shear alignment and mechanical properties of ... · anisotropy of bragg spots 1.0 1.5 o wder 0.0...

23
Shear Alignment and Mechanical Properties of Nanostructured Hydrogels Lynn M. Walker Department of Chemical Engineering Carnegie Mellon University Carnegie Mellon University Pittsburgh PA 15217 IMA Special Workshop Flowing Complex Fluids: Fluid MechanicsInteraction of Microstructure and Flow October 1216, 2009

Upload: others

Post on 12-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Shear Alignment and Mechanical Properties of ... · Anisotropy of Bragg spots 1.0 1.5 o wder 0.0 0.5 - I sides) / I Equilibrium p HCP {1010} HCP {3210} FCC {220}-1.0-0.5 (I top-bottom

Shear Alignment and Mechanical Properties of Nanostructured Hydrogels

Lynn M. WalkerDepartment of Chemical Engineering

Carnegie Mellon UniversityCarnegie Mellon UniversityPittsburgh PA 15217

IMA Special WorkshopFlowing Complex Fluids: Fluid Mechanics‐Interaction of 

Microstructure and FlowOctober 12‐16, 2009

Page 2: Shear Alignment and Mechanical Properties of ... · Anisotropy of Bragg spots 1.0 1.5 o wder 0.0 0.5 - I sides) / I Equilibrium p HCP {1010} HCP {3210} FCC {220}-1.0-0.5 (I top-bottom

One person that would be happy…

Chevy Chase as Gerald FordS t d Ni ht Li

Th ill b th

Saturday Night Live

There will be no math…

Page 3: Shear Alignment and Mechanical Properties of ... · Anisotropy of Bragg spots 1.0 1.5 o wder 0.0 0.5 - I sides) / I Equilibrium p HCP {1010} HCP {3210} FCC {220}-1.0-0.5 (I top-bottom

Nanostructured Block Copolymer SolutionsBlock copolymers – covalently linked blocks ofBlock copolymers covalently linked blocks of  chemically dissimilar chains.

In a “selective” solvent

Lyophobic

Lyophiliccorona Block copolymer micelles – associated 

structures held together by intermolecularcore structures held together by intermolecular forces.                              Nagg ~ 100

At high enough concentrations

Block copolymer “crystal” – intermicellar interactions will lead to long range ordering.

Page 4: Shear Alignment and Mechanical Properties of ... · Anisotropy of Bragg spots 1.0 1.5 o wder 0.0 0.5 - I sides) / I Equilibrium p HCP {1010} HCP {3210} FCC {220}-1.0-0.5 (I top-bottom

Nanostructured HydrogelsF (PEO) (PPO) (PEO) t ibl k l t b l ti l t t• For (PEO)-(PPO)-(PEO) triblock copolymers, water becomes a selective solvent at temperatures > 10 – 15oC.

Temperature

Page 5: Shear Alignment and Mechanical Properties of ... · Anisotropy of Bragg spots 1.0 1.5 o wder 0.0 0.5 - I sides) / I Equilibrium p HCP {1010} HCP {3210} FCC {220}-1.0-0.5 (I top-bottom

Nanostructured Hydrogels

T 5⁰C T = 25⁰CT = 5⁰C Liquid

T = 25 CGel

• Increase in temperature results in a spontaneous transition from a liquid (polymer solution) to a gel (close packed micelle “crystal”).

Page 6: Shear Alignment and Mechanical Properties of ... · Anisotropy of Bragg spots 1.0 1.5 o wder 0.0 0.5 - I sides) / I Equilibrium p HCP {1010} HCP {3210} FCC {220}-1.0-0.5 (I top-bottom

Nanostructured HydrogelsCl k d i ll f h t d t i l ith l t t• Close-packed micelles form a phase separated material with nanoscale structure. The transition is entropic, so likely dominated by the change in volume fraction.

~ 10 nmInterstitial spaces form water filled “pockets”. versus

PPO cores – dehydrated melt.PEO corona – hydrated.

Features of “pocket”:• Mainly solvent (water).• Dense hydrated PEO “boundaries”.• Dimensions on the order of 10 nm.• Thermoreversible.

Page 7: Shear Alignment and Mechanical Properties of ... · Anisotropy of Bragg spots 1.0 1.5 o wder 0.0 0.5 - I sides) / I Equilibrium p HCP {1010} HCP {3210} FCC {220}-1.0-0.5 (I top-bottom

Templating ApproachApplications in:Applications in:• Nanoparticle storage.• Protein protection/storage.• Nanomaterial design.

Requirements of Dispersed Particles:• Colloidally stable.y• Minimal adsorption of polymer.• Dimensions coincident with crystal.• Stoichiometry.

Series of papers by D. C. Pozzo and L. M. Walker 

Page 8: Shear Alignment and Mechanical Properties of ... · Anisotropy of Bragg spots 1.0 1.5 o wder 0.0 0.5 - I sides) / I Equilibrium p HCP {1010} HCP {3210} FCC {220}-1.0-0.5 (I top-bottom

Mechanical Properties - Thermoreversibility

~ 0o

17o ~ 0o

~ 17o

Wanka, G., Hoffmann, H., and Ulbricht, W. “Phase Diagrams and Aggregation Behavior of Poly(oxyethylene)-Poly(oxypropylene)-Poly(oxyethylene) Triblock Copolymers in Aqueous Solutions” Macromolecules 27 (1994), 4145-4159.

Page 9: Shear Alignment and Mechanical Properties of ... · Anisotropy of Bragg spots 1.0 1.5 o wder 0.0 0.5 - I sides) / I Equilibrium p HCP {1010} HCP {3210} FCC {220}-1.0-0.5 (I top-bottom

Mechanical Behavior - Composites

101

102

20% F127 Matrix

105F127 25% + BSA

Loading Level Gel Stiffness

/s 10-3

10-2

10-1

100

10

rad/s

103

104

10 F127 25% + BSA 0 w% 1 w% 3 w% 4 w% 5 w%

% C l

101

102

(kP

a) @

1 ra

d/

10-5

10-4

10 3

25% F127 Matrix

(kPa) @

 1 r

101

102

G*

(Pa)

6 w% Crystal

3

10-2

10-1

100

10

G*

G* (

10-1

100

5550454035302520151050Fluid

10-5

10-4

10-3

6560555045403530252015105T t (C)

No Silica 5% Silica 7 nm 10% Silica 7 nm

5550454035302520151050Temperature (°C)

Used rheology as a tool to map out the Temperature (C)operating space.

Series of papers by D. C. Pozzo and L. M. Walker 

Page 10: Shear Alignment and Mechanical Properties of ... · Anisotropy of Bragg spots 1.0 1.5 o wder 0.0 0.5 - I sides) / I Equilibrium p HCP {1010} HCP {3210} FCC {220}-1.0-0.5 (I top-bottom

How do we measure structure directly? - SANSV ti f H O t D O t “ t h” ti f it t i l• Vary ratio of H2O to D2O to “match” portions of a nanocomposite material.

10

8

Polymer Micelles

8

6

I1/2

4

2

Dispersed Phase

0

100806040200D2O (mol/mol %)

Page 11: Shear Alignment and Mechanical Properties of ... · Anisotropy of Bragg spots 1.0 1.5 o wder 0.0 0.5 - I sides) / I Equilibrium p HCP {1010} HCP {3210} FCC {220}-1.0-0.5 (I top-bottom

Proteins – Templating of BSA

• C t t i ti SANS h th t th ti l h th ti l t t• Contrast variation SANS shows that the particle have the same spatial structure as the template.

Page 12: Shear Alignment and Mechanical Properties of ... · Anisotropy of Bragg spots 1.0 1.5 o wder 0.0 0.5 - I sides) / I Equilibrium p HCP {1010} HCP {3210} FCC {220}-1.0-0.5 (I top-bottom

Templating of protein – Different templates

• Two different block copolymer templates but a similar templating observed.p y p p g

Page 13: Shear Alignment and Mechanical Properties of ... · Anisotropy of Bragg spots 1.0 1.5 o wder 0.0 0.5 - I sides) / I Equilibrium p HCP {1010} HCP {3210} FCC {220}-1.0-0.5 (I top-bottom

Shear Alignment of Crystal DomainsShear→

“Powder” Macro‐domain Shear →

Couette shear

Typical ScatteringProfiles

Page 14: Shear Alignment and Mechanical Properties of ... · Anisotropy of Bragg spots 1.0 1.5 o wder 0.0 0.5 - I sides) / I Equilibrium p HCP {1010} HCP {3210} FCC {220}-1.0-0.5 (I top-bottom

Alignment to Single CrystalShear Rate: 1 s-1Powder Scattering Shear Rate: 10 s-1 Shear Rate: 100 s-1Shear Rate: 1 sPowder Scattering Shear Rate: 10 s Shear Rate: 100 s

Simple Shear

VorticityVorticity

Shear

• Alignment does not require large deformation rates (G* ~ O(10 – 100 kPa)

• Quantify the level of domain alignment:

bkg)q(I

bkg)q(S)q(P)N,(C)(I q

bkg)q(IPP )q(S)(S)1()(S PPAP qq

Aligned Un‐aligned

Page 15: Shear Alignment and Mechanical Properties of ... · Anisotropy of Bragg spots 1.0 1.5 o wder 0.0 0.5 - I sides) / I Equilibrium p HCP {1010} HCP {3210} FCC {220}-1.0-0.5 (I top-bottom

Shear Alignment with Dispersed ParticlesNeat Micelle Crystal (Pluronic F127 20%)

Φ

1.0

0.8

F127 25 wt% at 25 °C

Neat Polymer Shearing Neat Polymer Rest after Shear3 % Sili Sh i

y ( )

1.2

1.0 First Ring

ΦPowder ≈

0.6

Frac

tion

3 wt% 7nm Silica Shearing 2 wt% BSA Shearing 2 wt% BSA Rest after Shear

1.0

0.8log

0.4P

owde

r 0.6

0.4 P

0.2

0.0

0.2

• Addition of particles to interstitial spaces does not stop ability to align crystal

100806040200Shear Rate (s-1)

0.0

1 10 100 1000Shear Rate

Addition of particles to interstitial spaces does not stop ability to align crystal.• Alignment is initially “easier”; detailed nature of particles impacts alignment at higher rates.

Page 16: Shear Alignment and Mechanical Properties of ... · Anisotropy of Bragg spots 1.0 1.5 o wder 0.0 0.5 - I sides) / I Equilibrium p HCP {1010} HCP {3210} FCC {220}-1.0-0.5 (I top-bottom

Alignment to Single CrystalShear Rate: 1 s-1Powder Scattering Shear Rate: 10 s-1 Shear Rate: 100 s-1Shear Rate: 1 sPowder Scattering Shear Rate: 10 s Shear Rate: 100 s

Simple Shear

VorticityVorticity

Shear

5 Hz, 1000% Strain 50 Hz, 1000% Strain Powder Scattering

O ill tOscillatory Shear

• Significant difference between simple and oscillatory shear flow• Significant difference between simple and oscillatory shear flow.• Structures are more aligned in oscillation.

Page 17: Shear Alignment and Mechanical Properties of ... · Anisotropy of Bragg spots 1.0 1.5 o wder 0.0 0.5 - I sides) / I Equilibrium p HCP {1010} HCP {3210} FCC {220}-1.0-0.5 (I top-bottom

Oscillatory Shear – Linear?5 Hz 1000% Strain

10000

1000001 rad/s5 rad/s10 rad/s15 rad/s20 d/

Region probed with SANS

5 Hz, 1000% Strain 

100

1000

%

20 rad/s25 rad/s

5 Hz 100% Strain

1

10Stra

in % 5 Hz, 100% Strain 

0.1

1

0 200 400 600 800 10000 200 400 600 800 1000Stress (Pa)

• SANS performed under nonlinear conditions.SANS performed under nonlinear conditions.• Appears that we need nonlinear levels of strain to align the powder.

Page 18: Shear Alignment and Mechanical Properties of ... · Anisotropy of Bragg spots 1.0 1.5 o wder 0.0 0.5 - I sides) / I Equilibrium p HCP {1010} HCP {3210} FCC {220}-1.0-0.5 (I top-bottom

Persistence of Structure

25wt% F127; 5 Hz, 500% strain

Sample at rest (15 min)Under shear Sample at rest (15 min)Under shear

F127 30 wt% + Silica 3 wt%;Sili S iSilica Scattering;Simple shear 10s‐1

Sample at rest (1 month)Under shear

• Once aligned, samples remain ordered over time.

Page 19: Shear Alignment and Mechanical Properties of ... · Anisotropy of Bragg spots 1.0 1.5 o wder 0.0 0.5 - I sides) / I Equilibrium p HCP {1010} HCP {3210} FCC {220}-1.0-0.5 (I top-bottom

Flow mechanism?Equilibrium

HCP {1010}

HCP {3210}

Equilibrium

HCP {1010}

HCP {3210}

Sliding

FCC {220}HCP {1210}FCC {220}HCP {1210}

Zig‐zagZig-Zag SlidingZig-Zag Sliding

Loose W. and Ackerson B.J., JCP 1994

Page 20: Shear Alignment and Mechanical Properties of ... · Anisotropy of Bragg spots 1.0 1.5 o wder 0.0 0.5 - I sides) / I Equilibrium p HCP {1010} HCP {3210} FCC {220}-1.0-0.5 (I top-bottom

Flow mechanism of BCP crystal

0.04

0.06

0.08

0.04

0.06

0.08Rest

0.04

0.06

0.08100 s-

110 s-

1

25% F127 in 100% D2O

-0.04

-0.02

0.00

0.02

QV

ort (

A-1)

-0.04

-0.02

0.00

0.02

QV

ort (

A-1)

-0.04

-0.02

0.00

0.02

QV

ort (

A-1)

-0.08

-0.06

-0.08 -0.04 0.00 0.04QVel (A

-1)

-0.08

-0.06

-0.08 -0.04 0.00 0.04QVel (A

-1)

R-0.08

-0.06

-0.08 -0.04 0.00 0.04QVel (A

-1)

R

10 s-

1

R

Zig-Zag SlidingZig-Zag Sliding

To quantify:

A = (Itop – Isides)/Ipowder

• Does not agree with either simple flow mechanism.C i f h l h ?

T

• Coexistence of another crystal phase?

Page 21: Shear Alignment and Mechanical Properties of ... · Anisotropy of Bragg spots 1.0 1.5 o wder 0.0 0.5 - I sides) / I Equilibrium p HCP {1010} HCP {3210} FCC {220}-1.0-0.5 (I top-bottom

Anisotropy of Bragg spots

1.0

1.5

owde

r

0.0

0.5

- Isi

des)

/ I p

o

Equilibrium

HCP {1010}

HCP {3210}

FCC {220}

Equilibrium

HCP {1010}

HCP {3210}

FCC {220}

-1.0

-0.5(I t

op-b

otto

m

F127 25 wt% at 25 °C

Neat Polymer Shearing Neat Polymer Rest after Shear 2 wt% BSA Shearing2 t% BSA R t ft Sh

FCC {220}HCP {1210}FCC {220}HCP {1210}

-1.5

300250200150100500Shear Rate (s-1)

2 wt% BSA Rest after Shear 3 wt% 7nm Silica Shearing

• Again, the nature of the particles matter.• Flo mechanism is complicated in all cases

Shear Rate (s )

• Flow mechanism is complicated in all cases.

Page 22: Shear Alignment and Mechanical Properties of ... · Anisotropy of Bragg spots 1.0 1.5 o wder 0.0 0.5 - I sides) / I Equilibrium p HCP {1010} HCP {3210} FCC {220}-1.0-0.5 (I top-bottom

Conclusions

• Thermoreversible block copolymer gels are able to spatially template nanoparticulate material.

• Templating is controlled primarily by particle size.

• Shear allows soft gels to be aligned which persists• Shear allows soft gels to be aligned which persists.

• Flow mechanisms are complex and depend on details of particulate material (and gel?)particulate material (and gel?)

F127_25_03 (40.7) BSA 25ºC 

Page 23: Shear Alignment and Mechanical Properties of ... · Anisotropy of Bragg spots 1.0 1.5 o wder 0.0 0.5 - I sides) / I Equilibrium p HCP {1010} HCP {3210} FCC {220}-1.0-0.5 (I top-bottom

AcknowledgementsGraduate Students May 2006Graduate Students• Brian Priore• Brian Thebaud• My Hang Truong

May 2006

• Yenny Christanti• Michael Gerber• Danilo Pozzo

Git S tJune 2008

• Gita Seevaratnam• Marshall Lindsey• Jeff Shaheen• Danny Kuntz

Funding• National Science Foundation• National Energy Tech Lab.

P t & G blDanny Kuntz• Eric Miller• Yuli Wei• Theresa LaFollette

• Proctor & Gamble• ACS – PRF• NASA

• Wingki Lee• Nick Alvarez• Viet Lam

M tt R i h t

A Gordon Conference to consider (www.grc.org):

Colloidal, Macromolecular & Polyelectrolyte Solutions Gordon Research Conference• Matt Reichert

• Vicki Cheng

Research Conference Four Points Sheraton in Ventura, CA ;  February 21‐26, 2010