shett3

2
Formula Sheet CHE 312 Fluid Mechanics (Fall 2010) Final Exam, December 20, 9-11 am Print this document on a single sheet of paper and bring it to the exam; there will be no spare sheets at the exam. You are allowed to add information on the side of the sheet you printed on; the reverse side should be blank  Newtonian fluids :  x  xy dv dy τ µ =   xy τ  shear stress,  µ  viscosity,  x dv dy  velocity gradient  Hydrostatics  p g  z  ρ =   p hydrostatic pressure,  ρ  density, g gravitational acceleration,  z points up  z f F V g  ρ =   z F  buoyancy force, V  displaced fluid volume,  f  ρ  fluid density Total mass balance: , , m in m out  dm dt φ φ =  total mass m is a conserved quantity Steady state mechanical energy balance (Bernoulli equation) 2 1 2 nf  fr m W  p v gz e  ρ φ  + + = ɺ   is “out minus in”; nf W ɺ  work rate not related to flow;  fr e  frictional loss. Frictional loss In a straight pipe or channel with length L and (hydraulic) diameter 4 h  A  D W : 2 2  fr h  L e fU  D = . V U  A φ = : average velocity; A: cross sectional area; W : wetted perimeter.  f : Fanning friction factor,  f  is a function of Re h UD  ρ  µ = , and the relative wall roughness h  D ε . Special cases: laminar flow in a round tube: 16 Re  f  = ; turbulent flow with smooth walls: 1/ 4 4 0.316 Re  f  = . Loss coefficients K : 2 2  fr U e K = .  Momentum balanc e ( ) , , m in m out  d m dt φ φ = + in out v v v F  v is the velocity vector ; F  is the sum of forces acting on the system.  Drag force  D F   on a particle moving relative to fluid  1 2  D f C A  ρ = D F v v   D C  drag coefficient;  A  area ‘seen’ by the flow; = f p v v v .  D C  depends on the sh ape of the particle and Re  f p d  ρ  µ = v ,  p d  is the particle size. Spherical particles (diameter  p d , and therefore 2 4  p  A d π  = ) For Re<1 Stokes law applies: 3  p d π µ = D F  v , which is the same as 24 Re  D C  = . A more general correlation: ( ) 0.687 24 1 0.15 Re ifRe 1000; 0.44 ifRe 1000 Re  D D C C = + < = .  Ergun equation  (frictional loss in a packed bed with porosity ε  made of spheres all having diameter  p d ) ( )  ( ) 2 sup 2 sup 3 2 3 1 1 1 1.75 150  fr  p p v e L v L d d  µ ε ε ε ρ ε = +  sup V v  A φ = ; L is the bed le ngth;  A its cross sectional area.  Darcy equation & p ermeability for flow in a porous mediu m ( ) d p gz v dx k  ρ µ + =  k  is permeability (units m 2 ); v is superficial velocity.

Upload: nkchandru

Post on 28-Feb-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Shett3

7/25/2019 Shett3

http://slidepdf.com/reader/full/shett3 1/1

Formula Sheet CHE 312 Fluid Mechanics (Fall 2010)Final Exam, December 20, 9-11 am

Print this document on a single sheet of paper and bring it to the exam; there will be no spare sheets at the exam. You are

allowed to add information on the side of the sheet you printed on; the reverse side should be blank

 Newtonian fluids:  x xy

dv

dyτ µ =    xy

τ   shear stress,  µ  viscosity,  xdv

dy velocity gradient 

 Hydrostatics

 p g z

 ρ ∂ = −∂

   p hydrostatic pressure,  ρ   density, g gravitational acceleration, z points up 

 z f F V g ρ =   z

F   buoyancy force, V   displaced fluid volume, f 

 ρ   fluid density

Total mass balance:, ,m in m out  

dm

dt φ φ = −   total mass m is a conserved quantity 

Steady state mechanical energy balance (Bernoulli equation)

21

2

nf 

 fr 

m

W  pv gz e

 ρ φ 

∆ + + = −

ɺ

  ∆ is “out minus in”; nf W ɺ  work rate not related to flow;

 fr e  frictional loss.

Frictional loss

In a straight pipe or channel with length L and (hydraulic) diameter 4

h

 A D

≡ :2

2 fr 

h

 Le fU 

 D

= .

V U  A

φ = : average velocity; A: cross sectional area; W : wetted perimeter.

 f : Fanning friction factor,  f   is a function of Re hUD ρ 

 µ = , and the relative wall roughness

h D

ε .

Special cases: laminar flow in a round tube:16

Re f   = ; turbulent flow with smooth walls:

1/ 44 0.316Re f 

  −= .

Loss coefficients K :2

2 fr 

U e K = .

 Momentum balance

( ) , ,m in m out  d  mdt 

φ φ = − + ∑in outv v v F   v is the velocity vector ; ∑ F  is the sum of forces acting on the system.

 Drag force D

F   on a particle moving relative to fluid  

1

2 D f 

C A ρ ⊥

=D

F   ∆v  ∆v   D

C   drag coefficient;  A⊥

 area ‘seen’ by the flow; = −f p∆v v v .

 DC   depends on the shape of the particle and Re

 f pd  ρ 

 µ =

∆v,

 pd   is the particle size.

Spherical particles (diameter  pd  , and therefore

2

4 p

 A d π 

⊥  = )

For Re<1 Stokes law applies: 3  pd π µ =DF   ∆v , which is the same as

24

Re DC    = .

A more general correlation: ( )0.687241 0.15Re if Re 1000; 0.44 if Re 1000

Re D D

C C = + < = ≥ .

 Ergun equation (frictional loss in a packed bed with porosity ε   made of spheres all having diameter  pd  )

( )   ( )2

sup2

sup3 2 3

11 11.75 150 fr 

 p p

ve L v L

d d 

 µ ε ε 

ε ρ ε 

−−= +   sup

V v A

φ = ; L is the bed length; A its cross sectional area.

 Darcy equation & permeability for flow in a porous medium

( )d p gzv

dx k 

 ρ    µ += −   k  is permeability (units m

2); v is superficial velocity.