantaMaríavolcano,Guatemala.1962BulletinVolcanologique36,29-45.1963

Rose,W.I.,Bluth,G.J.S.,Ernst,G.G.J.,2000.Integratingretrievalsofvolcaniccloud1964characteristicsfromsatelliteremotesensors:asummary.Philosophical1965TransactionsoftheRoyalSocietyofLondonA:Mathematical,Physicaland1966EngineeringSciences358,1585-1606.1967

Rose,W.I.,Heiken,G.,Wohletz,K.,Eppler,D.,Barr,S.,Miller,T.,Chuan,R.L.,1968Symonds,R.B.,1988.DirectRateMeasurementsofEruptionPlumesatAugustine1969Volcano:AProblemofScalingandUncontrolledVariables.JournalofGeophysical1970Research:SolidEarth93,4485-4499.1971

Page 76: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

Rutherford,M.J.,Sigurdsson,H.,Carey,S.,Davis,A.,1985.TheMay18,1980,1972eruptionofMountSt.Helens:1.Meltcompositionandexperimentalphase1973equilibria.JournalofGeophysicalResearch:SolidEarth90,2929-2947.1974

Samaniego,P.,LePennec,J-L.,Robin,C.,Hidalgo,S.,2011.Petrologicalanalysisofthe1975preeruptivemagmaticprocesspriortothe2006explosiveeruptionsatTungurahua1976volcano(Ecuador).JournalofVolcanologyandGeothermalResearch199,69-84.1977

Sandri,L.,Marzocchi,W.,Zaccarelli,L.,2004.Anewperspectiveinidentifyingthe1978precursorypatternsoferuptions.BulletinofVolcanology66,263-275.1979

Savov,I.P.,Luhr,J.F.,Navarro-Ochoa,C.,2008.Petrologyandgeochemistryoflava1980andasheruptedfromVolcánColima,Mexico,during1998-2005.Journalof1981VolcanologyandGeothermalResearch174,241-256.1982

Scandone,R.,Cashman,K.V.,Malone,S.D.,2007.Magmasupply,magmaascentand1983thestyleofvolcaniceruptions.EarthandPlanetaryScienceLetters253,513-529.1984

Scandone,R.,Malone,S.D.,1985.Magmasupply,magmadischargeand1985readjustmentofthefeedingsystemofmountSt.Helensduring1980.Journalof1986VolcanologyandGeothermalResearch23,239-262.1987

Schilling,S.P.,Thompson,R.A.,Messerich,J.A.,Iwatsubo,E.Y.,2008.UseofDigital1988AerophotogrammetrytoDetermineRatesofLavaDomeGrowth,MountSt.Helens,1989Washington,2004-2005.In:Sherrod,D.R.,Scott,W.E.,Stauffer,P.H.(Eds.),A1990VolcanoRekindled:TheRenewedEruptionofMountSt.Helens,2004-2006.U.S.1991GeologicalSurveyProfessionalPaper1750,Ch.8,pp.145-168.1992

Scott,J.A.J.,Pyle,D.M.,Mather,T.A.,Rose,W.I.,2013.Geochemistryandevolution1993oftheSantiaguitovolcanicdomecomplex,Guatemala.JournalofVolcanologyand1994GeothermalResearch252,92-107.1995

Scott,J.A.,Mather,T.A.,Pyle,D.M.,Rose,W.I.,Chigna,G.,2012.Themagmatic1996plumbingsystembeneathSantiaguitoVolcano,Guatemala.JournalofVolcanology1997andGeothermalResearch237-238,54-68.1998

Scott,W.E.,Sherrod,D.R.,Gardner,C.A.,2008.Overviewofthe2004to2006,and1999Continuing,EruptionofMountSt.Helens,Washington.In:Sherrod,D.R.,Scott,W.E.,2000Stauffer,P.H.(Eds.),AVolcanoRekindled:TheRenewedEruptionofMountSt.2001Helens,2004-2006.U.S.GeologicalSurveyProfessionalPaper1750,Ch.1,pp.3-26.2002Sernageomin,2013.ReportedeActividadVolcánica(RAV)REGIÓNDE2003ANTOFAGASTAAno2013Julio-Volumen9.Tech.rep.,Sernageomin.2004http://www.sernageomin.cl/reportesVolcanes/20130813010943279RAV_2005Antofagasta_2013_julio_vol_9.pdf2006

Shcherbakov,V.D.,Plechov,P.Y.,Izbekov,P.E.,Shipman,J.S.,2011.Plagioclase2007zoningasanindicatorofmagmaprocessesatBezymiannyVolcano,Kamchatka.2008ContributionstoMineralogyandPetrology162,83-99.2009

Page 77: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

Sheldrake,T.,2014.Long-termforecastingoferuptionhazards:Ahierarchical2010approachtomergeanalogouseruptivehistories.JournalofVolcanologyand2011GeothermalResearch286,15-23.2012

Shepherd,J.B.,Tomblin,J.,Woo,D.,1971.Volcano-SeismicCrisisinMontserrat,2013WestIndies,1966-67.BulletinVolcanologique35,143-152.2014

Shinohara,H.,2008.Excessdegassingfromvolcanoesanditsroleoneruptiveand2015intrusiveactivity.ReviewofGeophysics46.2016Sides,I.R.,Edmonds,M.,Maclennan,J.,Swanson,D.A.,Houghton,B.F.,2014.2017EruptionstyleatKilaueaVolcanoinHawaiìlinkedtoprimarymeltcomposition.2018NatureGeoscience7,464-469.2019Siebert,L.,Simkin,T.,Kimberley,P.,2010.VolcanoesoftheWorld.Berkeley:2020UniversityofCaliforniaPress.2021Siswowidjoyo,S.,Suryo,I.,Yokoyama,I.,1995.MagmaeruptionratesofMerapi2022volcano,CentralJava,Indonesiaduringonecentury(1890-1992).Bulletinof2023Volcanology57,111-116.2024Smith,A.L.,Roobol,M.J.,1990.Mt.Pelée,Martinique;AStudyofanActiveIsland-arc2025Volcano.GeologicalSocietyofAmericaMemoirs175,1-110.2026

Smith,R.,Kilburn,C.,Sammonds,P.,2007.Rockfractureasaprecursortolavadome2027eruptionsatMountStHelensfromJune1980toOctober1986.Bulletinof2028Volcanology69,681-693.2029Sobradelo,R.,Martí,J.,2015.Short-termvolcanichazardassessmentthrough2030Bayesianinference:retrospectiveapplicationtothePinatubo1991volcaniccrisis.2031JournalofVolcanologyandGeothermalResearch290,1-11.2032Sobradelo,R.,Bartolini,S.,Martí,J.,2013.HASSET:aprobabilityeventtreetoolto2033evaluatefuturevolcanicscenariosusingBayesianinference.BulletinofVolcanology203476.2035

Solano,J.M.S.,Jackson,M.D.,Sparks,R.S.J.,Blundy,J.D.,Annen,C.,2012.Melt2036SegregationinDeepCrustalHotZones:aMechanismforChemicalDifferentiation,2037CrustalAssimilationandtheFormationofEvolvedMagmas.JournalofPetrology.2038

Sparks,R.S.J.,2003.Forecastingvolcaniceruptions.EarthandPlanetaryScience2039Letters210,1-15.2040Sparks,R.S.J.,1997.Causesandconsequencesofpressurisationinlavadome2041eruptions.EarthandPlanetaryScienceLetters150,177-189.2042Sparks,R.S.J.,Biggs,J.,Neuberg,J.W.,2012.MonitoringVolcanoes.Science335.2043

Sparks,R.S.J.,Aspinall,W.P.,2004.VolcanicActivity:FrontiersandChallengesin2044Forecasting,PredictionandRiskAssessment.In:AGUGeophysicalMonograph“State2045ofthePlanet”150.pp.359-374.2046

Page 78: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

Sparks,R.S.J.,Young,S.R.,2002.TheeruptionofSoufrièreHillsVolcano,2047Montserrat(1995-1999):overviewofscientificresults.GeologicalSociety,London,2048Memoirs21,45-69.2049

Spiegelhalter,D.J.,1986.Probabilisticpredictioninpatientmanagementandclinical2050trials.StatisticsinMedicine5,421-433.2051

Stasiuk,M.V.,Jaupart,C.,Sparks,R.S.J.,1993.Onthevariationsofflowrateinnon-2052explosivelavaeruptions.EarthandPlanetaryScienceLetters114,505-516.2053Steffke,A.M.,Fee,D.,Garces,M.,Harris,A.,2010.Eruptionchronologies,plume2054heightsanderuptionstylesatTungurahuaVolcano:Integratingremotesensing2055techniquesandinfrasound.JournalofVolcanologyandGeothermalResearch193,2056143-160.2057

Stith,J.L.,Hobbs,P.V.,Radke,L.F.,1978.Airborneparticleandgasmeasurementsin2058theemissionsfromsixvolcanoes.JournalofGeophysicalResearch:Oceans83,4009-20594017.2060

Straub,S.M.,Martin-DelPozzo,A.L.,2001.Thesignificanceofphenocrystdiversity2061intephrafromrecenteruptionsatPopocatepetlvolcano(centralMexico).2062ContributionstoMineralogyandPetrology140,487-510.2063

Surono,Jousset,P.,Pallister,J.,Boichu,M.,Buongiorno,M.F.,Budisantoso,A.,Costa,2064F.,Andreastuti,S.,Prata,F.,Schneider,D.,Clarisse,L.,Humaida,H.,Sumartí,S.,2065Bignami,C.,Griswold,J.,Carn,S.,Oppenheimer,C.,Lavigne,F.,2012.The20102066explosiveeruptionofJava’sMerapivolcano-A‘100-year’event.Journalof2067VolcanologyandGeothermalResearch241242,121-135.2068

Swanson,D.,Holcomb,R.,1990.RegularitiesinGrowthoftheMountSt.Helens2069DaciteDome,1980-1986.In:Fink,J.H.(Ed.),LavaFlowsandDomes.Vol.2ofIAVCEI2070ProceedingsinVolcanology.SpringerBerlinHeidelberg,pp.3-24.2071Swanson,D.A.,Casadevall,T.J.,Dzurisin,D.,Malone,S.D.,Newhall,C.G.,Weaver,C.2072S.,1983.PredictingEruptionsatMountSt.Helens,June1980ThroughDecember20731982.Science221,1369-1376.2074Swanson,S.E.,Nye,C.J.,Miller,T.P.,Avery,V.F.,1994.Geochemistryofthe1989-20751990eruptionofRedoubtvolcano:PartII.Evidencefrommineralandglass2076chemistry.JournalofVolcanologyandGeothermalResearch62,453-468.2077Swanson,S.E.,Kienle,J.,1988.The1986EruptionofMountSt.Augustine:FieldTest2078ofaHazardEvaluation.JournalofGeophysicalResearch:SolidEarth93,4500-4520.2079Symonds,R.B.,Rose,W.I.,Gerlach,T.M.,Briggs,P.H.,Harmon,R.S.,1990.2080Evaluationofgases,condensates,andSO2emissionsfromAugustinevolcano,2081Alaska:thedegassingofaCl-richvolcanicsystem.BulletinofVolcanology52,355-2082374.2083

Szakács,A.,2010.Fromadefinitionofvolcanotoconceptualvolcanology.Geological2084SocietyofAmericaSpecialPapers,470,67-76.2085

Page 79: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

Szakács,A.,Cañón-Tapia.E.,2010.Somechallengingnewperspectivesof2086volcanology.GeologicalSocietyofAmericaSpecialPapers,470,123-140.2087Tanguy,J-C.,2004.RapiddomegrowthatMontagnePeléeduringtheearlystagesof2088the1902-1905eruption:areconstructionfromLacroix’sdata.Bulletinof2089Volcanology66,615-621.2090

Tanguy,J.C.,1994.The1902-1905eruptionsofMontagnePelée,Martínique:2091anatomyandretrospection.JournalofVolcanologyandGeothermalResearch60,87-2092107.2093

Taran,Y.,Gavilanes,J.C.,Cortés,A.,2002.Chemicalandisotopiccompositionof2094fumarolicgasesandtheSO2fluxfromVolcándeColima,México,betweenthe19942095and1998eruptions.JournalofVolcanologyandGeothermalResearch117,105-119.2096

Tarasewicz,J.,White,R.S.,Woods,A.W.,Brandsdóttir,B.,Gudmundsson,M.T.,20972012.Magmamobilizationbydownward-propagatingdecompressionofthe2098Eyjafjallajökullvolcanicplumbingsystem.GeophysicalResearchLetters39.2099

Thelan,W.,West,M.,Senyukov,S.,2010.Seismiccharacterisationofthefall20072100eruptivesequenceatBezymiannyVolcano,Russia.JournalofVolcanologyand2101GeothermalResearch194,201-213.2102

Toramaru,A.,Noguchi,S.,Oyoshihara,S.,Tsune,A.,2008.MND(microlitenumber2103density)waterexsolutionratemeter.JournalofVolcanologyandGeothermal2104Research175,156-167.2105Troll,V.R.,Deegan,F.M.,Jolis,E.M.,Harris,C.,Chadwick,J.P.,Gertisser,R.,2106Schwarzkopf,L.M.,Borisova,A.Y.,Bindeman,I.N.,Sumarti,S.,Preece,K.,2013.2107MagmaticdifferentiationprocessesatMerapiVolcano:inclusionpetrologyand2108oxygenisotopes.JournalofVolcanologyandGeothermalResearch261,38-49.2109

Turner,S.J.,Izbekov,P.,Langmuir,C.,2013.Themagmaplumbingsystemof2110BezymiannyVolcano:Insightsfroma54yeartimeseriesoftraceelementwhole-2111rockgeochemistryandamphibolecompositions.JournalofVolcanologyand2112GeothermalResearch263,108-121.2113Ui,T.,Takarada,S.,Yoshimoto,M.,2000.Debrisavalanches.In:Sigurdsson,H.etal.2114(Eds.),EncyclopediaofVolcanoes.1stEdition.AcademicPress,pp.617-626.2115

Umakoshi,K.,Takamura,N.,Shinzato,N.,Uchida,K.,Matsuwo,N.,Shimizu,H.,2008.2116Seismicityassociatedwiththe1991-1995domegrowthatUnzenVolcano,Japan.2117JournalofVolcanologyandGeothermalResearch175,91-99.2118USGS,2014.CascadesVolcanoObservatoryInformationStatement:Wednesday,2119April30,201416:05UTC.Tech.rep.,USGS,2120http://volcanoes.usgs.gov/activity/archiveupdate.php?noticeid=10035.2121vanManen,S.M.,Dehn,J.,Blake,S.,2010.Satellitethermalobservationsofthe2122Bezymiannylavadome1993-2008:Precursoryactivity,largeexplosions,anddome2123growth.JournalofGeophysicalResearch:SolidEarth115.2124

Page 80: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

Varley,N.,Arámbula-Mendoza,R.,Reyes-Dávila,G.,Sanderson,R.,Stevenson,J.,21252010.GenerationofVulcanianactivityandlong-periodseismicityatVolcánde2126Colima,Mexico.JournalofVolcanologyandGeothermalResearch198,45-56.2127

Varley,N.R.,Taran,Y.,2003.DegassingprocessesofPopocatépetlandVolcánde2128Colima,Mexico.GeologicalSociety,London,SpecialPublications213,263-280.2129

Voight,B.,1988.Amethodforpredictionofvolcaniceruptions.Nature332,125-2130130.2131Voight,B.,Constantine,E.K.,Siswowidjoyo,S.,Torley,R.,2000.Historicaleruptions2132ofMerapiVolcano,CentralJava,Indonesia,1768-1998.JournalofVolcanologyand2133GeothermalResearch100,69-138.2134Voight,B.,Janda,R.J.,Glicken,H.,Douglass,P.M.,1983.Natureandmechanicsofthe2135MountStHelensrockslide-avalancheof18May1980.Géotechnique33,243-273.2136Volpe,A.M.,Hammond,P.E.,1991.238U-230Th-226RadisequilibriainyoungMountSt.2137Helensrocks:timeconstraintformagmaformationandcrystallization.Earthand2138PlanetaryScienceLetters107,475-486.2139Wadge,G.,Aspinall,W.P.,2014.Areviewofvolcanichazardandrisk-assessment2140praxisattheSoufrièreHillsVolcano,Montserratfrom1997to2011.Geological2141Society,London,Memoirs39,439-456.2142Wadge,G.,Voight,B.,Sparks,R.S.J.,Cole,P.D.,Loughlin,S.C.,Robertson,R.E.A.,21432014.AnoverviewoftheeruptionofSoufrièreHillsVolcano,Montserratfrom20002144to2010.GeologicalSociety,London,Memoirs39,1-40.2145

Wadge,G.,Herd,R.,Ryan,G.,Calder,E.S.,Komorowski,J.C.,2010.Lavaproduction2146atSoufrièreHillsVolcano,Montserrat:1995-2009.GeophysicalResearchLetters37.2147Wallace,P.J.,2005.Volatilesinsubductionzonemagmas:concentrationsandfluxes2148basedonmeltinclusionandvolcanicgasdata.JournalofVolcanologyand2149GeothermalResearch140,217-240.2150

Wallace,P.J.,2003.Frommantletoatmosphere:magmadegassing,explosive2151eruptions,andvolcanicvolatilebudgets.In:Vivo,B.D.,Bodnar,R.J.(Eds.),Melt2152InclusionsinVolcanicSystemsMethods,ApplicationsandProblems.Vol.5of2153DevelopmentsinVolcanology.Elsevier,pp.105-127.2154

Wallace,P.J.,Edmonds,M.,2011.TheSulfurBudgetinMagmas:EvidencefromMelt2155Inclusions,SubmarineGlasses,andVolcanicGasEmissions.ReviewsinMineralogy2156andGeochemistry73,215-246.2157Walter,T.R.,Wang,R.,Zimmer,M.,Grosser,H.,Lühr,B.,Ratdomopurbo,A.,2007.2158Volcanicactivityinfluencedbytectonicearthquakes:Staticanddynamicstress2159triggeringatMt.Merapi.GeophysicalResearchLetters34.2160Watts,R.B.,Herd,R.A.,Sparks,R.S.J.,Young,S.R.,2002.Growthpatternsand2161emplacementoftheandesiticlavadomeatSoufrièreHillsVolcano,Montserrat.2162GeologicalSociety,London,Memoirs21,115-152.2163

Page 81: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

Webster,J.D.,Mandeville,C.W.,Goldoff,B.,Coombs,M.L.,Tappen,C.,2010.2164AugustineVolcano-TheInfluenceofVolatileComponentsinMagmasEruptedA.D.21652006to2,100YearsBeforePresent.In:Power,J.A.,Coombs,M.L.,Freymueller,J.T.2166(Eds.),The2006EruptionofAugustineVolcano,Alaska.U.S.GeologicalSurvey2167ProfessionalPaper1769,Ch.16,p.383.2168

Werner,C.,Kelly,P.J.,Doukas,M.,Lopez,T.,Pfeffer,M.,McGimsey,R.,Neal,C.,2013.2169DegassingofCO2,SO2,andH2Sassociatedwiththe2009eruptionofRedoubt2170Volcano,Alaska.JournalofVolcanologyandGeothermalResearch259,270-284.2171

West,M.E.,2013.RecenteruptionsatBezymiannyvolcano-Aseismological2172comparison.JournalofVolcanologyandGeothermalResearch263,42-57.2173Whelley,P.L.,Newhall,C.G.,Bradley,K.E.,2015,Thefrequencyofexplosivevolcanic2174eruptionsinSoutheastAsia.BulletinofVolcanology77.2175White,R.,McCausland,W.,2016.Volcano-tectonicearthquakes:Anewtoolfor2176estimatingintrusivevolumesandforecastingeruptions.JournalofVolcanologyand2177GeothermalResearch309,139-155.2178Witter,J.B.,Kress,C.C.,Newhall,C.G.,2005.VolcanoPopocatepetl,Mexico.2179Petrology,MagmaMixing,andImmediateSourcesofVolatilesforthe1994-Present2180Eruption.JournalofPetrology46,2337-2366.2181Wolf,K.J.,Eichelberger,J.C.,1997.Syneruptivemixing,degassing,and2182crystallizationatRedoubtVolcano,eruptionofDecember,1989toMay1990.2183JournalofVolcanologyandGeothermalResearch75,19-37.2184

Wright,H.M.,Cashman,K.V.,Mothes,P.A.,Hall,M.L.,Ruiz,A.G.,LePennec,J-L.,21852012.Estimatingratesofdecompressionfromtexturesoferuptedashparticles2186producedby1999-2006eruptionsofTungurahuavolcano,Ecuador.Geology40,2187619-622.2188Yokoyama,I.,2005.Growthratesoflavadomeswithrespecttoviscosityofmagmas.2189AnnalsOfGeophysics,48.2190

Young,S.R.,Sparks,R.S.J.,Aspinall,W.P.,Lynch,L.L.,Miller,A.D.,Robertson,R.E.2191A.,Shepherd,J.B.,1998.OverviewoftheeruptionofSoufrièreHillsVolcano,2192Montserrat,18July1995toDecember1997.GeophysicalResearchLetters25,3389-21933392.2194Zellmer,G.F.,Sparks,R.S.J.,Hawkesworth,C.J.,Wiedenbeck,M.,2003a.Magma2195EmplacementandRemobilizationTimescalesBeneathMontserrat:InsightsfromSr2196andBaZonationinPlagioclasePhenocrysts.JournalofPetrology44,1413-1431.2197

Zellmer,G.F.,Hawkesworth,C.J.,Sparks,R.S.J.,Thomas,L.E.,Harford,C.L.,Brewer,2198T.S.,Loughlin,S.C.,2003b.GeochemicalEvolutionoftheSoufrièreHillsVolcano,2199Montserrat,LesserAntillesVolcanicArc.JournalofPetrology44,1349-1374.2200

Zharinov,N.,Demyanchuk,Y.,2008.ThegrowthofanextrusivedomeonShiveluch2201Volcano,Kamchatkain1980-2007:Geodeticobservationsandvideosurveys.2202JournalofVolcanologyandSeismology2,217-227.2203

Page 82: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

Zobin,V.M.,Varley,N.R.,González,M.,Orozco,J.,Reyes,G.A.,Reyes,C.A.,Navarro,2204C.,Bretón,M.,2008.Monitoringthe2004andesiticblock-lavaextrusionatVolcánde2205Colima,MéxicofromseismicactivityandSO2emission.JournalofVolcanologyand2206GeothermalResearch177,367-377.2207Zobin,V.,Luhr,J.,Taran,Y.,Bretón,M.,Cortés,A.,DelaCruz-Reyna,S.,Domınguez,2208T.,Galindo,I.,Gavilanes,J.,Muñíz,J.,Navarro,C.,Ramírez,J.,Reyes,G.,Ursúa,M.,2209Velasco,J.,Alatorre,E.,Santiago,H.,2002.Overviewofthe1997-2000activityof2210VolcándeColima,México.JournalofVolcanologyandGeothermalResearch117,1-221119.2212

221322142215FigureCaptions:221622172218(1.5column)2219Figure1:Locationsofthe15dome-buildingvolcanoesinthisstudy:(a)Augustine;2220(b)Bezymianny;(c)Colima;(d)Kudryavy;(e)Lascar;(f)Merapi;(g)MountSt.2221Helens;(h)MontPelée;(i)Popocatépetl;(j)Redoubt;(k)Santiaguito;(l)Shiveluch;2222(m)SoufrièreHillsVolcano;(n)Tungurahua;(o)MountUnzen.Theyareallfoundin2223subductionsettings:eitheroceanic-continentaloroceanic-oceanicboundaries.22242225(1.5column)2226Figure2:Binaryplotsindicatingwhether(magmatic)eruptiveactivity(ash2227explosionsandlavadomegrowth)wasrecordingineachyearsince1800C.E,at2228eachofthe15volcanoesinthisstudy.Importantly,theredbarsdonotequateto2229continuouseruptiveactivity,butinsteadaremeanttoindicatethevariationinlong-2230termpatternsoferuptiveactivity.LabelsareMER-Merapi;LAS–Lascar;COL–2231Colima;SHI–Shiveluch;SAN–Santiaguito;BEZ–Bezymianny;POP–Popocatépetl;2232TUN–Tungurahua;SHV-SoufrièreHillsVolcano;HEL-MountSt.Helens;AUG–2233Augustine;RED–Redoubt;UNZ–Unzen;PEL–Pelée;KUD–Kudryavy.Volcanoes2234withthemostpersistentbehaviourarefoundtowardsthetopofthefigure,andwe2235havehighlightedissueswithspecificallyidentifyingapersistentregimeinolder2236records.TherecordofvolcanicactivityisbasedupontheSmithsoniandatabase2237(SiebertandSimkin,2002),andreferencesspecifictoeachvolcanothatcanbe2238foundinsection3andthesupplementarymaterial.22392240(Singlecolumn)2241Figure3:Representativecartoonsforthetwodifferenteruptiveregimesthatare2242identifiedinthisreview;(a)Episodicbehaviour,wherethedurationavolcano2243remainsinaneruptivestateisproportionallymuchshorterthatthedurationit2244remainsinnon-eruptivestate.Degassingistemporallycorrelatedwitheruptive2245activity,andtheregimeischaracterisedbyperiodsofnoeruptiveinwhich2246degassingisnegligible,whichwedefineasinter-eruptiverepose;(b)Persistent2247

Page 83: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

behaviour,wherethedurationavolcanoremainsinaneruptivestateis2248proportionallysimilartothedurationitremainsinnon-eruptivestate.Degassingis2249notnecessarilytemporallycorrelatedwitheruptiveactivity,andtheregimeis2250characterisedbyperiodsofnoeruptiveinwhichdegassingiscontinuousand2251sustained,whichwedefineasintra-eruptiverepose.(c)Athirdmixedregimeis2252characterisedtoidentifyhowavolcanocanexhibitbothepisodicandpersistent2253behaviourinitseruptiverecord.22542255(Doublecolumn)2256Figure4:Ahierarchicalconstructforhistoricaleruptiveactivityatdome-building2257volcanoes.Thefirstsub-levelofthisconstructidentifiesthetwodifferent2258behaviours,episodicandpersistent.Thesecondsub-levelofthisconstructidentifies2259twodifferentstylesofepisodicandpersistentbehaviourthatareobservedin2260historicalrecords,overidenticaltimescales(i.e.betweenpointsaandb).Key2261characteristicsforeachbehaviourareidentifiedintheboxesbeloweachcartoon.226222632264(Doublecolumn)2265Figure5:(a)EpisodicbehaviouratAugustinebetween1970and2008,consistingof2266foureruptiveepisodeslastingmonths(redlinesrepresentonsets),adaptedfrom2267PowerandLalla,(2010).SO2degassing(orange)istemporallycorrelatedwiththe2268eruptiveepisodes,asindicatedbythedatafromMcGeeetal.,(2010),overlaidonthe2269lowerchart.Blackbarsrepresentseismicity,whichiselevatedpriorandduring2270eruptiveepisodes;(b)PersistentbehavioratMerapibetween1990and2006,with2271severalphasesofdomegrowth(bluebars)andassociatedexplosions(bluevertical2272arrows),adaptedfromRatdomopurboetal.,(2013).SO2degassing(orange)is2273temporallyuncorrelatedwitheruptiveactivity,asobservedbytheoverlaiddata2274between1992and1998.Seismicityiscorrelatedwithphasesoferuptiveactivity,as2275indicatedbythevariationinthecumulativeseismicenergy(redline).22762277(Singlecolumn)2278Figure6:Estimatedeffusionrate(bluedots)atUnzenbetween1990-1995,from2279Nakadaetal.(1999).ThisisanexampleofasingleeruptiveepisodeatUnzenthat2280lasted5yearsbetween1990-1995(Fig.2).Thelatterstagesoftheeruptiveepisode2281arecharacterisedbycrystal-richlavasandloweffusionrates.Duringtheeruptive2282episode,however,thereareperiodicincreasesineffusionrate,suchasin1993.22832284(Singlecolumn)2285Figure7:Estimatedextrusionrates(bluedots)for23phasesofdomegrowthat2286Bezymiannyvolcanobetween1993and2008,fromvanManenetal.,(2010).This2287patternofactivityisanexampleofapersistentregime,inwhichfrequentperiodsof2288dome-growthoccur,withaconsistentlong-termextrusionrate.However,the2289intensityandfrequencyofphasesofdomegrowthcanvary.Thereddashedline2290indicatesthecumulativeextrudedvolume,inwhichperiodsofdomegrowthand2291reposecanbeobserved.22922293

Page 84: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

2294(Singlecolumn)2295Figure8:Exampleofaconceptualmodelforeruptiveactivityassociatedwiththe2296shallowchamberparadigmatLaSoufrière,Guadeloupe,adaptedfromHincksetal.2297(2014),wheregeophysicalandgeochemicalobservationsatthesurfaceare2298interpretedintermsofshallowcrustalmagmaticprocesses.22992300(Singlecolumn)2301Figure9:Schematicfortheinteractionofmeltlayersinatranscrustalmagmatic2302systematlavadome-buildingvolcanoes.Possiblescenariosforeruptiveactivityand2303volcanicunrest;(a)completedestabilisationofthetran-scrustalsystem,involving2304deeplysourcedmaficmeltsthatprovidevolatilesandheat,resultinginmajor2305explosiveactivity;(b)partialdestabilisationofthetranscrustalsysteminvolving2306magmastoredinshallowcrustalregionsresultingineffusiveandminorexplosive2307activity;(c)partialdestabilisationofthemagmaticsystemresultinginvolcanic2308unrestbutnoteruptiveactivity.Importantly,thisisinnowayatruerepresentation2309ofthestructureanddimensionsofmagmaticsystemsatlavadome-building2310volcanoesastheyarefoundinsubductionzones.Indeed,perpendiculartotectonic2311platemarginsthearcwidthsofactivevolcanismaregenerallyverynarrow(~5km2312orless).23132314231523162317231823192320232123222323

Page 85: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

100 150 −160 −110 −60

−60

−30

030

60

100 150 −160 −110 −60

−60

−30

030

60

ab

c

d

e

f

g

hi

j

k

l

m

n

o

Page 86: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

MER

1800

1850

1900

1950

2000

LAS ?

COL

SHI ?

SAN

BEZ

POP

TUN ? ?

SHV

HEL ?

AUG

RED

UNZ

PEL

KUD

Lava extrusion recorded Major explosive event (e.g. Plinian explosion)Persistent behaviour ? = Unknown regime

1800

1850

1900

1950

2000

Page 87: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

SO2fluxLavaextrusion(onoroff)

(c)Mixedregime

�me

SO2fl

ux

intra-erup�verepose

inter-erup�verepose

Erup�veepisode

Erup�vephase

(a)Episodicregime

�me

SO2fl

uxinter-erup�ve

repose

Erup�veepisode

inter-erup�verepose

Erup�vephaseSO2fl

ux

�me

(b)Persistentregimeintra-erup�verepose

Page 88: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

�me

SO2flux

ba

�me

SO2fluxab

SO2 flux

Lavaextrusion(onoroff)

Plinianorlateralblastexplosion

�me

SO2flux

�me

SO2flux

�me

SO2flux

ba

�me

SO2flux

ba

Historicalerup�veac�vityatdom

e-buildingvolcanoes

-Episodicbehaviour,with

erup�deepisodeslas�ngseveralyears.-M

agmasarew

ellmingled

withhom

ogeneouslavas.

-Episodicbehaviour,with

erup�veepisodeslas�ngseveralm

onths.-M

agmasarepoorlym

ingledwithheterogenouslavas

eruptedcontemporaneously.

-Historicalrecordscharacterisedbycon�nuousperistentbehaviour.-Large-m

agnitudeexplosionscanoccuratany�m

einthehistoricalrecord.-SiO

2 contentoflavaisconsistentthroughoutthehistoricalrecord.

-Peristentbehaviourfollowinga

long-dura�oninstateofrepose(∼

millenia).

-Large-magnitudeexplosionsoccur

withtheonsetofapersistentregim

e.-SiO

2 contentoflavadecreasesthroughoutthehistoricalrecord.

Episodicbehaviour-Degassingcorrelated

witherup�vestate

-Dura�oninreposestate>dura�oninerup�vestate

Persistentbehaviour-Degassinguncorrelatedw

itherup�vestate-Dura�oninreposestate≈dura�oninerup�vestate

Page 89: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

(a) A

ugustin

e 1

97

0 - 2

00

8(b

) Mera

pi 1

99

0-2

00

6

Page 90: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

0 1 2 3 4 5 6

Year

Effusion rate ( 105 m3 /d)

19911992

19931994

1995

Page 91: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Year

Average extrusion rate ( m3 s−1 )

19931995

19971999

20012003

20052007

0 50 100 150 200

Cumulative extruded volume ( 106 m3 )

Average extrusion for each phase of dom

e growth

Page 92: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

ash and steam venting

contamination of springs and potable

water supply

gas emissions

Mag

ma

cham

ber ~

6 k

m b

elow

sea

leve

l

heat flux

magma ascending?

earthquakes

rock fracturing

magmatic gases

influx to magma

interaction with hydrothermal systeminteraction

permeability of edifice edifice stability

regional tectonic activity

intense tropical rainfall

evidence of fresh magma at the surface?

flank collapse

groundwater levels

Page 93: Similarities and differences in the historical records of lava dome ...centaur.reading.ac.uk/66290/2/ESR_domes_preprint_2016.pdf · 23 A key question for volcanic hazard assessment

a

b

c

Desta

bilise

d

Noerup�on

Extrusionandminorexplosiveac�vity

Majorexplosiveac�vity

Deeplysourcedmoremaficmelts

Desta

bilise

dDe

stabilise

d