shashank priya • daniel j. inman - gbv

10
Shashank Priya • Daniel J. Inman Editors Energy Harvesting Technologies Springer

Upload: others

Post on 20-Feb-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Shashank Priya • Daniel J. Inman - GBV

Shashank Priya • Daniel J. Inman Editors

Energy Harvesting Technologies

Springer

Page 2: Shashank Priya • Daniel J. Inman - GBV

Contents

Part I Piezoelectric and Electromagnetic Energy Harvesting

1 Piezoelectric Energy Harvesting 3 Hyunuk Kim, Yonas Tadesse, and Shashank Priya 1.1 Energy Harvesting Basics 4 1.2 Case Study: Piezoelectric Plates Bonded to Long

Cantilever Beam with tip mass 7 1.3 Piezoelectric Materials 9

1.3.1 Piezoelectric Polycrystalline Ceramics 10 1.3.2 Piezoelectric Single Crystal Materials 11 1.3.3 Piezoelectric and Electrostrictive Polymers 13 1.3.4 Piezoelectric Thin Films 14

1.4 Piezoelectric Transducers 16 1.5 Meso-macro-scale Energy Harvesters 16

1.5.1 Mechanical Energy Harvester Using Laser Micromachining 16

1.5.2 Mechanical Energy Harvester Using Piezoelectric Fibers 20

1.6 Piezoelectric Microgenerator 21 1.6.1 Piezoelectric Microcantilevers 21

1.7 Energy Harvesting Circuits 24 1.8 Strategies for Enhancing the Performance

of Energy Harvester 26 1.8.1 Multi-modal Energy Harvesting 26 1.8.2 Magnetoelectric Composites 29 1.8.3 Self-Tuning 31 1.8.4 Frequency Pumping 32 1.8.5 Wide-Bandwidth Transducers 33

1.9 Selected Applications 33 1.9.1 Border Security Sensors 33 1.9.2 Biomedical Applications 35

1.10 Summary 35 References 36

vii

Page 3: Shashank Priya • Daniel J. Inman - GBV

viii Contents ,

2 Electromechanical Modeling of Cantilevered Piezoelectric Energy Harvesters for Persistent Base Motions 41 Alper Erturk and Daniel J. Inman 2.1 Introduction 41 2.2 Amplitude-Wise Correction of the Lumped Parameter Model . . . 44

2.2.1 Uncoupled Lumped Parameter Base Excitation Model .. 45 2.2.2 Uncoupled Distributed Parameter Base Excitation

Model 46 2.2.3 Correction Factors for the Lumped Parameter Model . . . 50 2.2.4 Correction Factor in the Piezoelectrically Coupled

Lumped Parameter Equations 55 2.3 Coupled Distributed Parameter Models

and Closed-Form Solutions 57 2.3.1 Modeling Assumptions 57 2.3.2 Mathematical Background 58 2.3.3 Unimorph Configuration 61 2.3.4 Bimorph Configurations 64 2.3.5 Single-Mode Electromechanical Equations 67 2.3.6 Experimental Validation 69

References 76

3 Performance Evaluation of Vibration-Based Piezoelectric Energy Scavengers 79 Yi-Chung Shu 3.1 Introduction 79

3.1.1 Piezoelectric Bulk Power Generators 81 3.1.2 Piezoelectric Micro Power Generators 82 3.1.3 Conversion Efficiency and Electrically Induced

Damping 83 3.1.4 Power Storage Circuits 84

3.2 Approach 84 3.2.1 Standard AC-DC Harvesting Circuit 84 3.2.2 SSHI-Harvesting Circuit 89

3.3 Results 92 3.3.1 Standard Interface 92 3.3.2 SSHI Interface 96

3.4 Conclusion 100 References 100

4 Piezoelectric Equivalent Circuit Models 107 Björn Richter, Jens Twiefel and Jörg Wallaschek 4.1 Model Based Design 107

4.1.1 Basic Configurations of Piezoelectric Generators 108 4.2 Linear Constitutive Equations for Piezoelectric Material 108

Page 4: Shashank Priya • Daniel J. Inman - GBV

Contents ix

4.3 Piezoelectric Equivalent Circuit Models for Systems with Fixed Mechanical Boundary 109 4.3.1 Quasi-Static Regime 110 4.3.2 Single Degree of Freedom Model for Dynamic

Regime Il l 4.3.3 Multi-Degree of Freedom Model for Dynamic

Regime 113 4.3.4 Experimental Parameter Identification 114 4.3.5 Case Study 116

4.4 Analytical Determination of the Parameters of the Equivalent Circuit Models 117 4.4.1 General Procedure for Analytical Bimorph Model 118 4.4.2 Determination of the Parameters of the Piezoelectric

Equivalent Circuit Models using the Analytical Model 119

4.5 Equivalent Circuit Model for Base Excited Piezoelectric Systems 120

4.6 Overall PEG System Analyses Using Piezoelectric Equivalent Circuit Models 121 4.6.1 Piezoelectric Equivalent Circuit Model with Electrical

Load 122 4.6.2 Analysis of the Maximum Power Output 122 4.6.3 Experimental Validation of the Piezoelectric

Equivalent Circuit Model for Base Excitation 124 4.6.4 Effect of Geometry 125 4.6.5 Modeling of the Coupling Between the PEG and Its

Excitation Source, Additional Degrees of Freedom . . . . 126 4.7 Summary 127 References 128

5 Electromagnetic Energy Harvesting 129 Stephen P Beeby and Terence O'Donnell 5.1 Introduction 129 5.2 Basic Principles 130 5.3 Wire-Wound Coil Properties 132 5.4 Micro-Fabricated Coils 134 5.5 Magnetic Materials 136 5.6 Scaling of Electromagnetic Vibration Generators 139 5.7 Scaling of Electromagnetic Damping 142 5.8 Maximising Power from an EM Generator 145 5.9 Review of Existing Devices 146 5.10 Microscale Implementations 146 5.11 Macro-Scale Implementations 151

Page 5: Shashank Priya • Daniel J. Inman - GBV

X Contents

5.12 Commercial Devices 154 5.13 Conclusions 158 References 159

Part II Energy Harvesting Circuits and Architectures

6 On the Optimal Energy Harvesting from a Vibration Source Using a Piezoelectric Stack 165 Jamil M. Renno, Mohammed F. Daqaq and Daniel J. Inman 6.1 Introduction 166 6.2 One-dimensional Electromechanical Analytic Model 168 6.3 Power Optimization 172 6.4 Optimality of the Parallel-/? L Circuit 173

6.4.1 The Purely Resistive Circuit 175 6.4.2 The Parallel-/?!, Circuit 183

6.5 The Series-RL Circuit 188 6.5.1 Optimality Results for Series RL-Circuit 189

6.6 Conclusions 192 References 192

7 Energy Harvesting Wireless Sensors 195 S.W. Arms, C.P. Townsend, D.L. Churchill, M.J. Hamel, M. Augustin, D. Yeary, and N. Phan 7.1 Introduction 195 7.2 Background 196 7.3 Tracking Helicopter Component Loads with

Energy Harvesting Wireless Sensors 196 7.4 Monitoring Large Bridge Spans with Solar-Powered

Wireless Sensors 204 7.5 About MicroStrain Inc 207 References 207

8 Energy Harvesting using Non-linear Techniques 209 Daniel Guyomar, Claude Richard, Adrien Badel, Elie Lefeuvre and Mickael Lallart 8.1 Introduction 210 8.2 Introduction to Nonlinear Techniques and their Application

to Vibration Control 211 8.2.1 Principles 211

8.3 Energy Harvesting Using Nonlinear Techniques in Steady-State Case 221 8.3.1 Principles 222 8.3.2 Analysis Without Induction of Vibration Damping 223

Page 6: Shashank Priya • Daniel J. Inman - GBV

xi

8.3.3 Damping Effect 227 8.3.4 Experimental Validation 232

8.4 Energy Harvesting in Pulsed Operation 236 8.4.1 SSHI Technique 237 8.4.2 Performance Comparison 243 8.4.3 Experimental Validation 244

8.5 Other Nonlinear Energy Harvesting Techniques 247 8.5.1 Series SSHI Technique 247 8.5.2 Theoretical Development with Damping Effect 251 8.5.3 Synchronous Electric Charge Extraction (SECE)

Technique 254 8.5.4 Experimental Validation 258

8.6 Energy Harvesting Techniques under Broadband Excitation 262 8.6.1 Multimodal Vibrations 263 8.6.2 Random Vibrations 263

8.7 Conclusion 265 References 265

Power Sources for Wireless Sensor Networks 267 Dan Steingart 9.1 Introduction 267 9.2 Primary Batteries 271 9.3 Energy harvesting 273

9.3.1 Energy Harvesting versus Energy Scavenging 273 9.3.2 Photonic Methods 274 9.3.3 Vibrational Methods 276 9.3.4 Thermal Methods 279

9.4 Alternative Methods 280 9.4.1 RF Power 280 9.4.2 Radioactive Sources 281

9.5 Power Conversion 281 9.6 Energy Storage 281 9.7 Examples 282

9.7.1 Sensors in a Cave 282 9.7.2 Sensors in an Industrial Plant 282 9.7.3 Sensors in Nature 283

9.8 Conclusion 284 References 284

Harvesting Microelectronic Circuits 287 Gabriel A. Rincon-Mora 10.1 Harvesting Sources 288

10.1.1 Energy and Power 288 10.1.2 Energy Sources 289

Page 7: Shashank Priya • Daniel J. Inman - GBV

xii Contents,

10.2 Power Conditioning 293 10.2.1 Microsystem 293 10.2.2 Linear DC-DC Converters 295 10.2.3 Switching DC-DC Converters 296 10.2.4 Switching AC-DC Converters 303 10.2.5 Comparison 304

10.3 Power Losses 305 10.3.1 Conduction Losses 306 10.3.2 Switching Losses 310 10.3.3 Quiescent Losses 312 10.3.4 Losses Across Load 313

10.4 Sample System: Electrostatic Harvester 314 10.4.1 Harvesting Current 315 10.4.2 Trickle Charging Scheme 315 10.4.3 Harvesting Microelectronic Circuit 317

10.5 Summary 321

Part III Thermoelectrics

11 Thermoelectric Energy Harvesting 325 G. Jeffrey Snyder 11.1 Harvesting Heat 325 11.2 Thermoelectric Generators 326 11.3 Design of a Thermoelectric Energy Harvester 328 11.4 General Considerations 328 11.5 Thermoelectric Efficiency 328 11.6 Matched Thermal Resistance 330 11.7 Heat Flux 332 11.8 Matching Thermoelectrics to Heat Exchangers 332

11.8.1 Thin Film Devices 334 11.9 Additional Considerations 335 11.10 Summary 335 References 335

12 Optimized Thermoelectrics For Energy Harvesting Applications . . . . 337 James L. Bierschenk 12.1 Introduction 337 12.2 Basic Thermoelectric Theory 338 12.3 Device Effective ZT 341 12.4 System Level Design Considerations 343 12.5 System Optimization for Maximum Power Output 344 12.6 Design Considerations for Maximizing Voltage Output 347 12.7 Conclusions 350 References 350

Page 8: Shashank Priya • Daniel J. Inman - GBV

Contents хш

Part IV Microbatteries

13 Thin Film Batteries for Energy Harvesting 355 Nancy J. Dudney 13.1 Introduction 355 13.2 Structure, Materials, and Fabrication of TFB 356 13.3 Performance of TFBs 358

13.3.1 Energy and Power 358 13.3.2 Charging 360 13.3.3 Cycle-Life and Shelf-Life 360 13.3.4 High and Low Temperature Performance 362

13.4 Outlook and Summary 362 References 362

14 Materials for High-energy Density Batteries 365 Arumugam Manthiram 14.1 Introduction 365 14.2 Principles of Lithium-Ion Batteries 366 14.3 Cathode Materials 369

14.3.1 Layered Oxide Cathodes 370 14.3.2 Spinel Oxide Cathodes 374 14.3.3 Olivine Oxide Cathodes 377

14.4 Anode Materials 380 14.5 Conclusions 381 References 382

Part V Selected Applications of Energy Harvesting Systems

15 Feasibility of an Implantable, Stimulated Muscle-Powered Piezoelectric Generator as a Power Source for Implanted Medical Devices 389 B.E. Lewandowski, K. L. Kilgore, and K.J. Gustafson 15.1 Introduction 389 15.2 Generator Driven by Muscle Power 390 15.3 Selection of Mechanical-to-Electrical Conversion Method 393 15.4 Properties of Piezoelectric Material Relevant

to the Generator System 395 15.5 Predicted Output Power of Generator 398 15.6 Steps Towards Reduction to Practice 400 15.7 Conclusion 401 References 402

Page 9: Shashank Priya • Daniel J. Inman - GBV

Contents

Piezoelectric Energy Harvesting for Bio-MEMS Applications 405 William W. Clark and Changki Mo 16.1 Introduction 405 16.2 General Expression for Harvesting Energy with Piezoelectric

Device 407 16.3 Unimorph Diaphragm in Bending 410

16.3.1 Simply Supported Unimorph Diaphragm that Is Partially Covered with Piezoelectric Material 416

16.3.2 Clamped Unimorph Diaphragm that is Partially Covered with Piezoelectric Material 420

16.4 Simulation Results and Analysis 426 16.5 Conclusions 429 References 430

Harvesting Energy from the Straps of a Backpack Using Piezoelectric Materials 431 Henry A. Sodano 17.1 Introduction 431 17.2 Model of Power-Harvesting System 436

17.2.1 Experimental Testing of Piezoelectric Strap 439 17.2.2 Results and Model Validation 443 17.2.3 Backpack Power Prediction 444

17.3 Energy Harvesting Using a Mechanically Amplified Piezoelectric Stack 448 17.3.1 Model and Experimental Validation

of Energy Harvesting System 450 17.3.2 Results and Model Validation 452 17.3.3 Backpack Power Prediction 456

17.4 Conclusions 457 References 458

Energy Harvesting for Active RF Sensors and ID Tags 459 Abhiman Hande, Raj Bridgelall, and Dinesh Bhatia 18.1 Introduction 460 18.2 RFID Tags 461

18.2.1 Passive RFID 462 18.2.2 Battery-Assisted Passive (BAP) RFID 463 18.2.3 Active RFID 463

18.3 RFID Operation and Power Transfer 466 18.4 Battery Life 467 18.5 Operational Characteristics of RF Sensors and ID Tags 468 18.6 Why EH Is Important? 470 18.7 EH Technologies and Related Work 471

Page 10: Shashank Priya • Daniel J. Inman - GBV

Contents xv

18.8 EH Design Considerations 473 18.8.1 Energy Storage Technologies 473 18.8.2 Energy Requirements and Power Management Issues. .. 474 18.8.3 Vibrational Energy Harvesting 475 18.8.4 Solar Energy Harvesting 479

18.9 Relevant Circuits and Systems 483 18.9.1 AC-DC Rectifier 483 18.9.2 DC-DC Switch-Mode Converters 484

18.10 Future Directions and Scope 487 18.11 Conclusions 488 References 488

19 Powering Wireless SHM Sensor Nodes through Energy Harvesting 493 Gyuhae Park, Kevin M. Farinhoit, Charles R. Farrar, Tajana Rosing, and Michael D. Todd 19.1 Introduction 493 19.2 Sensing System Design for SHM 494 19.3 Current SHM Sensor Modalities 495 19.4 Energy Optimization Strategies Associated with Sensing

Systems 496 19.4.1 Dynamic Voltage Scaling 497 19.4.2 Dynamic Power Management 498

19.5 Applications of Energy Harvesting to SHM 500 19.6 Future Research Needs and Challenges 503 19.7 Conclusion 505 References 505

A Appendix A First Draft of Standard on Vibration Energy Harvesting 507

A. 1 Potential Vibration Sources for Energy Harvesting 508 A.2 Parameters Required to Describe the Source 509 A.3 Theoretical Models Used to Describe the Vibration

Energy Harvesting 509 A.3.1 Williams-Yates Model 509 A.3.2 Erturk-Inman Model 510

A.4 Characterization of Vibration Energy Harvester 511 A.5 Characterization of the Conditioning Circuit 512 References 512

Index 515