sheaf cohomology on binoid schemes - dipmatematica.unito.it · f 2m nilpotent if 9n 2n s.t. nf = 1...

81
Sheaf Cohomology on Binoid Schemes Davide Alberelli [email protected] Welcome Home Workshop 2014 Torino, 22 Dicembre 2014

Upload: nguyendat

Post on 14-Dec-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Sheaf Cohomology on Binoid Schemes

Davide [email protected]

Welcome Home Workshop 2014Torino, 22 Dicembre 2014

Page 2: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Definition and Motivation

Monoid M = (M,+, 0) Monoid Algebra R[M ]

M −→ R[M ]

0 7−→ 1

a 7−→ T a

and

T a ∗ T b := T a+b

Page 3: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Definition and Motivation

Monoid M = (M,+, 0) Monoid Algebra R[M ]

We can study Algebras from the combinatorics of Monoids

Toric Geometry, Tropical Geometry, Mirror Symetry, . . .

Cannot represent 0-divisorsCannot quotient out ideals of monoids

M −→ R[M ]

0 7−→ 1

a 7−→ T a

and

T a ∗ T b := T a+b

Page 4: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Definition and Motivation

Binoid B = (B,+, 0,∞) Binoid Algebra R[B]

If N = (B,+, 0) then

R[B] := R[N ]�T∞

Monoid M = (M,+, 0) Monoid Algebra R[M ]

Page 5: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Definition and Motivation

Binoid B = (B,+, 0,∞) Binoid Algebra R[B]

If N = (B,+, 0) then

R[B] := R[N ]�T∞

We can have 0-divisorsa+ b =∞ =⇒ T a ∗ T b = 0

and we can try to describe combinatorially thealgebraic properties of more algebras.

Monoid M = (M,+, 0) Monoid Algebra R[M ]

What algebras?

Page 6: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Definition and Motivation

Binoid B = (B,+, 0,∞) Binoid Algebra R[B]

If N = (B,+, 0) then

R[B] := R[N ]�T∞

We can have 0-divisorsa+ b =∞ =⇒ T a ∗ T b = 0

and we can try to describe combinatorially thealgebraic properties of more algebras.

Monoid M = (M,+, 0) Monoid Algebra R[M ]

Theorem (Eisenbud, Sturmfels 1996). All and onlythe varieties closed under component-wisemultiplication are binoidal varieties.

Page 7: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Integral Binoids

B• := B r {∞} If it is a monoid, we say that B is integral

Page 8: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Integral Binoids

B• := B r {∞} If it is a monoid, we say that B is integral

Ex: M monoid ⇒ (M ∪ {∞},+, 0,∞) integral

(N ∪ {∞},+, 0,∞)

We should recover monoid theory from the one of integral binoids

Page 9: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Integral Binoids

B• := B r {∞} If it is a monoid, we say that B is integral

Ex: M monoid ⇒ (M ∪ {∞},+, 0,∞) integral

(N ∪ {∞},+, 0,∞)

We should recover monoid theory from the one of integral binoids

B = (X,Y | X + Y =∞) non integral

K[B] = K[x, y]�〈xy〉 non integral

Page 10: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Integral Binoids

B• := B r {∞} If it is a monoid, we say that B is integral

Ex: M monoid ⇒ (M ∪ {∞},+, 0,∞) integral

(N ∪ {∞},+, 0,∞)

We should recover monoid theory from the one of integral binoids

B = (X,Y | X + Y =∞) non integral

K[B] = K[x, y]�〈xy〉 non integral

R = K[x, y]�〈x(x− y)〉 comes from

B = (X,Y | 2X = X + Y ) integral but non cancellative

X 6= Y

Page 11: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

M -sets

M monoid, S set

M y S : M × S −→ S

(a, s) 7−→ a+ s

(0, s) 7−→ s

(a+ b) + s = a+ (b+ s)

Page 12: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

M -sets

M monoid, S set

M y S : M × S −→ S

(a, s) 7−→ a+ s

(0, s) 7−→ s

M binoid, (S, p) pointed set

M y S : M × S −→ S

(a, s) 7−→ a+ s

(0, s) 7−→ s

(∞, s) 7−→ p

(a, p) 7−→ p(a+ b) + s = a+ (b+ s)

Simone Bottger, Holger Brenner

Introduction of Binoids and theoric bases

Bayarjargal Batsukh, Holger Brenner

Hilbert-Kunz multiplicity for M -sets

Page 13: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Ideals

M binoid, I ⊆M , I an M -set

I ideal of M .

• ∞ ∈ I• closed under y

Page 14: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Ideals

M binoid, I ⊆M , I an M -set

I ideal of M .

• ∞ ∈ I• closed under y

Something we cannot do withmonoids: quotients

Rees equiv. relation: ∼I

a ∼I b ⇐⇒ a = b or

a, b ∈ I

Page 15: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Ideals

M binoid, I ⊆M , I an M -set

I ideal of M .

• ∞ ∈ I• closed under y

Something we cannot do withmonoids: quotients

Rees equiv. relation: ∼I

a ∼I b ⇐⇒ a = b or

a, b ∈ IM�I := M�∼I

Set to ∞ everything in I and leave everything else untouched.

M −→M�I

b −→

{∞ if b ∈ Ib else

Page 16: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Ideals

M binoid, I ⊆M , I an M -set

I ideal of M .

• ∞ ∈ I• closed under y

Something we cannot do withmonoids: quotients

Rees equiv. relation: ∼I

a ∼I b ⇐⇒ a = b or

a, b ∈ IM�I := M�∼I

p ⊂M ideal is prime if a+ b ∈ p⇒ a ∈ p or b ∈ pEquiv. M r p is a monoid

Spec(M) := {p ⊂M | p prime ideal}

Page 17: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Build Spec up

Theorem (Bottger 2014). If M is a binoidwith generating subset G ⊆M then everyprime ideal of M is of the form 〈A〉 for somesubset A ⊆ G.

(x, y, z | x+ y = 2z)

Page 18: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Build Spec up

Theorem (Bottger 2014). If M is a binoidwith generating subset G ⊆M then everyprime ideal of M is of the form 〈A〉 for somesubset A ⊆ G.

Proposition (A. 2014). S ⊆ G. I = 〈S〉 isprime iff for every relation ri between

generators of M , the elements of S ∪ {∞}are either on both sides of ri or on none.

(x, y, z | x+ y = 2z)

〈∞〉〈x〉, 〈y〉, 〈z〉〈x, y〉, 〈x, z〉, 〈y, z〉〈x, y, z〉

Page 19: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Build Spec up

Theorem (Bottger 2014). If M is a binoidwith generating subset G ⊆M then everyprime ideal of M is of the form 〈A〉 for somesubset A ⊆ G.

Proposition (A. 2014). S ⊆ G. I = 〈S〉 isprime iff for every relation ri between

generators of M , the elements of S ∪ {∞}are either on both sides of ri or on none.

(x, y, z | x+ y = 2z)

〈∞〉〈x〉, 〈y〉, 〈z〉〈x, y〉, 〈x, z〉, 〈y, z〉〈x, y, z〉

Page 20: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Build Spec up

Theorem (Bottger 2014). If M is a binoidwith generating subset G ⊆M then everyprime ideal of M is of the form 〈A〉 for somesubset A ⊆ G.

Proposition (A. 2014). S ⊆ G. I = 〈S〉 isprime iff for every relation ri between

generators of M , the elements of S ∪ {∞}are either on both sides of ri or on none.

(x, y, z | x+ y = 2z)

〈∞〉〈x〉, 〈y〉, 〈z〉〈x, y〉, 〈x, z〉, 〈y, z〉〈x, y, z〉

Algorithm.

IN: Generators and relations between themOUT: List of prime ideals of M

Page 21: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Topology on Spec

I ideal of M

topology of closed subsets (Zariski topology)

V (I) := {p ∈ SpecM | I ⊆ p}

Page 22: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Topology on Spec

I ideal of M

topology of closed subsets (Zariski topology)

V (I) := {p ∈ SpecM | I ⊆ p}

D(I) = {p ∈ SpecM | I * p} D(f) = {p ∈ SpecM | f /∈ p}

Page 23: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Topology on Spec

I ideal of M

topology of closed subsets (Zariski topology)

V (I) := {p ∈ SpecM | I ⊆ p}

D(I) = {p ∈ SpecM | I * p} D(f) = {p ∈ SpecM | f /∈ p}

Localization: M r p monoid ⇒ we can invert elements

Mp := −(M r p) +M�∼loc

= {a−m | a ∈M,m ∈M r p}�∼loc

Page 24: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Topology on Spec

I ideal of M

topology of closed subsets (Zariski topology)

V (I) := {p ∈ SpecM | I ⊆ p}

D(I) = {p ∈ SpecM | I * p} D(f) = {p ∈ SpecM | f /∈ p}

Mp := −(M r p) +M�∼loc

f ∈M nilpotent if∃n ∈ N s.t. nf =∞

Mf := {a− nf | a ∈M,n ∈ N}

f non nilpotent

Localization: M r p monoid ⇒ we can invert elements

Page 25: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Structural Sheaf

Presheaf defined on the basisof fundamental open subsets

Top(SpecM) −→ Bin

D(f) 7−→Mf

Its sheafification is thestructural sheaf, O

Page 26: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Structural Sheaf

Presheaf defined on the basisof fundamental open subsets

Top(SpecM) −→ Bin

D(f) 7−→Mf

Its sheafification is thestructural sheaf, O

(Spec(M),OSpecM ) is an affine binoid scheme.

If X is a topological space, OX is a sheaf ofbinoids on X and (X,OX) is locally isomorphicto affine binoid schemes, then (X,OX) is abinoid scheme.

Page 27: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Structural Sheaf

Presheaf defined on the basisof fundamental open subsets

Top(SpecM) −→ Bin

D(f) 7−→Mf

Its sheafification is thestructural sheaf, O

(Spec(M),OSpecM ) is an affine binoid scheme.

If X is a topological space, OX is a sheaf ofbinoids on X and (X,OX) is locally isomorphicto affine binoid schemes, then (X,OX) is abinoid scheme.

The category of binoid schemes hasfinite products and coproducts.

TODO: Dive into Categorial properties

Page 28: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Simplicial complices

Let V = {1, . . . , n}. An abstract simplicial complex is4 ⊆ P(V ) closed under subsets, i.e.

F ∈ 4, G ⊆ F ⇒ G ∈ 4F ∈ 4 is a face

F ∈ 4 maximal w.r.t. ⊂ is a facet

Page 29: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Simplicial complices

1

2

3

Let V = {1, . . . , n}. An abstract simplicial complex is4 ⊆ P(V ) closed under subsets, i.e.

F ∈ 4, G ⊆ F ⇒ G ∈ 4F ∈ 4 is a face

F ∈ 4 maximal w.r.t. ⊂ is a facet

V = {1, 2, 3}

4 = {∅, {1}, {2}, {3}, {1, 2}}

Page 30: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Simplicial complices

1

2

3

Let V = {1, . . . , n}. An abstract simplicial complex is4 ⊆ P(V ) closed under subsets, i.e.

F ∈ 4, G ⊆ F ⇒ G ∈ 4F ∈ 4 is a face

F ∈ 4 maximal w.r.t. ⊂ is a facet

V = {1, 2, 3}

4 = {∅, {1}, {2}, {3}, {1, 2}}

4 = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}1

2

3

Page 31: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Simplicial binoids

4 simplicial complex on V = 1, . . . , n

M4 generated by x1, . . . , xn withrelations given by the minimalnon-faces of 4

Page 32: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Simplicial binoids

4 simplicial complex on V = 1, . . . , n

M4 generated by x1, . . . , xn withrelations given by the minimalnon-faces of 4 1

2

3

(x1, x2, x3 | x1 + x3 =∞, x2 + x3 =∞)

M4 is a simplicial binoid

Page 33: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Simplicial binoids

4 simplicial complex on V = 1, . . . , n

M4 generated by x1, . . . , xn withrelations given by the minimalnon-faces of 4 1

2

3

(x1, x2, x3 | x1 + x3 =∞, x2 + x3 =∞)

M4 is a simplicial binoid

4 is (n− 1)-simplex iff M4 is integral

Page 34: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Simplicial binoids

4 simplicial complex on V = 1, . . . , n

M4 generated by x1, . . . , xn withrelations given by the minimalnon-faces of 4 1

2

3

(x1, x2, x3 | x1 + x3 =∞, x2 + x3 =∞)

M4 is a simplicial binoid

4 is (n− 1)-simplex iff M4 is integral

R[M4] is Stanley-Reisner algebra of 4

Page 35: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Simplicial binoids

4 simplicial complex on V = 1, . . . , n

M4 generated by x1, . . . , xn withrelations given by the minimalnon-faces of 4 1

2

3

(x1, x2, x3 | x1 + x3 =∞, x2 + x3 =∞)

M4 is a simplicial binoid

4 is (n− 1)-simplex iff M4 is integral

R[M4] is Stanley-Reisner algebra of 4

Combinatorial description ofSpec4 := SpecM4

from complementof facets

Page 36: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Simplicial binoids

4 simplicial complex on V = 1, . . . , n

M4 generated by x1, . . . , xn withrelations given by the minimalnon-faces of 4 1

2

3

(x1, x2, x3 | x1 + x3 =∞, x2 + x3 =∞)

M4 is a simplicial binoid

4 is (n− 1)-simplex iff M4 is integral

R[M4] is Stanley-Reisner algebra of 4

Combinatorial description ofSpec4 := SpecM4

from complementof facets

Spec(4) = {{3}, {1, 2}}⊂= {{3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

Page 37: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Spec of Simplicial binoids

M4xilocalization at a vertex Invert xi

Page 38: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Spec of Simplicial binoids

M4xilocalization at a vertex

We can localize many times until we reach a non-face

Invert xi

M4F invert all elements in face F

Page 39: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Spec of Simplicial binoids

M4xilocalization at a vertex

We can localize many times until we reach a non-face

Invert xi

M4F invert all elements in face F

1

2

3 (x1, x2, x3 | x1 + x3 =∞, x2 + x3 =∞)

Page 40: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Spec of Simplicial binoids

M4xilocalization at a vertex

We can localize many times until we reach a non-face

Invert xi

M4F invert all elements in face F

1

2

3 (x1, x2, x3 | x1 + x3 =∞, x2 + x3 =∞)

Invert x1 M4x1= (x1,−x1, . . . | x1 − x1 = 0, x3 =∞) ∼= (N×Z)∞

Page 41: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Spec of Simplicial binoids

M4xilocalization at a vertex

We can localize many times until we reach a non-face

Invert xi

M4F invert all elements in face F

1

2

3 (x1, x2, x3 | x1 + x3 =∞, x2 + x3 =∞)

Invert x1 M4x1= (x1,−x1, . . . | x1 − x1 = 0, x3 =∞) ∼= (N×Z)∞

Invert x3 M4x3= (x1, . . . | x1 = x2 =∞, x3 − x3 = 0) ∼= Z∞

Page 42: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Spec of Simplicial binoids

M4xilocalization at a vertex

We can localize many times until we reach a non-face

Invert xi

M4F invert all elements in face F

1

2

3 (x1, x2, x3 | x1 + x3 =∞, x2 + x3 =∞)

Invert x1 M4x1= (x1,−x1, . . . | x1 − x1 = 0, x3 =∞) ∼= (N×Z)∞

Invert x3 M4x3= (x1, . . . | x1 = x2 =∞, x3 − x3 = 0) ∼= Z∞

Invert x1, x2 M4x1,x2

∼= (Z× Z)∞

Page 43: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Spec of Simplicial binoids

M4xilocalization at a vertex

We can localize many times until we reach a non-face

Invert xi

M4F invert all elements in face F

1

2

3 (x1, x2, x3 | x1 + x3 =∞, x2 + x3 =∞)

Invert x1 M4x1= (x1,−x1, . . . | x1 − x1 = 0, x3 =∞) ∼= (N×Z)∞

Invert x3 M4x3= (x1, . . . | x1 = x2 =∞, x3 − x3 = 0) ∼= Z∞

Invert x1, x2 M4x1,x2

∼= (Z× Z)∞

M4x1,x3= (x1, . . . | 0 =∞) = 0Invert x1, x3

x1 + x3 =∞

Page 44: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

The sheaf of invertibles O∗

D(xi) := {p ∈ Spec4 | xi /∈ p}

1

2

3

D(x3) = {{x1, x2}}D(x1) = {{x3}, {x2, x3}}

Page 45: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

The sheaf of invertibles O∗

D(xi) := {p ∈ Spec4 | xi /∈ p}

1

2

3

D(x3) = {{x1, x2}}D(x1) = {{x3}, {x2, x3}}

O∗ : Top(SpecM) −→ Ab

U −→ O(U)∗

D(xi, xj) = D(xi) ∩D(xj)

Page 46: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

The sheaf of invertibles O∗

D(xi) := {p ∈ Spec4 | xi /∈ p}

1

2

3

D(x3) = {{x1, x2}}D(x1) = {{x3}, {x2, x3}}

O∗ : Top(Spec4) −→ Ab

D(F ) −→ (M4F )∗

D(xi, xj) = D(xi) ∩D(xj)

Page 47: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

The sheaf of invertibles O∗

D(xi) := {p ∈ Spec4 | xi /∈ p}

1

2

3

D(x3) = {{x1, x2}}D(x1) = {{x3}, {x2, x3}}

O∗ : Top(Spec4) −→ Ab

D(F ) −→ Z#F

D(xi, xj) = D(xi) ∩D(xj)

Page 48: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

The sheaf of invertibles O∗

D(xi) := {p ∈ Spec4 | xi /∈ p}

1

2

3

D(x3) = {{x1, x2}}D(x1) = {{x3}, {x2, x3}}

Theorem. Let X be an affine binoidscheme and F a sheaf of abelian groups onX. Then

Hn(X,F) = 0, ∀n ≥ 1

O∗ : Top(Spec4) −→ Ab

D(F ) −→ Z#F

D(xi, xj) = D(xi) ∩D(xj)

Page 49: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

The sheaf of invertibles O∗

D(xi) := {p ∈ Spec4 | xi /∈ p}

1

2

3

D(x3) = {{x1, x2}}D(x1) = {{x3}, {x2, x3}}

Theorem. Let X be an affine binoidscheme and F a sheaf of abelian groups onX. Then

Hn(X,F) = 0, ∀n ≥ 1

Theorem (I. Pirashvili 2014). For X of finitetype, Cech Cohomology is Sheaf Cohomology

O∗ : Top(Spec4) −→ Ab

D(F ) −→ Z#F

D(xi, xj) = D(xi) ∩D(xj)

Page 50: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Vector Bundles

A vector bundle on a binoid scheme X is asheaf V together with an action of OX s.t.it is locally isomorphic to O∧nX

Page 51: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Vector Bundles

A vector bundle on a binoid scheme X is asheaf V together with an action of OX s.t.it is locally isomorphic to O∧nX

Vectn(X) is the set ofisomorphim classes of

v.b. on X of rank n

Pic(X) := Vect1(X)line bundles.Group w/ the smashproduct of OX -sets.

Page 52: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Vector Bundles

A vector bundle on a binoid scheme X is asheaf V together with an action of OX s.t.it is locally isomorphic to O∧nX

Vectn(X) is the set ofisomorphim classes of

v.b. on X of rank n

Pic(X) := Vect1(X)line bundles.Group w/ the smashproduct of OX -sets.

Theorem (I. Pirashvili 2014).

• Vectn(X)1:1←→ H1(X,GLn(OX))

• Pic(X) ∼= H1(X,O∗X)

Page 53: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Vector Bundles

A vector bundle on a binoid scheme X is asheaf V together with an action of OX s.t.it is locally isomorphic to O∧nX

Vectn(X) is the set ofisomorphim classes of

v.b. on X of rank n

Pic(X) := Vect1(X)line bundles.Group w/ the smashproduct of OX -sets.

Theorem (I. Pirashvili 2014).

• Vectn(X)1:1←→ H1(X,GLn(OX))

• Pic(X) ∼= H1(X,O∗X)We call Cech-Picard complex the

Cech complex of the sheaf ofinvertibles C•(X,O∗)

Page 54: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Puncturing

Since in the affine case everythingvanishes, we puncture thespectrum by removing the (unique)maximal ideal M+ := M rM∗

Spec◦M := SpecMr{M+}

{M+} is the only closed point

Page 55: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Puncturing

Since in the affine case everythingvanishes, we puncture thespectrum by removing the (unique)maximal ideal M+ := M rM∗

Spec◦M := SpecMr{M+}

The punctured specturm is quasi-affine andcovered by the D(xi)’s, where xi’s are the

generators of the maximal ideal M+

Page 56: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Puncturing

Since in the affine case everythingvanishes, we puncture thespectrum by removing the (unique)maximal ideal M+ := M rM∗

Spec◦M := SpecMr{M+}

The punctured specturm is quasi-affine andcovered by the D(xi)’s, where xi’s are the

generators of the maximal ideal M+

We are interested in thelocal Picard group

PiclocM := Pic(Spec◦M)

Page 57: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Puncturing

Since in the affine case everythingvanishes, we puncture thespectrum by removing the (unique)maximal ideal M+ := M rM∗

Spec◦M := SpecMr{M+}

The punctured specturm is quasi-affine andcovered by the D(xi)’s, where xi’s are the

generators of the maximal ideal M+

We are interested in thelocal Picard group

PiclocM := Pic(Spec◦M)

Computed through the Cech-Picard complexon the covering given by the D(xi)’s andintersections given by

D(xi1 , . . . , xik) = D(xi1) ∩ · · · ∩D(xik)

Page 58: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Local Cech-Picard complex

1

2

3

Our favourite (for now) example

Spec◦4 = {{x3}, {x1, x2},{x1, x3}, {x2, x3}}

Covered by

D(x1) = {{x3}, {x2, x3}}D(x2) = {{x3}, {x1, x3}}D(x3) = {{x1, x2}}

Page 59: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Local Cech-Picard complex

1

2

3

Our favourite (for now) example

Spec◦4 = {{x3}, {x1, x2},{x1, x3}, {x2, x3}}

Covered by

D(x1) = {{x3}, {x2, x3}}D(x2) = {{x3}, {x1, x3}}D(x3) = {{x1, x2}}

(Mx1)∗ = Z

(Mx2)∗ = Z

(Mx3)∗ = Z

(Mx1,x2)∗ = Z2

Local invertibles

Page 60: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Local Cech-Picard complex

1

2

3

Our favourite (for now) example

Spec◦4 = {{x3}, {x1, x2},{x1, x3}, {x2, x3}}

Covered by

D(x1) = {{x3}, {x2, x3}}D(x2) = {{x3}, {x1, x3}}D(x3) = {{x1, x2}}

(Mx1)∗ = Z

(Mx2)∗ = Z

(Mx3)∗ = Z

(Mx1,x2)∗ = Z2

Local invertibles

0 Z× Z× Z Z2 0

(α1, α2, α3) (−α1, α2)

Cech Complex

Page 61: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Local Cech-Picard complex

1

2

3

Our favourite (for now) example

Spec◦4 = {{x3}, {x1, x2},{x1, x3}, {x2, x3}}

Covered by

D(x1) = {{x3}, {x2, x3}}D(x2) = {{x3}, {x1, x3}}D(x3) = {{x1, x2}}

(Mx1)∗ = Z

(Mx2)∗ = Z

(Mx3)∗ = Z

(Mx1,x2)∗ = Z2

Local invertibles

0 Z× Z× Z Z2 0

(α1, α2, α3) (−α1, α2)

Cech Complex

H0(4,O∗) = Z

Page 62: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Local Cech-Picard complex

1

2

3

Our new favourite example: x1 + x2 + x3 =∞

Spec◦4 = {{x1}, {x2}, {x3}{x1, x2}, {x1, x3}, {x2, x3}}

Covered by

D(x1) = {{x2}, {x3}, {x2, x3}}D(x2) = {{x1}, {x3}, {x1, x3}}D(x3) = {{x1}, {x2}, {x1, x2}}

Page 63: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Local Cech-Picard complex

1

2

3

Our new favourite example: x1 + x2 + x3 =∞

Spec◦4 = {{x1}, {x2}, {x3}{x1, x2}, {x1, x3}, {x2, x3}}

Covered by

D(x1) = {{x2}, {x3}, {x2, x3}}D(x2) = {{x1}, {x3}, {x1, x3}}D(x3) = {{x1}, {x2}, {x1, x2}}

(Mxi)∗ = Z

(Mxi,xj )∗ = Z2

for 1 ≤ i < j ≤ 3

Local invertibles

Page 64: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Local Cech-Picard complex

1

2

3

Our new favourite example: x1 + x2 + x3 =∞

Spec◦4 = {{x1}, {x2}, {x3}{x1, x2}, {x1, x3}, {x2, x3}}

Covered by

D(x1) = {{x2}, {x3}, {x2, x3}}D(x2) = {{x1}, {x3}, {x1, x3}}D(x3) = {{x1}, {x2}, {x1, x2}}

(Mxi)∗ = Z

(Mxi,xj )∗ = Z2

for 1 ≤ i < j ≤ 3

Local invertibles

0 Z× Z× Z Z2 × Z2 × Z2 0

(α1, α2, α3) ((−α1, α2), (−α1, α3)), (−α2, α3))

Cech Complex

Page 65: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Local Cech-Picard complex

1

2

3

Our new favourite example: x1 + x2 + x3 =∞

Spec◦4 = {{x1}, {x2}, {x3}{x1, x2}, {x1, x3}, {x2, x3}}

Covered by

D(x1) = {{x2}, {x3}, {x2, x3}}D(x2) = {{x1}, {x3}, {x1, x3}}D(x3) = {{x1}, {x2}, {x1, x2}}

(Mxi)∗ = Z

(Mxi,xj )∗ = Z2

for 1 ≤ i < j ≤ 3

Local invertibles

0 Z× Z× Z Z2 × Z2 × Z2 0

(α1, α2, α3) ((−α1, α2), (−α1, α3)), (−α2, α3))

Cech Complex

H0(4,O∗) = 0 H1(4,O∗) = Z3

Page 66: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Vect1 in case x1 + x2 + x3 =∞

We have an explicit description ofPic(X) in our new favourite case

A line bundle V is locallyVxi∼= Mxi

∼= 〈ei〉

Page 67: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Vect1 in case x1 + x2 + x3 =∞

We have an explicit description ofPic(X) in our new favourite case

A line bundle V is locallyVxi∼= Mxi

∼= 〈ei〉

Easy computations → obtainthree relations

e1 + α12x2 = e2 + α21x1

e1 + α13x3 = e3 + α31x1

e2 + α23x3 = e3 + α32x3

On the intersection D(xi, xj)we have

ei = ej + bij

ej = ei + bji

Page 68: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Vect1 in case x1 + x2 + x3 =∞

We have an explicit description ofPic(X) in our new favourite case

A line bundle V is locallyVxi∼= Mxi

∼= 〈ei〉On the intersection D(xi, xj)we have

ei = ej + bij

ej = ei + bji

M = (x1, x2, x3 | x1 + x2 + x3 =∞)

S = (e1, e2, e3 | e1 + α12x2 = e2 + α21x1e1 + α13x3 = e3 + α31x1e2 + α23x3 = e3 + α32x3

)

Easy computations → obtainthree relations

ei + αijxj = ej + αjixi

Up to isomorphism this 6 parametersαij give us Z3 possibilities.

Page 69: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Vect1 in case x1 + x2 + x3 =∞

We have an explicit description ofPic(X) in our new favourite case

A line bundle V is locallyVxi∼= Mxi

∼= 〈ei〉On the intersection D(xi, xj)we have

ei = ej + bij

ej = ei + bji

M = (x1, x2, x3 | x1 + x2 + x3 =∞)

S = (e1, e2, e3 | e1 + α12x2 = e2 + α21x1e1 + α13x3 = e3 + α31x1e2 + α23x3 = e3 + α32x3

)

Easy computations → obtainthree relations

ei + αijxj = ej + αjixi

Up to isomorphism this 6 parametersαij give us Z3 possibilities.

They are the all and only suchM -sets. Group with ∧M .

Page 70: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Link complices and main result

Let 4 be a simplicial compexand F ∈ 4 one of its faces.

The link of F in 4 islk4(F ) := {G ∈ 4 | F ∩X = ∅, F ∪G ∈ 4}

Page 71: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Link complices and main result

Let 4 be a simplicial compexand F ∈ 4 one of its faces.

The link of F in 4 islk4(F ) := {G ∈ 4 | F ∩X = ∅, F ∪G ∈ 4}

1

2

3

F = {1, 2} ∈ 4lk4(F ) = ∅

Page 72: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Link complices and main result

Let 4 be a simplicial compexand F ∈ 4 one of its faces.

The link of F in 4 islk4(F ) := {G ∈ 4 | F ∩X = ∅, F ∪G ∈ 4}

1

2

3

F = {1, 2} ∈ 4lk4(F ) = ∅

F = {1} ∈ 4lk4(F ) = {∅

{2}, {3}}

Page 73: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Link complices and main result

Let 4 be a simplicial compexand F ∈ 4 one of its faces.

The link of F in 4 islk4(F ) := {G ∈ 4 | F ∩X = ∅, F ∪G ∈ 4}

1

2

3

F = {1, 2} ∈ 4lk4(F ) = ∅

F = {1} ∈ 4lk4(F ) = {∅

{2}, {3}}

Theorem (A. 2014). The cohomology of the local Cech-Picardcomplex of 4 can be computed with the following formulas

H0(4,O∗) = Z#{0−dim facets of 4}

H1(4,O∗) = Z(∑

rvi)−#{0−dim non-facets of 4}

Hj(4,O∗) =⊕vi∈V

Hj−1(C•lk4(vi)) • C•

lk4(vi):= C•(lk4(vi),Z)

• rvi = rk(H0(C•lk4(vi)

))

• j ≥ 2

Page 74: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Conjectures and Corollaries

H0 and H1 are always free groupsin the simplicial case

Page 75: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Conjectures and Corollaries

H0 and H1 are always free groupsin the simplicial case

TRUE

Page 76: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Conjectures and Corollaries

H0 and H1 are always free groupsin the simplicial case

Hj always torsion free

TRUE

Page 77: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Conjectures and Corollaries

H0 and H1 are always free groupsin the simplicial case

Hj always torsion free

TRUE

FALSE

Page 78: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Conjectures and Corollaries

H0 and H1 are always free groupsin the simplicial case

Hj always torsion free

TRUE

Minimal example w/ torsion cohomologyhas 7 vertices (P2R + one vertex)

FALSE

Page 79: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Conjectures and Corollaries

H0 and H1 are always free groupsin the simplicial case

Hj always torsion free

TRUE

Minimal example w/ torsion cohomologyhas 7 vertices (P2R + one vertex)

FALSE

In the case x1 + · · ·+ xn =∞we have

Hj =

{Zn if j = n− 2

0 otherwise

TRUE

Page 80: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Conjectures and Corollaries

H0 and H1 are always free groupsin the simplicial case

Hj always torsion free

TRUE

Minimal example w/ torsion cohomologyhas 7 vertices (P2R + one vertex)

FALSE

In the case x1 + · · ·+ xn =∞we have

Hj =

{Zn if j = n− 2

0 otherwise

TRUE

We can use these results in moregeneral cases and/or to study thePicloc of the Stanley-Reisner ring

OPEN

Page 81: Sheaf Cohomology on Binoid Schemes - dipmatematica.unito.it · f 2M nilpotent if 9n 2N s.t. nf = 1 M f:= fa nf ja 2M;n 2Ng f non nilpotent Localization: M rp monoid ) we can invert

Bibliography

B. Batushk Hilbert-Kunz theory for binoidsS. Bottger Monoids with absorbing elements and their associated algebrasW. Bruns, J. Herzog Cohen-Macaulay RingsG. Cortinas, C. Haesemeyer, M. E. Walker, C. Weibel Toric Varieties, Monoid

Schemes and cdh DescentA. Deitmar Schemes over F1D. Eisenbud, J. Harris The Geometry of SchemesD. Eisenbud, B. Sturmfels Binomial IdealsJ. Flores, C. Weibel Picard groups and Class groups of Monoid SchemesR. Hartshorne Algebraic GeometryA. Hatcher Algebraic TopologyJ. Lopez Pena, O. Lorscheid Mapping F1-land: an overview of geometries over the

field with one elementE. Miller, B. Sturmfels Combinatorial Commutative AlgebraI. Pirashvili On Cohomology and vector bundles over monoid schemes

Thank You