shoreline extraction using satellite imagery · shoreline extraction using satellite imagery...

16
BEACHMED-e/OpTIMAL Beach Erosion Monitoring 81 Shoreline extraction using satellite imagery Michalis Lipakis, Nektarios Chrysoulakis, Yiannis Kamarianakis Shoreline change is considered to be one of the most dynamic processes in the coastal area. It has become important to map shoreline changes as an input data for coastal hazard assessment. In recent years, satellite remote sensing data has been used in shoreline extraction and mapping. The accuracy of image orthorectification, as well as the accuracy of image classification, are the most important factors affecting the accuracy of the extracted shoreline. In this study, the shore- line of the area of Georgioupolis was mapped for the years 1998 and 2005 using aerial imagery and Ikonos data, respectively. Ikonos data were orthorectified and a feature extraction technique was then used to extract the shoreline. This technique employed machine-learning algorithms which exploit both the spectral and spatial information of the image. Results were validated with in situ measurements using Differential GPS. The analysis showed that there have not been severe changes in the shoreline between 1998 and 2005, except in some locations where change was substantial. Introduction The coastal area is a highly dynamic environment with many physical processes, such as tidal flood- ing, sea level rise, land subsidence, and erosion-sedimentation. Those processes play an important role in shoreline change and development of the coastal landscape. Multi-year shoreline mapping is considered to be a valuable task for coastal monitoring and assessment. The shoreline is defined as the line of contact between land and a body of water. It is easy to define but difficult to capture, since the water level is always changing. Therefore, a problem exists in the mapping community because differ- ent public or private entities have compiled and published shoreline delineations that are based on different shoreline definitions. This has created confusion and uncertainty for those who use shoreline information daily for the sake of decision making, resource planning, emergency preparedness etc. In the USA for example, NOAA uses the tide-coordinated shoreline, which is the shoreline extracted from a specific tide water level. The MLLW (Mean Lower Low Water) and MHW (Mean High Water) are used in this way to map shorelines that can be geo-referenced. Both the MLLW and MHW are calculated from averages over a period of 18.6 lunar years (Li et al., 2001). In contrast, the U.S. Geological Survey (USGS) compiles shoreline data for the 1: 24.000 scale topographic base map series from digital orthophoto quadrangles created from photographs that are not tide coordinated, thereby making the shoreline a snapshot in time (Scott et al., 2003). It is therefore obvious that since shoreline has a dynamic nature, its definition, mapping and monitoring are complicated tasks. Different approaches to shoreline mapping and change detection have been used in the past. Tradi- tional shoreline mapping in small areas is carried out using conventional field surveying methods. The method used today by the American National Geodetic Survey to delineate the shoreline is analytical stereo photogrammetry using tide-coordinated aerial photography controlled by kinematic GPS tech- niques (Di et al., 2003). Land vehicle-based mobile mapping technology has been proposed to trace

Upload: others

Post on 12-May-2020

13 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Shoreline extraction using satellite imagery · Shoreline extraction using satellite imagery Michalis Lipakis, Nektarios Chrysoulakis, Yiannis Kamarianakis Shoreline change is considered

BEACHMED-e/OpTIMAL BeachErosionMonitoring

81

Shoreline extraction using satellite imagery

Michalis Lipakis, Nektarios Chrysoulakis, Yiannis Kamarianakis

Shorelinechangeisconsideredtobeoneofthemostdynamicprocessesinthecoastalarea.Ithasbecomeimportanttomapshorelinechangesasaninputdataforcoastalhazardassessment.Inrecentyears,satelliteremotesensingdatahasbeenusedinshorelineextractionandmapping.Theaccuracyofimageorthorectification,aswellastheaccuracyofimageclassification,arethemostimportantfactorsaffectingtheaccuracyoftheextractedshoreline.Inthisstudy,theshore-lineoftheareaofGeorgioupoliswasmappedfortheyears1998and2005usingaerialimageryandIkonosdata,respectively.Ikonosdatawereorthorectifiedandafeatureextractiontechniquewasthenusedtoextracttheshoreline.Thistechniqueemployedmachine-learningalgorithmswhichexploitboththespectralandspatialinformationoftheimage.Resultswerevalidatedwithin situmeasurementsusingDifferentialGPS.Theanalysisshowedthattherehavenotbeenseverechangesintheshorelinebetween1998and2005,exceptinsomelocationswherechangewassubstantial.

IntroductionThecoastalareaisahighlydynamicenvironmentwithmanyphysicalprocesses,suchastidalflood-ing,sea level rise, landsubsidence,anderosion-sedimentation.Thoseprocessesplayan importantroleinshorelinechangeanddevelopmentofthecoastallandscape.Multi-yearshorelinemappingisconsideredtobeavaluabletaskforcoastalmonitoringandassessment.Theshorelineisdefinedasthelineofcontactbetweenlandandabodyofwater.Itiseasytodefinebutdifficulttocapture,sincethewaterlevelisalwayschanging.Therefore,aproblemexistsinthemappingcommunitybecausediffer-entpublicorprivateentitieshavecompiledandpublishedshorelinedelineationsthatarebasedondifferentshorelinedefinitions.Thishascreatedconfusionanduncertaintyforthosewhouseshorelineinformationdailyforthesakeofdecisionmaking,resourceplanning,emergencypreparednessetc.IntheUSAforexample,NOAAusesthetide-coordinatedshoreline,whichistheshorelineextractedfromaspecifictidewaterlevel.TheMLLW(MeanLowerLowWater)andMHW(MeanHighWater)areusedinthiswaytomapshorelinesthatcanbegeo-referenced.BoththeMLLWandMHWarecalculatedfromaveragesoveraperiodof18.6lunaryears(Lietal.,2001).Incontrast,theU.S.GeologicalSurvey(USGS)compilesshorelinedataforthe1:24.000scaletopographicbasemapseriesfromdigitalorthophotoquadranglescreatedfromphotographsthatarenottidecoordinated,therebymakingtheshorelineasnapshotintime(Scottetal.,2003).Itisthereforeobviousthatsinceshorelinehasadynamicnature,itsdefinition,mappingandmonitoringarecomplicatedtasks.Differentapproachestoshorelinemappingandchangedetectionhavebeenusedinthepast.Tradi-tionalshorelinemappinginsmallareasiscarriedoutusingconventionalfieldsurveyingmethods.ThemethodusedtodaybytheAmericanNationalGeodeticSurveytodelineatetheshorelineisanalyticalstereophotogrammetryusingtide-coordinatedaerialphotographycontrolledbykinematicGPStech-niques(Dietal.,2003).Landvehicle-basedmobilemappingtechnologyhasbeenproposedtotrace

Page 2: Shoreline extraction using satellite imagery · Shoreline extraction using satellite imagery Michalis Lipakis, Nektarios Chrysoulakis, Yiannis Kamarianakis Shoreline change is considered

Lipakisetal. Shorelineextractionusingsatelliteimagery

82

watermarksalongashorelineusingGPSreceiversandabeachvehicle.LiDARdepthdatahavealsobeenusedtomapshorelines(ShawandAllen,1995;Li,1997).Automaticextractionofshorelinefeaturesfromaerialphotoshasbeeninvestigatedusingneuralnet-worksandimageprocessingtechniques(Ryanetal.,1991).Photogrammetrictechniqueshavebeenemployedtomapthetide-coordinatedshorelinefromtheaerialimagesthataretakenwhenthewaterlevelreachesthedesiredlevel.Aerialphotographstakenatthesewaterlevelsaremoreexpensivetoobtainthansatelliteimagery.Besidesaerialimagery,space-bornradarandespeciallySyntheticApertureRadar(SAR)haveproventobeavaluabletoolforcoastalmonitoring.SARimageryhasalsobeenusedtoextractshorelinesatvariousgeographiclocations(Erteza,1998;ChenandShyu,1998;Trebossenetal.,2005;WuandLee,2007).SARisaverypromisingtechnology,especiallyforEuropesincetheEuropeanSpaceAgency(ESA)isrecognizedasaworldleaderinSARmissions(ERS1,ERS2,Envisat,GMES-Sentinel-1).Inrecentyears,opticalsatelliteremotesensingdatahavebeenusedinautomaticorsemi-automaticshorelineextractionandmapping.BraudandFeng(1998)evaluatedthresholdlevelslicingandmulti-spectralimageclassificationtechniquesfordetectionanddelineationoftheLouisianashorelinefrom30-meterresolutionLandsatThematicMapper(TM)imagery.TheyfoundthatthresholdingTMBand5wasthemostreliablemethodology.FrazierandPage(2000)quantitativelyanalysedtheclassificationaccuracyofwaterbodydetectionanddelineationfromLandsatTMdataintheWaggaregioninAus-tralia.TheirexperimentsindicatedthatthedensityslicingofTMBand5achievedanoverallaccuracyof96.9percent,which isassuccessfulasthe6-bandmaximumlikelihoodclassification.Scottetal.(2003)proposedasemi-automatedmethodforobjectivelyinterpretingandextractingtheland-waterinterface,whichhasbeendevisedandusedsuccessfullytogeneratemultipleshorelinedataforthetestStatesofLouisianaandDelaware.ThismethodwasbasedontheapplicationofTasseledCaptrans-formationcoefficientsderivedbytheEROSDataCenterforETM+dataasdescribedbyHuangetal.(2002).TheTasseledCaptransformationwaschosenoverothermethodsprimarilybecauseoftheob-jectiveandconsistentmannerinwhichitclassifiespixelsandbecauseitsuseallowedthecreationofotherusefulrasterbyproductfiles.Inoperation,theTasseledCaptransformationrecombinedspectralinformationofthe6ETM+bandsinto3principalviewcomponentsthroughtheuseofcoefficientsde-rivedbysamplingknownlandcoverspectralcharacteristics.Ofthethreeprincipalviewcomponentscreated,i.e.,Brightness,Greenness,andWetness,theWetnesscomponentisexploitedtodifferentiatelandfromwater.Zakariyaetal.(2006)triedtodetectshorelinechangesfortheTerengganurivermouthandrelatedcoastalarea.LandsatdatawereusedtogetherwithGIScapabilitytodetermineshoreline,sandyareaandthechangesthatoccurespeciallyonsedimentmovementfrom1996to2002.RGBtoIHSimageryconversionanalysisISODATA(IterativeSelf-OrganizingDataAnalysis)classificationwereemployed.LiuandJezek(2004),aswellasKarantzalosandArgialas(2007)automatedtheextractionofcoastlinefromsatelliteimagerybycannyedgedetectionusingdigitalnumber(DN)threshold.Lietal.(2001)comparedshorelinesofthesameareathatwereextractedusingdifferenttechniques,evaluated their differences and discussed the causes of possible shoreline changes. The differentshorelineproductshadbeengeneratedusingdifferenttechniques:bydigitisingfromaerialortho-photos, intersectingadigitalwatersurfacewithacoastalterrainmodelandextractingfromstereosatelliteimages.Inaddition,existingshorelinesdigitisedfromUSGSmapsandNOAAT-Sheetswereincludedintheiranalysis.Withthedevelopmentofremotesensingtechnology,satellitescancapturehighresolutionimagerywiththecapabilityofproducingstereoimagery.Thenewgenerationofveryhighspatialresolutionsatelliteimagingsystems,suchasIkonosandQuickbird,opensaneweraofearthobservationanddigitalmapping.Theyprovidenotonlyhigh-resolutionandmulti-spectraldata,butalsothecapabilityforstereomapping.Becauseoftheirhighresolutionandtheirshortrevisitrate(~3days),IkonosandQuickbirdsatelliteimagesareveryvaluableforshorelinemappingandchangedetection,thereforetheirdatahavebeenusedinseveralpaststudies.Wangetal.(2003)investigatedanovelapproachforautomaticextractionofshorelinefromIkonosimagesusingameanshiftsegmentationalgorithm.Dietal.(2003)investigatedanovelapproachforautomaticextractionofshorelinesfromIkonosimagery:

Page 3: Shoreline extraction using satellite imagery · Shoreline extraction using satellite imagery Michalis Lipakis, Nektarios Chrysoulakis, Yiannis Kamarianakis Shoreline change is considered

BEACHMED-e/OpTIMAL BeachErosionMonitoring

83

4mand1mresolutionIkonosimagesalongtheLakeErieshorewereused.Inthefirststeptheimagesweresegmentedintohomogeneousregionsbymeanshiftsegmentation.Then,themajorwaterbodywasidentifiedandaninitialshorelinewasgenerated.Thefinalshorelinewasobtainedbylocalrefine-mentwithintheboundariesofthecandidateregionsadjacenttotheinitialshoreline.Lietal.(2003)usedIkonosstereoimageryinshorelineextraction.TheypresentedtheresultsofanexperimentinwhichtheyattemptedtoimproveIkonosRationalFunctions(RF)forabettergroundaccuracyandtoemploytheimprovedRFfor3-Dshorelineextractionusing1-meterpanchromaticstereoimagesinaLakeEriecoastalarea.Inthismethod,a2DshorelineisextractedbymanualdigitisingononeIkonosimage;thencorrespondingshorelinepointsontheotherimageofthestereo-pairareautomaticallyextractedbyimagematching.The3Dshorelineiscomputedusingphotogrammetrictriangulation.Chalabietal.(2006)hadusedpixel-basedsegmentationonIkonosimageusingDNthreshold.Thepar-titionofthelandandseaboundarywasdoneusingpseudo-colourwhichexhibitsastrongcontrastbetweenlandandwaterfeatures.Shorelinechangeisconsideredtobeoneofthemostdynamicprocessesincoastalarea.Ithasbecomeimportanttomaptheshorelinechangeasaninputdataforcoastalhazardassessment.Therearemanychange detection techniques currently in use including visual interpretation, spectral-value-basedtechnique (differencing, image regression, DN value analysis), multi-data composites, and changevectoranalysis.Visualinterpretationofmulti-temporalimagesforcoastalmonitoringwaspresentedbyMazianetal.(1989)andElkoushyandTolba(2004).BagliandSoille(2003)analysedDNvalueus-ingslicingoperationforchangemonitoring.Inaddition,WhitheandElAsmar(1999)introducedanalgorithmfunctionandDNanalysis todeviate thewater fromthe land.TheDNvalueanalysishasalsobeenappliedonLandsatimages,e.g.byFrazierandPage(2000)andMarfai(2003).Fromardetal.(2004)identifiedcoastalchangesthattookplaceoverthelast50years,andrelatedthemtonaturalprocessesofturnoverandreplenishmentofmangroveforests.Theyusedacombinationofremotesensingtechniques (aerialphotographsandSPOTsatellite images)andfieldsurveys intheareaoftheSinnamaryEstuary,FrenchGuiana.Millsetal.(2005)introducedtheintegrationofthegeomat-icstechniquestoformaccuraterepresentationsofthecoastline.AhighlyaccurateDigitalElevationModel(DEM),createdusingkinematicsGPS,wasusedascontroltoorientatesurfacesderivedfromtherelativeorientationstageofphotogrammetryprocessing.MostafaandSoussa(2006)haveappliedGISandremotesensingtechniquetomonitorthelakeofNasserincludingtheshorelinedynamics.ThreesatelliteLandsatimagesforNasserLakewereavailableinatimeseries(1984,1996,and2001).Topographymapofscale1:50.000,thatissuitabletotheresolutionofLandsatimages,wasusedfordevelopingDEM.Chalabietal.(2006)assessedmulti-datasourcesformonitoringshorelineinKualaTerengganu,MalaysiausingIkonosandaerialphotographs.Resultsoftimeseriesdatawerecombinedtoeachothershowingspatialchangeofshoreline.Marfaietal.(2007)illustratedtheshorelinedynam-icsinacoastalareaofSemarang-Indonesiausingmultisourcespatialdata.Inspiteofthetechniqueandapproachtoshorelinemonitoringanddelineation,nosinglemethodhasbeenimplementedthatisfreefrommajordisadvantages.Therefore,shorelinesof thesameareamaybeextractedatdifferent timesusingsatellitedataandrepresentchangesthatappearedindifferenceperiodsthatareillustratedasdifferencesamongthem.Therearetwopossibleinterpretationsoftheshorelinedifferences.Oneisthattheshorelineindeedchanged in the realworld.Theotherpossibility is that thedifferencesare introducedbyshorelinemappingerrors.Theaccuracyoftheshorelinederivedfrom1meterIkonosimageryshouldbeabout2m-4m(ZhouandLi2000;Lietal.,2001,GrodeckiandDial,2003),consideringthefactthattheac-curacyof3Dgroundcontrolpoints(GCPs)reaches2m–3m,withGCPsandtheaccuracyofidentifyingandlocatingconjugateshorelinepointsisabout1.5pixels(1m-2m).Anoptimisticestimationoftheshorelineaccuracyderivedfromthe4-meterIkonosimagesinthisspecificcaseisabout8.5m(Lietal.,2001).Inmostoftheaforementionedmethods,theshorelineextractionusingIkonosorthoimageryisbasedonlandcoverclassificationtodiscriminatethepixelscorrespondingtowaterbodiesfromthosecor-respondingtoland.Following,theresultingthematicimageisconvertedtovectorcoverage,usually

Page 4: Shoreline extraction using satellite imagery · Shoreline extraction using satellite imagery Michalis Lipakis, Nektarios Chrysoulakis, Yiannis Kamarianakis Shoreline change is considered

Lipakisetal. Shorelineextractionusingsatelliteimagery

84

apolygonshapefile(ESRI,2005)containingthepolygonscorrespondingtoeachclass.Theshorelineisfinallyextractedfromthepolygonthatcorrespondstowaterbyemployingautomaticorsemi-auto-maticGISprocedures.Thus,theaccuracyoftheimageorthorectification,aswellastheaccuracyoftheimageclassification,isthemostimportantfactorsaffectingtheaccuracyoftheextractedshoreline.Theorthorectificationaccuracywasdiscussedabove.Concerningclassificationaccuracy,itdependsonthespatial,spectralandradiometricresolutionoftheimage,aswellasontheclassificationmethod.Numerousstudieshavebeencarriedoutusingsatelliteimagestoextractlandcovertypes(Congalton,1991;RiddandLiu,1998;Martinetal.,1988;GongandHowarth,1990;Chrysoulakis,2003;Gallego,2004).Themajorityofthepaststudiesrelyonremotesensingdatatoclassify landcovertypesus-ingeitherrawDNorcalibratedradiancevalues.However,ifveryhighspatialresolutiondatasuchasIkonosimagesareused,thelandcoverclassificationofcoastalareasmaybeproblematicbecauseoftheheterogeneityandsmallspatialsizeofthesurfacematerials,whichleadstosignificantsub-pixelmixing(Foody,2000;Kontoesetal.,2000).Therefore,thespatialcontextshouldbetakenintoaccountinimageclassificationandobjectorientedalgorithmsshouldbeused.Improvementsintheaccuracyofclassificationhavebeenachievedusingavarietyofsophisticatedapproachesincludingtheuseofneuralnetworks (Berberogluetal.,2000), fuzzy logic (Bastin,1997;ZangandFoody1998;), textureanalysis(Stuckensetal.,2000),machinelearning(VLS,2007)andincorporationofancillaryspatialdataintheclassificationscheme(HarrisandVentura,1995;Vogelmannetal.,1998,Stefanovetal.,2001).

MethodologyTheIkonossatelliteprovidesglobal,accurate,high-resolutionimageryformapping,monitoring,anddevelopment.Thepanchromaticsensorwith82cmresolutionandan11.3kmwideswathatnadirpro-videshighresolution,intelligence-qualityimagery.Themultispectralsensor,simultaneouslycollect-ingblue,green,red,andnearinfraredbandswith3.28mresolutionatnadir,providesnatural-colourimageryforvisualinterpretationandcolour-infraredimageryforremotesensingapplications.Com-biningthemultispectralimagerywiththehighresolutionpanchromaticresultsin1-metercolourimages(pan-sharpenproduct),whichcanbeorthorectifiedafterwards.Theorthorectificationisneed-edtoeliminatethegeometricdistortions,whichwillbeexplainedbelow,sothatimagefeatureshavecorrectplanimetriccoordinates.Quantitativeestimationssuchasshorelinedetectionareperformedusingorthorectifiedimages.Apartfromthedifferenttechniquesthatcanbeappliedforshorelineextractionandmonitoringfromhighresolutionsatelliteimages,theprocessingchainconsistsofthefollowingbasicsteps:· acquisitionofimagesandpre-processing;· acquisitionofthegroundControlPoints(GCPs)withimagecoordinatesandmapcoordinates;· computationoftheunknownparametersofthemathematicalfunctionsusedforthegeometric

correctionmodel;· imageorthorectificationusinganappropriateDEM;· automatic,semi-automaticormanualshorelineextractionfromtheorthorectifiedimagery;· monitoring of shoreline changes by repeating the above steps at predefined time periods and

comparingtherelativepositionsoftheextractedshorelines.Thus,beforetheapplicationofanyalgorithmforautomaticextractionofshorelinefrommultispectralsatelliteimages,theseimagesshouldbeothorectifiedtotakeintoaccountthegeometricdistortionsduringimageacquisition,aswellastheeffectoftopography.Eachimageacquisitionsystemproducesuniquegeometricdistortionsinitsrawimagesandconsequentlythegeometryoftheseimagesdoesnotcorrespondtotheterrainorofcoursetoaspecificmapprojection.Obviously,thegeometricdis-tortionsvaryconsiderablywithdifferentfactorssuchastheplatform,thesensorandalsothetotalfieldofview.However,asithasbeendescribedbyToutin(2004),itispossibletomakegeneralcat-egorisationsofthesedistortions.Thesourcesofdistortioncanbegroupedintotwobroadcategories:theobserverortheacquisitionsystem(platform,imagingsensorandothermeasuringinstruments,suchasgyroscope,stellarsensors,etc.)andtheobserved(atmosphereandEarth).Inadditiontothesedistortions,thedeformationsrelatedtothemapprojectionhavetobetakenintoaccountbecause

Page 5: Shoreline extraction using satellite imagery · Shoreline extraction using satellite imagery Michalis Lipakis, Nektarios Chrysoulakis, Yiannis Kamarianakis Shoreline change is considered

BEACHMED-e/OpTIMAL BeachErosionMonitoring

85

theterrainandmostGISend-userapplicationsaregenerallyrepresentedandperformedrespectivelyinatopographicspaceandnotinthegeoidorareferencedellipsoid.Mostofthesegeometricdistor-tionsarepredictableorsystematicandgenerallywellunderstood.Someofthesedistortions,espe-cially those related to the instrumentation, are generally corrected at ground receiving stations orbyimagevendors.Others,forexamplethoserelatedtotheatmosphere,arenottakenintoaccountandcorrectedbecausetheyarespecifictoeachacquisitiontimeandlocationandinformationontheatmosphereisrarelyavailable.Theremaininggeometricdistortionsrequiremodelsandmathematicalfunctionstoperformgeometriccorrectionsofimagery:eitherthrough2D/3Dempiricalmodels(suchas2D/3Dpolynomialor3DRF)orwithrigorous2D/3Dphysicalanddeterministicmodels.With2D/3Dphysicalmodels,whichreflectthephysicalrealityoftheviewinggeometry(platform,sensor,Earthandsometimesmapprojection),geometriccorrectioncanbeperformedstep-by-stepwithamath-ematicalfunctionforeachdistortion/deformation,orsimultaneouslywithacombinedmathematicalfunction.2D/3Dphysicalfunctionsusedtoperformthegeometriccorrectiondiffer,dependingonthesensor,theplatformanditsimageacquisitiongeometry(Toutin,2004):· instantaneousacquisitionsystems,suchasphotogrammetriccameras,MetricCameraorLargeFor-

matCamera;· rotatingoroscillatingscanningmirrors,suchasLandsat-MSS,TMandETM+;· push-broomscanners,suchasSPOT-HRV,IRS-1C/D,IkonosandQuickbird;and· SARsensors,suchasJERS,ERS-1/2,RADARSAT-1/2andEnvisat.Whateverthegeometricmodelused,evenwiththeRFsomeGCPshavetobeacquiredtocompute/refinetheparametersofthemathematicalfunctionsinordertoobtainacartographicstandardaccu-racy.Generally,aniterativeleast-squareadjustmentprocessisappliedwhenmoreGCPsthanthemini-mumnumberrequiredbythemodel(asafunctionofunknownparameters)areused.ThenumberofGCPsisafunctionofdifferentconditions:themethodofcollection,sensortypeandresolution,imagespacing,geometricmodel,studysite,physicalenvironment,GCPdefinitionandaccuracyandthefinalexpectedaccuracy.Theaerialtriangulationmethodhasbeendevelopedandappliedwithdifferentopticalandradarsatellitedatausing3Dphysicalmodels(Toutin,2003a,b),aswellaswithIkonosdatausing3DRFmodels(Fraseretal.,2002a,b).Allmodelparametersofeachimage/striparedeterminedbyacommonleast-squaresadjustmentsothattheindividualmodelsareproperlytiedinandanentireblockisoptimallyorientedinrelationtotheGCPs.Asithasbeenalreadymotioned,shorelineextractionneedsorthorectifiedimages.Torectifytheorigi-nalimageintoamapimage,therearetwoprocessingoperations:· ageometricoperationtocomputethecellcoordinatesintheoriginalimageforeachmapimage

cell,eliminatingthegeometricdistortionsaspreviouslyexplained;and· aradiometricoperationtocomputetheintensityvalueorDNofthemapimagecellasafunctionof

theintensityvaluesoforiginalimagecellsthatsurroundthepreviously-computedpositionofthemapimagecell.

Thegeometricoperationrequirestheobservationequationsofthegeometricmodelwiththeprevi-ouslycomputedunknowns,andsometimeselevationinformation.The3DmodelstakeintoaccountelevationdistortionandDEMsisthusneededtocreatepreciseorthorectifiedimages.DEMsimpactontheorthorectificationprocess,bothintermsofelevationaccuracyforthepositioningaccuracyandofgridspacingforthelevelofdetails.Thislastaspectismoreimportantwithhigh-resolutionimagesbecauseapoorgridspacingwhencomparedtotheimagespacingcouldgenerateartefactsforlinearfeaturessuchasshorelines.Foranymapcoordinates(x,y),withthezelevationextractedfromaDEMwhen3Dmodelsareused,theoriginalimagecoordinates(columnandline)arecomputedfromthetworesolvedequationsofthemodel.However,thecomputedimagecoordinatesofthemapimagecoordinateswillnotdirectlyoverlayintheoriginalimage;inotherwords,thecolumnandlinecom-putedvalueswillrarely,ifever,beintegervalues.Sincethecomputedcoordinatevaluesintheoriginalimagearenotintegers,onemustcomputetheDNtobeassignedtothemapimagecell.Inordertodothis,theradiometricoperationusesaresamplingkernelappliedtooriginalimagecells:eithertheDN

Page 6: Shoreline extraction using satellite imagery · Shoreline extraction using satellite imagery Michalis Lipakis, Nektarios Chrysoulakis, Yiannis Kamarianakis Shoreline change is considered

Lipakisetal. Shorelineextractionusingsatelliteimagery

86

oftheclosestcell(callednearestneighbourresampling)oraspecificinterpolationordeconvolutionalgorithmusingtheDNsofsurroundingcells(Toutin,2004).InordertoaccuratelycreateorextractgeographicinformationfromrawIkonosimagery,theImageGeometryModel(IGM)mustaccompanytheimagery.TheIGMconsistsofseveralmetadatafileswhichcontainRPCs(rationalpolynomialcoefficients).TheRPCsareaseriesofcoefficientsthatdescribetherelationshipbetweentheimageasitexistedwhencapturedandtheEarth’ssurface.Althoughtheydonotdescribesensorparametersexplicitly,RFsaresimpletoimplementandperformtransforma-tionsveryrapidly.WiththeavailabilityofRPCs,theIkonosinteriorandexteriororientationsareveryaccurate.ThereforeIkonosimagerycanbeorthorectifiediftheIGM,anaccurateDEMandsomeGCPsare available by employing any photogrametric software such as Orthoengine (PCI, 2003) or LeicaPhotogrammetrySuite(Leica,2005).Thenextstepforshorelineextractionisthewater-landseparation;thereforetheorthorectifiedimageshouldbeclassifiedorapolygoncorrespondingtowater(orland)areashouldbeextracted.Takingintoaccounttheaforementionedlandcovermappingconstraintsforveryhighspatialresolutionsatel-litedata,amachinelearningclassifierapproachseemsthebestsolutionforIkonosmultispectralimageclassification.Thistypeofclassifierusesaninductivelearningalgorithmtogenerateproductionrulesfromtrainingdata.Aswithaneuralnetwork,thereareseveraladvantagestousingamachine-learn-ingapproach.Sinceancillarydatalayersmaybeusedtohelpimprovediscriminationbetweenclasses,fewerfieldsamplesaregenerallyrequiredfortraining.Thismachinelearningmodelisnon-parametricanddoesnotrequirenormally-distributeddataorindependenceofattributes.Itcanalsorecognizenonlinearpatternsintheinputdatathataretoocomplexforconventionalstatisticalanalysesortoosubtletobenoticedbyananalyst.FeatureAnalystsoftware(VLS,2007)wasselectedforshorelineextractionfromIkonosimagery,sinceitemploysmachine-learningtechniqueswhichhavethepoten-tialtoexploitboththespectralandspatialinformationoftheimage.Itprovidesaparadigmshifttoautomatedfeatureextractionsinceit:(a)utilisesspectral,spatial,temporal,andancillaryinformationtomodel the featureextractionprocess, (b)provides theability to removeclutter, (c) incorporatesadvancedmachinelearningtechniquestoprovideunparalleledlevelsofaccuracy,and(d)providesan

exceedingly simple interfaceforfeatureextraction.Itworksby taking a small and sim-ple set of training examples,learnsfromtheexamples,andclassifiestheremainderoftheimage. When classifying thecontentsofimagery,thereareonly a few attributes acces-sible to human interpreters.Foranysinglesetof imagerytheseare:Shape,Size,Colour,Texture,Pattern,Shadow,andAssociation. Traditional im-age processing techniquesincorporate only colour(spectral signature) and per-haps texture or pattern intoan involved expert workflowprocess.Theshorelineextrac-tionstepsusingFeatureAna-lystareshowninFigure1.

Figure 1 - Shoreline extraction work flow (adapted from VLS, 2007).

Page 7: Shoreline extraction using satellite imagery · Shoreline extraction using satellite imagery Michalis Lipakis, Nektarios Chrysoulakis, Yiannis Kamarianakis Shoreline change is considered

BEACHMED-e/OpTIMAL BeachErosionMonitoring

87

Case Study: Shoreline extraction in the area of Georgioupolis, CreteTheShorelineextractionfortheareaofGeorgioupoliswasperformedfortheyears1998and2005usingaerial imageryandIkonosdata,respectively.Theresultsvalidatedwith in situmeasurementswithDifferentialGPS(DGPS)providedbyOANAK.TheHellenicGeodeticReferenceSystemof1987(EGSA87)wasusedinallcases.

Shoreline extraction using an aerial image acquired in 1998AnorthorectifiedaerialimageandaDEMofthebroaderareaofGeorgioupoliswereavailabletoOANAKaspastprojectproducts.Theaerialimagehasthespatialresolutionof1m,whereasitspositionalac-curacywasbetterthan2m(RMSExy<2m).ItisshowninFigure2,wheretheroadnetwork(producedbyDGPSmeasurements)oftheareahasbeensuperimposed(redlines).FeatureAnalystwasemployedtoclassifytheaerialorthoimageinto2classes:landandwater.Theextractionoftheshorelinewasafter-wardsstraightforwardfromthepolygoncorrespondingtowaterclass,usingtheArcGISsoftware(ESRI,2005).ThelatterwillbealsoappliedtoIkonosimage,soitwillbedescribedinmoredetailbelow.The1998shorelineasextractedfromtheaerialimageisalsoshowninFigure2(yellowline).

Shoreline extraction using an Ikonos image acquired in 2005The 2005 shoreline was ex-tracted from an Ikonos mul-tispectral image. ERDAS Im-agine (Leica, 2005) was usedtopre-processtheimage;LPS(Leica, 2005) was used to or-thorectify the image; FeatureAnalyst (VLS, 2007) was usedto extract the shoreline andArcGIS(ESRI,2005)wasusedtofine-tunetheextractedshore-line.The processing chain in-cludedthefollowingsteps:

Step 1: Acquisition of images and pre-processing.Apanchromatic(PAN)andafourband(R,G,B,NIR)multispectralIkonosimagetogetherwithIGMandRPCswasprovidedbytheimagevendorasRawGeoProduct.ThefourchannelsareshowninFigure3.ERDAS Imaginewasused tomerge thepanchromaticandthemultispectral images toprovidea

four-band pan-sharpen productwithspatialresolutionof1m.TheWavelet Resolution Merge func-tion (Leica, 2005) was used.Theresultingpan-sharpenproductisshowninFigure4asapseudocol-ourcompositionRGB:4-3-2.

Figure 3 - Ikonos spectral channels of the 2005 acquisition over the area of Georgioupolis: a) blue band; b) green band; c) red band; d) near infrared band. The strong absorption of water in the near infrared band is obvious in d), therefore this band is the most use-ful for the discrimination between land and water.

Figure 2 - Orthorectified aerial image acquired in 1998. The road network (red) and the extracted shoreline (yellow) have been superimposed.

Page 8: Shoreline extraction using satellite imagery · Shoreline extraction using satellite imagery Michalis Lipakis, Nektarios Chrysoulakis, Yiannis Kamarianakis Shoreline change is considered

Lipakisetal. Shorelineextractionusingsatelliteimagery

88

Step 2: Acquisition of GCPs.AfieldcampaignwasorganizedbyOANAKand15GCP’swereselectedusingadifferentialGPS.Thelocationofthesepoints(circles)superimposedtotheroadnetworkofthestudyareaisshowninFig-ure5.Theirpositionalaccuracywasbetterthan1m(RMSExy<1m).SeveralotherGCPswererandomlyselectedtobeusedforvalidationoftheorthorectificationprocedure.

Figure 5 - Location of the meas-ured GCPs superimposed to the road network of the study area.

Step 3: Computation of the unknown parameters of the mathematical functions used for the geometric correction model.TheinteriorandexteriororientationswereautomaticallycomputedusingLPSsincetheIGMandtheGCP’swereavailable.Theaerial triangulationprocedure (Leica,2005)was followed.Thisprocedureeliminatedthegeometricerrorswhichhavebeenpreviouslydiscussed,except fortheeffectof to-pography.ThiseffectwastakenintoaccountbyusingaDEMofthestudyareaavailableatOANAK’s.ThisDEMhadbeenproducedphotogrammetricallyusingastereo-pairofaerialimagesfromthe1998campaign.TheverticalaccuracyoftheDEMwasbetterthan1m(RMSEz<1m).TheDEMwiththeroadnetworkoftheareasuperimposedisshowninFigure6.

Figure 6 - The photogrammetri-cally derived DEM with the road network and the shoreline ex-tracted from the aerial image superimposed.

Step 4: Orthorectification of images.SinceanaccurateDEMwasavailableandtheaerialtriangulationparameterswerecomputedbyLPS,theorthorectificationprocedurewasalsostraightforwardasageometricandaradiometricoperation,

Page 9: Shoreline extraction using satellite imagery · Shoreline extraction using satellite imagery Michalis Lipakis, Nektarios Chrysoulakis, Yiannis Kamarianakis Shoreline change is considered

BEACHMED-e/OpTIMAL BeachErosionMonitoring

89

asithasbeenalreadydescribed.TheorthorectificationresultisshowninFigure7asapseudocolourcompositionRGB:3-2-1,withtheroadnetworkofthearea(redlines)andtheshorelineextractedfromtheaerialimage(yellowline)superimposed.Thespatialresolutionoftheothorectifiedimageis1m,whereasitspositionalaccuracyisbetterthan2m(RMSExy<2m),therefore,asithasbeenexplained,theexpectedaccuracyoftheshorelinetobeextractedisaround4m.

Figure 7 - Pseudocolour composi-tion RGB: 3-2-1 of the orthorecti-fied Ikonos pan-sharpened im-age with the road network (red lines) and the shoreline extract-ed from the aerial image (yellow line) superimposed. Differences in shoreline between 1998 and 2005 are obvious.

Step 5: Semi-automatic shoreline extraction using Feature Analyst.TheextractionoftheshorelineusingFeatureAnalystisasemi-automaticprocedure,asshowninFigure1,involving:· thecreationofanewsetcontainingtwotrainingclasses;· thepreparationofamulti-classinputlayer;· thesetupofthelearningparametersandtheexecutionofthealgorithm;· thesplittingofthetwoclassesintoafinalpolygon;· thepostprocessing,forsmoothingoftheresultpolygon;· theconversionofthepolygonintoaline.Thefirstactionistocreatethetrainingsetofpolygons.Thisisthemostimportantaction,becausethequalityoftheresultsisdependantonthequalityofthetrainingsets.Thetrainingsetwillconsistoftwoclasses,onethatcorrespondstowaterelementsandanotheronethatcorrespondstolandelements.At thispoint, thesetwoclassesare indicatedas twoseparatesetsofpolygonsandthencombinedintoamulti-classinputlayer.Creatingthewatersetofpolygons,includesanumberoftrials,tofinallydeicideandconcludetothemostrepresentativeset.Theresultofthesetrialsisasetoffourpolygons,

three of which are locatedat the edge of the watermass, extending throughthe inshore, as shown inFigure8 (purple).Thesameprocedureisfollowedtode-cideaboutthelandset.Theresultisacorrespondingsetofsixpolygons(blue).

Figure 8 - Pseudocolour composi-tion RGB: 3-2-1 of the orthorecti-fied Ikonos pan-sharpened image with the water (purple) and land (blue) training polygons super-imposed.

Page 10: Shoreline extraction using satellite imagery · Shoreline extraction using satellite imagery Michalis Lipakis, Nektarios Chrysoulakis, Yiannis Kamarianakis Shoreline change is considered

Lipakisetal. Shorelineextractionusingsatelliteimagery

90

Inordertorunamulti-classextraction,thetwodifferentclassesofwaterandlandhavetobecom-binedintoasingle,multi-classlayer.Thereisabuilt-infunctionofFeatureAnalystforthis.Thepro-ducedtwo-classlayeristheinputofthealgorithm.Havingtheinput,thenextactionistosetthealgorithm’sparameters(VLS,2007).Allfourimagebandsareabouttobeincludedandtheimageresolutionissetto1m.Thespectralinformationisderivedfromthismultispectralimage,whereasthespatialcontextforeachpixelistakenintoaccountbyad-justingtheinputrepresentationoftheclassificationalgorithm.Theinputrepresentation,thatdeter-mineshoweachpixelislookedatinrelationtoitsneighbours,issetto“Manhattan”representation(VLS,2007).Manhattanisapre-definedinputpattern,usedmainlyforwatermassandlandcoverfea-tures,likeoceans,lakes,floods,wetland,impermeablesurfaces,etc.Thepatternwidthissetto5.Thismeansthatconsideringthatthe“decisionpixel”(redinFigure9)isinthecentreofa5×5grid,accordingtotheManhattaninputrepresentation,thealgorithmwilltakeintoaccount13pixels(blueinFigure9),locatedasshowninFigure9.Computing13pixelsofeachband,thereisatotalof52pixelsthatwillbecomputedtomakeadecisionforasinglepixel.Theminimumaggregateareaissetto500pixels.Thatistomaintainrelativefeaturecharacteristics,whiletryingtofindalargearea.

Figure 9 - The ‘Manhattan’ input representation that is used, with pattern width set to 5.

TheclassificationresultisshowninFigure10.Itisagainamulti-classlayer,whichneedstobesplit.Althoughtheborderofbothresultclassesisthesameline(theshoreline),thewaterclassischosenfortheextraction.Thebuilt-infunctioninFeatureAnalystthatsplitsoutclasseswasusedtosplittheclassesandkeeponlythewaterclassasaseparateset.Sinceonlyonepolygonhasbeenleftitsborderwassmoothedinordertoextracttheshoreline.The“BezierSmoothAlgorithm”(VLS,2007)wasused,withthefollowingparameters:thenumberofverticestoeachsidesetto2andthemaximumdistanceeachvertexisallowedtomovesetto3m.TheresultofthesmoothedpolygonisshowninFigure11.

Figure 10 - The land – water clas-sification result: a two class result corresponding to the two-class input. Both spectral and spatial information have been taken into account.

Page 11: Shoreline extraction using satellite imagery · Shoreline extraction using satellite imagery Michalis Lipakis, Nektarios Chrysoulakis, Yiannis Kamarianakis Shoreline change is considered

BEACHMED-e/OpTIMAL BeachErosionMonitoring

91

Figure 11 - The extracted – smoothed polygon correspond-ing to water.

Finally,theborderofthewaterpolygonwasautomaticallyextractedandconvertedtoalineshapefilefollowingastandardGISprocedure(VLS,2007;ESRI,2005).Thislineshapefileisthefinalresultoftheshorelineextractionprocedureas it isshowninFigure12,wheretheextractedshorelinehasbeensuperimposedontheorthorectifiedIkonosimage.

Figure 12 - Pseudocoloured composition RGB: 3-2-1 of the orthorectified Ikonos image with the extracted shoreline (yellow line) superimposed.

Step 6: Comparisons - Validation.The produced shorelines (1998 Shoreline, and 2005 Shoreline) were compared and a Root MeanSquareError(RMSE)wascomputedtoreflecttheshorelinechangeduringthis7yearsperiod.RMSEisaglobalmeasure,thusthemaximumchangewashighlightedanditispresentedbelow.TheRMSEwasusedasaquantitativeevaluationoftheextractedshorelinesaccuracy.RMSEencompassesbothsystematicandrandomerrorsandisdefinedas[1]:

[1]

Where:δsi=minimumdistanceofthetwolinesatapre-definedlocationi(x,y),n=numberofmeasuringlocationsinthisstudy.

Page 12: Shoreline extraction using satellite imagery · Shoreline extraction using satellite imagery Michalis Lipakis, Nektarios Chrysoulakis, Yiannis Kamarianakis Shoreline change is considered

Lipakisetal. Shorelineextractionusingsatelliteimagery

92

Finally,boththeimage-derivedshorelineswerecomparedwithanin situderivedshorelinewhichwasproducedbyOANAKwiththeuseofdifferentialGPS.ThethreelinesareshowninFigure13,whereapartofthestudyareahasbeenextracted(scale1:2.000):The in situderivedshorelineispresentedinred,the1998Shorelineispresentedingreenandthe2005Shorelineispresentedinyellow.TheRMSEcalculatedusingthein situlineasbaseline,aswellastheRMSEbetweentheex-tractedshorelinesfor1998and2005,areshowninTable1.

Figure 13 - Part of the study area as a pseudocolour composition RGB: 3-2-1 of the orthorectified Ikonos image (scale 1:2000). The in situ derived shoreline is shown in red, the 1998 Shoreline is shown in green, whereas the 2005 Shoreline is shown in yellow.

Theanalysisshowedthattherewerenotseverechangesinshorelinebetween1998and2005,ex-ceptinsomelocationswherethechangewassubstantial.ThemostimportantchangeisshowninFigure14,whereapartofthestudyareaaroundtheriverwhichisclosetothetownofGeorgioupolishasbeenextracted(scale1:2.000):bothlineshavebeensuperimposedontheIkonosorthorectifiedimage.The1998Shorelineispresentedingreenandthe2005Shorelineispresentedinyellow,asbefore.ItisobviousfromFigure14thattheoutfalloftheriverhasbeenmodifiedduringthis7yearperiod.Ashiftofabout50mtotheESEdirectioncanbeobservedinFigure14.

Table 1 - RMSE between a) in situ and aerial image derived shoreline (1998); b) in situ and Ikonos derived shoreline (2005); c) aerial image and Ikonos derived shoreline.

Pair of Lines RMSE (m)

Insitu–1998Shoreline 3.01

Insitu–2005Shoreline 5.65

1998Shoreline–2005Shoreline 6.46

Page 13: Shoreline extraction using satellite imagery · Shoreline extraction using satellite imagery Michalis Lipakis, Nektarios Chrysoulakis, Yiannis Kamarianakis Shoreline change is considered

BEACHMED-e/OpTIMAL BeachErosionMonitoring

93

Figure 14 - Part of the study area as a pseudocolour composition RGB: 3-2-1 of the orthorectified Ikonos image (scale 1:2000). The 1998 Shoreline is shown in green and the 2005 Shoreline is shown in yellow. A shift of about 50m to the ESE direction of the river outflow is observed.

ReferencesBagliS.andSoilleP.(2003)-Morhological automatic extraction of Pan-European coastline from Landsat

ETM+ images.InternationalSymposiumonGISandComputerCartographyforCoastalZoneMan-agement.Genova,Italy.

BastinL.(1997)Comparison of fuzzy c-means classification, linear mixture modeling and MLC probabilities as tools for unmixing coarse pixels.InternationalJournalofRemoteSensing,18:3629–3648.

BerberogluS.,LloydC.D.,AtkinsonP.M.andCurranP.J.(2000)-The integration of spectral and textural information using neural networks for land cover mapping in the Mediterranean.Computers&Geo-sciences,26:385–396.

BraudD.H.andFengW.(1998)- Semi-automated construction of the Louisiana coastline digital land/wa-ter boundary using Landsat Thematic Mapper satellite imagery.DepartmentofGeography&Anthro-pology,LouisianaStateUniversity.LouisianaAppliedOilSpillResearchandDevelopmentProgram,OSRAPDTechnicalReportSeries97-002.

ChalabiA.,Mohd-LokmanH.,Mohd-SuffianI.,KaramaliK.,KarthigeyanV.andMasitaM(2006)-Monitor-ing shoreline change using Ikonos image and aerial photographs: a case study of Kuala Terengganu area, Malaysia.In:ProceedingsoftheISPRSMid-termSymposiumProceeding.Enschede,TheNetherlands.

ChenL.C.andShyuC.C.(1998)-Automated Extraction of Shorelines from Optical and SAR Image.In:Pro-ceedingofAsianConferenceonRemoteSensing(http://www.gisdevelopment.net/aars/acrs/1998/ps3/ps3013a.asp).

ChrysoulakisN.(2003)-Estimation of the all-wave urban surface radiation balance by use of ASTER mul-tispectral imagery and in situ spatial data.JournalofGeophysicalResearch,108:4582(DOI:10.1029/2003JD003396).

CongaltonR.G.(1991)-A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data.RemoteSensingofEnvironment,37:35-46.

Page 14: Shoreline extraction using satellite imagery · Shoreline extraction using satellite imagery Michalis Lipakis, Nektarios Chrysoulakis, Yiannis Kamarianakis Shoreline change is considered

Lipakisetal. Shorelineextractionusingsatelliteimagery

94

DiK.,WangJ.,MaR.andLiR.(2003)-Automatic shoreline extraction from high-resolution Ikonos satellite imagery.InproceedingoftheAnnualASPRSConference.Anchorage,Alaska.

ElkoushyA.A.andTolbaR.A.(2004)-Prediction of shoreline change by using satellite aerial imagery.In:ProceedingoftheXXISPRSCongress.Istanbul,Turkey.

ErtezaI.A.(1998)-An automatic coastline detector for use with SAR images.SANDIAReportSAND98-2102.SandiaNationalLaboratories,California.

ESRI(2005)-ArcGIS 9. What is ArcGIS 9.1?EnvironmentalSystemsResearchInstitute,California.FoodyG.M.(2000)-Estimation of sub-pixel land cover composition in the presence of untrained classes.

Computers&Geosciences,26:469–478.FraserC.S.,HanleyH.B.andYamakawaT.(2002a)-Three-dimensional geopositioning accuracy of Ikonos

imagery.PhotogrammetricRecord,17:465–479.FraserC.S.,BaltsaviasE.andGruenA.(2002b)-Processing of Ikonos imagery for sub-metre 3D positioning

and building extraction.ISPRSJournalofPhotogrammetryandRemoteSensing,56,177–194.FrazierP.S.andPageK.J. (2000)-Water body detection and delineation with Landsat TM data.Photo-

grammetricEngineeringandRemoteSensing,66:147–167.FromardF.,VegaaC.andProisyC.(2004)-Half a century of dynamic coastal change affecting mangrove

shorelines of French Guiana. A case study based on remote sensing data analyses and field surveys.Ma-rineGeology,208:265–280.

GallegoF.J. (2004) -Remote sensing and land cover area estimation. InternationalJournalofRemoteSensing,25:3019-3047.

GongP.andHowarthP.J.(1990)-The use of structural information for improving land-cover classification accuracies at the rural – urban fringe.PhotogrammetricEngineeringandRemoteSensing,56:67-73.

GrodeckiJ.andDialG.(2003)-Block adjustment of highresolution satellite images described by rational polynomials.PhotogrammetricEngineeringandRemoteSensing,69:59-68.

HarrisP.M.andVenturaS.J.(1995)-The integration of geographic data with remotely sensed imagery to improve classification in an urban area.PhotogrammetricEngineeringandRemoteSensing,61:993–998.

HuangC.,WylieB.,HomerC.,YangL.andZylstraG.(2002)-Derivation of a tasseled cap transformation based on Landsat 7 ETM at-satellite reflectance. InternationalJournalofRemoteSensing,23:1741-1748.

KarantzalosK.andArgialasD.(2007)-Automatic shoreline mapping from panchromatic satellite images.In:Proceedingsof8thPan-HellenicGeographicConference.GreekGeographicalSociety(inGreek).

KontoesC.C.,RaptisV.,LautnerM.andOberstadlerR.(2000)-The potential of kernel classification tech-niques for land use mapping in urban areas using 5 m-spatial resolution IRS-1C imagery.InternationalJournalofRemoteSensing,21:3145–3151.

Leica(2005)-ERDAS Field Guide.LeicaGeosystems.Atlanta,Georgia,USA.LiR.,DiK.andMaR.(2001)-A Comparative Study of Shoreline Mapping Techniques.In:Proceedingof

the4thInternationalSymposiumonComputerMappingandGISforCoastalZoneManagement.Halifax,NovaScotia,Canada.

LiR.,DiK.andMaR.(2003)-3-D Shoreline Extraction from Ikonos Satellite Imagery.MarineGeodesy,26:107–115.

LiR. (1997) -Mobile mapping: An emerging technology for spatial data acquisition.PhotogrammetricEngineeringandRemoteSensing,63:1165-1169.

LiuH.andJezekK.C.(2004)-Automated extraction of coastline from satellite imagery by integrating can-ny edge detection and locally adaptive thresholding methods.InternationalJournalofRemoteSens-ing,25:937–958.

MarfaiM.A.,AlmohammadH.,DeyS.,SusantoB.andKingL.(2007)-Coastal dynamic and shoreline mapping: multi-sourcesspatial data analysis in Semarang Indonesia.EnvironMonitoringandAssess-ment,DOI10.1007/s10661-007-9929-2.

MarfaiM.A.(2003)-Monitoring of the coastal zone dynamics by means of multi-temporal Landsat TM.In:ProceedingsoftheannualscientificmeetingXII,Indonesianremotesensingsociety.Bandung.

Page 15: Shoreline extraction using satellite imagery · Shoreline extraction using satellite imagery Michalis Lipakis, Nektarios Chrysoulakis, Yiannis Kamarianakis Shoreline change is considered

BEACHMED-e/OpTIMAL BeachErosionMonitoring

95

MartinL.R.G.,HowarthP.J.andHolderG.(1988)-Multispectral classification of land use at the rural-urban fringe using SPOT data.CanadianJournalofRemoteSensing,14:72–79.

MazianH.I.,AzizI.andAbdullahA.(1989)-Preliminary evaluation of photogrammetric-remote sensing approach in monitoring shoreline erosion.In:Proccedingsofthe10thAsianConferenceonRemoteSensingProceeding.KualaLumpur.

MillsJ.P.,BuckleyS.J.,MitchellH.L.,ClarkeP.J.andEdwardsS.J. (2005)-A geomatics data integration technique for coastal change monitoring.EarthSurfaceProcessesandLandforms,30:651–664.

MostafaM.M.andSoussaH.K. (2006) -Monitoring of Lake Nasser using remote sensing and GIS tech-niques.In:ProceedingsoftheISPRSMid-termSymposium.Enschede,TheNetherlands.

PCI(2003)-OrthoEngine User Guide.PCIGeomatics.Ontario,Canada.RiddM.K.andLiuJ.(1998)-A comparison of four algorithms for change detection in an urban environ-

ment.RemoteSensingofEnvironment,63:95–100.RyanT.W.,SementilliP.J.,YuenP.andHuntB.R.(1991)-Extraction of shoreline features by neural nets and

image processing.PhotogrammetricEngineeringandRemoteSensing,57:947-955.ScottJ.W.,MooreL.R.,HarrisW.M.andReedM.D.(2003)-Using the Landsat 7 Enhanced Thematic Mapper

Tasseled Cap Transformation to Extract Shoreline.Open-FileReportOF03-272U.S.GeologicalSurvey.ShawB.andAllenJ.R.(1995)-Analysis of a dynamic shoreline at Sandy Hook, New Jersey, using a geo-

graphic information system.In:ProceedingsofASPRS/ACSM.pp.382-391.StefanovW.L.,RamseycM.S.andChristensenP.R.(2001)-Monitoring urban land cover change: An ex-

pert system approach to land cover classification of semiarid to arid urban centers.RemoteSensingofEnvironment,77:173–185.

StuckensJ.,CoppinP.R.andBauerM.E.(2000)-Integrating contextual information with per-pixel classifi-cation for improved land cover classification.RemoteSensingofEnvironment,71:282–296.

ToutinTh.(2004)-Review article: Geometric processing of remote sensing images: models, algorithms and methods.InternationalJournalofRemoteSensing,25,1893–1924

ToutinTh.(2003a)-Block bundle adjustment of Ikonos in-track images.InternationalJournalofRemoteSensing,24:851–857.

ToutinTh.(2003b)-Error tracking in Ikonos geometric processing using a 3D parametric modelling.Pho-togrammetricEngineeringandRemoteSensing,69:43–51.

TrebossenH.,DeffontainesB.,ClasseauN.,KouameJ.andRudantJ.-P.(2005)-Monitoring coastal evo-lution and associated littoral hazards of French Guiana shoreline with radar images.ComptesRendusGeosciences,337:1140-1153.

VogelmannJ.E.,SohlT.andHowardS.M.(1998)-Regional characterization of land cover using multiple sources of data.PhotogrammetricEngineeringandRemoteSensing,64:45–57.

VLS (2007) - Feature Analyst Version 4.1 for Imagine.ReferenceManual.VisualLearningSystems Inc.Missoula,USA.

WangK.D.J.,MaR.andLiR.(2003)-Automatic shoreline extraction from high resolution Ikonos satellite imagery.In:ProceedingsoftheASPRSAnnualConference.Anchorage,Alaska.

WhitheK.andElAsmarH.M.(1999)-Monitoring changing position of coastline using thematic mapper imagery, an example from the Nile Delta.Geomorphology,29:93–105.

Wu T.D. and Lee M.T. (2007) - Geological Lineament and Shoreline Detection in SAR Images.Proceedings of IEEE Geosciences and Remote Sensing Symposium (IGARSS 2007). Barcelona,Spain.

ZakariyaR.,RosnanY.,SaidinS.A.,YahayaM.H.,KasawaniI.andLokmanH.(2006)-Shoreline detection and changes for Terengganu river mouth from satellite imagery (Landsat 5 and Landsat 7).JournalofSustainabilityScienceandManagement,1:47-57.

ZangJ.andFoodyG.M.(1998)-A fuzzy classification of sub-urban land cover from remotely sensed im-agery.InternationalJournalofRemoteSensing,19:2721-2738.

ZhouG.andLiR.(2000)-Accuracy Evaluation of Ground Points from IKONOS High-Resolution Satellite Imagery.PhotogrammetricEngineeringandRemoteSensing,66:1103-1112.

Page 16: Shoreline extraction using satellite imagery · Shoreline extraction using satellite imagery Michalis Lipakis, Nektarios Chrysoulakis, Yiannis Kamarianakis Shoreline change is considered