seprodthermochapter5refrigeration

Upload: adityanarang147

Post on 02-Mar-2016

7 views

Category:

Documents


0 download

DESCRIPTION

seprodthermochapter5refrigeration

TRANSCRIPT

  • 7/18/2019 seprodthermochapter5refrigeration

    1/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.

    Introduction toRefrigeration Air Conditioning

    ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Applied Thermodynamics & Heat Engines

    S.Y. B. Tech.

    ME0223 SEM - IV

    Production Engineering

  • 7/18/2019 seprodthermochapter5refrigeration

    2/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Outline

    Applications of Refrigeration.

    BellColeman Cycle.

    COP and Power Calculations

    VapourCompression Refrigeration System.

    Presentation on T-S and P-h diagram.

    VapourAbsorption System.

  • 7/18/2019 seprodthermochapter5refrigeration

    3/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Refrigeration

    REFRIGERATION Science of producing and maintaining temperature below that of

    sur rounding / atmosphere.

    REFRIGERATION Cooling of or removal of heat from a system.

    Refrigerating System Equipment employed to maintain the system at a low temperature.

    Refrigerated System System which i s kept at lower temperatur e.

    Refrigeration 1) By melting of a solid,

    2) By subl imation of a solid,

    3) By evaporation of a liquid.

    Most of the commercial refrigeration production : Evaporation of liquid.

    This liquid is known as Refrigerant.

  • 7/18/2019 seprodthermochapter5refrigeration

    4/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.

    Refrigeration Circuit

    Refrigeration Circuit

    ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Evaporator

    Compressor

    CondenserExpansion

    Valve

  • 7/18/2019 seprodthermochapter5refrigeration

    5/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Refrigeration - Elements

    Compressor

    Condenser

    Evaporator

    Expansion

    Valve

    Wnet, in

    Surrounding Air

    Refrigerated Space

    QH

    QL

    High Temp

    Source

    Low Temp

    Sink

    QH

    QL

    Wnet, in

  • 7/18/2019 seprodthermochapter5refrigeration

    6/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Refrigeration - Applications

    1. Ice making.

    2. Transportation of food itemsabove and below freezing.

    2. Industrial AirConditioning.

    4. Comfort AirConditioning.

    5. Chemical and related industries.

    6. Medical and Surgical instruments.7. Processing food products andbeverages.

    8. Oil Refining.

    9. Synthetic Rubber Manufacturing.

    10. Manufacture and treatment of metals.

    11.Freezing food products.

    12. Manufacturing Solid Carbon Dioxide.

    13. Production of extremely low temperatures (Cryogenics)

    14. Plumbing.

    15. Building Construction.

    Applications :

  • 7/18/2019 seprodthermochapter5refrigeration

    7/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Refrigeration Systems

    1. Ice Refrigeration System.

    2. Air Refrigeration System.

    2. Vapour Compression Refrigeration System.

    4. Vapour Absorption Refrigeration System.

    5. Adsorption Refrigeration System.

    6. Cascade Refrigeration System.

    7. Mixed Refrigeration System.

    8. Thermoelectric Refrigeration System.

    9. Steam Jet Refrigeration System.

    10. Vortex Tube Refrigeration System.

    Refrigeration Systems :

  • 7/18/2019 seprodthermochapter5refrigeration

    8/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Performance - COP

    COP Ratio of H eat absorbed by the Refrigerant while passing through the Evaporator

    to the Work I nput requi red to compress the Refr igerant in the Compressor.

    Performance of Refrigeration System :- Measured in terms of COP (Coefficient of Performance).

    If; Rn= Net Refrigerating Effect. W = Work required by the machine.

    Then;W

    RCOP n

    COPlTheoretica

    COPActual

    COPlative Re

    Actual COP = Ratio of Rnand Wactually measured.

    Theoretical COP = Ratio of Theoretical values of Rnand Wobtained by applying

    Laws of Thermodynamicsto the Refrigerating Cycle.

  • 7/18/2019 seprodthermochapter5refrigeration

    9/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Performance - Rating

    Rating of Refrigeration System :- Refrigeration Effect / Amount of Heat extracted from a body in a given time.

    Unit :

    - Standard commercial Tonne of Refrigeration / TR Capacity

    Definition :

    - Refrigeration Effect produced by melting 1 tonne of ice from and at 0 C in 24 hours.

    Latent Heat of ice = 336 kJ/kg.

  • 7/18/2019 seprodthermochapter5refrigeration

    10/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Air Refrigeration System

    One of the earliest method.

    Obsolete due to low COPandhigh operating cost.

    Preferred in Aircraft Refrigeration due to its low weight.

    Characteristic :

    - Throughout the cycle, Refrigerant remains in gaseousstate.

    Air Refrigeration

    Closed System Open System

    Air refrigerant contained within

    piping or components of system.

    Pressures above atm. Pr.

    Refrigerator space is actual room to be cooled.

    Air expansion to atm. Pr. And then

    compressed to cooler pressure.

    Pressures limited to near atm. Pr. levels..

  • 7/18/2019 seprodthermochapter5refrigeration

    11/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Air Refrigeration System

    1. Suction to compressor in Closed System may be at high pressures. Hence,

    the size of Expander and Compressor can be kept small.

    Closed System Vs. Open System :

    2. In Open Systems, air picks up the moisturefrom refrigeration chamber. This

    moisture freezes and chokes the valves.

    3. Expansionin Open System is limited to atm. Pr. Level only. No such restriction

    to Closed System.

  • 7/18/2019 seprodthermochapter5refrigeration

    12/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Reverse Carnot Cycle

    3

    2

    14

    Isotherms

    Adiabatic

    T2

    Expansion

    Compression

    T1

    Pressure

    Volume

    PV Diagram

    3 2

    14T1

    Expansion Compression

    T2

    Tempera

    tu

    re

    Entropy

    14

    TsDiagram

  • 7/18/2019 seprodthermochapter5refrigeration

    13/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    3 2

    14T1

    Expansion Compression

    T2

    Tempera

    tu

    re

    Entropy

    14

    Operation :

    3 4 : Adiabatic Expansion.

    Temp. falls from T2to T1.

    Cylinder in contact with Cold Body at T1.

    4 1 :Isothermal Expansion.

    Heat Extraction from Cold Body.

    1 2 : Adiabatic Compression.

    Requires external power.

    Temp. rises from T1to T2.

    Cylinder in contact with Hot Body at T2

    2 3 :Isothermal Compression.

    Heat Rejection to Hot Body.

    Reverse Carnot Cycle

  • 7/18/2019 seprodthermochapter5refrigeration

    14/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    3 2

    14T1

    Expansion Compression

    T2

    Tempera

    tur

    e

    Entropy

    14

    Heat extracted from cold Body : Area 1-1-4-4

    = T1X 1-4

    Work done per cycle : Area 1-2-3-4

    = (T2T1) X 1-4

    12

    1

    12

    1

    )41()(

    )41(

    4321

    4'4'11

    TT

    T

    XTT

    XT

    Area

    Area

    DoneWork

    ExtractedHeatCOP

    Reverse Carnot Cycle

  • 7/18/2019 seprodthermochapter5refrigeration

    15/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Example 1

    A Carnot Refrigerator requires 1.3 kW per tonne of refrigeration to maintain a region at

    low temperature of -38 C. Determine:i) COP of Carnot Refrigerator.

    ii) Higher temperature of the cycle.

    iii) Heat delivered and COP, if the same device is used Heat Pump.

    99.2

    )sec/3600()3.1(

    /000,14

    3.1

    1

    hrkW

    hrkJ

    kW

    tonne

    doneWork

    absorbedHeatCOPrefrig .ANS

    KTKT

    K

    TT

    TCOPrefrig 6.313

    235

    23599.2 1

    212

    1

    .ANS

    Heat Delivered as Heat Pump ;

    sec/189.53.13600

    /000,143.11 kJ

    hrkJkWtonne

    doneWorkabsorbedHeat

    .ANS

    99.3

    3.1

    sec/189.5

    kW

    kJ

    doneWork

    deliveredHeatCOPHP .ANS

  • 7/18/2019 seprodthermochapter5refrigeration

    16/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Example 2

    A refrigerating system works on reverse Carnot cycle. The higher temperature in the

    system is 35 C and the lower temperature is -15 C. The capacity is to be 12 tonnes.Determine :

    i) COP of Carnot Refrigerator.

    ii) Heat rejected from the system per hour.

    iii) Power required.

    18.5258308

    258

    12

    1 KK

    K

    TT

    TCOPrefrig .ANS

    hrkJInputWork

    InputWork

    hrkJX

    InputWork

    tonne

    InputWork

    Ef fectfrigCOPrefrig

    /32558

    /000,14121216.5

    .Re

    .ANSkWhrkJhrInputWork

    Power 04.9

    3600

    /32558

    3600

    /

    Heat Rejected / hr = Refrig. Effect / hr + Work Input / hr

    = 12 x 14,000 (kJ/hr) + 32,558 (kJ/hr) = 2,00,558 kJ/hr. .ANS

  • 7/18/2019 seprodthermochapter5refrigeration

    17/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Example 3

    Ice is formed at 0 C from water at 20 C. The temperature of the brine is -8 C. Find out

    the kg of ice per kWh. Assume that the system operates on reversed Carnot cycle. Takelatent heat of ice as 335 kJ/kg.

    46.9265293

    265

    12

    1

    KK

    K

    TT

    TCOPrefrig

    Heat to be extracted per kg of water ( to from ice at 0 C)Rn = 1 (kg)x Cpw(kJ/kg.K)x (293273) (K)+ Latent Heat (kJ/kg) of ice

    = 1 (kg)x 4.18 (kJ/kg.K)x 20 (K)+ 335 (kJ/kg)

    = 418.6 kJ/kg.

    Also, 1 kWh = 1 (kJ)x 3600(sec/hr)= 3600 kJ.

    kgmkJ

    kgkJXkgm

    kJdoneWork

    kJEf fectfrig

    W

    RCOP

    iceice

    nrefrig

    35.813600

    )/(6.418)(46.9

    )(

    )(.Re

    .ANS

  • 7/18/2019 seprodthermochapter5refrigeration

    18/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    BellColeman / Reverse Bryaton Cycle

    Elements of this system :

    1. Compressor.

    2. Heat Exchanger.

    3. Expander.

    4. Refrigerator.

    Work gained from Expanderis used

    to drive Compressor.

    Hence, less external work is required.

    Heat ExchangerCooling

    Water

    Refrigerator

    CompressorExpander

    Cold Air

    Very Cold AirWarm Air

    Hot Air

  • 7/18/2019 seprodthermochapter5refrigeration

    19/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    BellColeman / Reverse Bryaton Cycle

    32

    1

    4

    Isobars

    Adiabatic

    Expansion

    Compression

    Pressure

    Volume

    PV Diagram

    3

    2

    1

    4

    Expansion

    Compression

    Tempera

    tu

    re

    Entropy

    Isobars

    Adiabatic

    TsDiagram

  • 7/18/2019 seprodthermochapter5refrigeration

    20/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    BellColeman / Reverse Bryaton Cycle

    3

    2

    1

    4

    Expansion

    Compression

    Tempera

    ture

    Entropy

    Isobars

    Adiabatic

    Heat Absorbed in Refrigerator :

    )( 41 TTCmQ Padded

    Heat Rejected in Heat Exchanger :

    )( 32 TTCmQ Prejected

    If process changes from Adiabaticto Polytropic;

    11221

    VPVPn

    nQcomp

    4433exp1

    VPVPn

    nQ n

    We know,

    1PCR

  • 7/18/2019 seprodthermochapter5refrigeration

    21/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    BellColeman / Reverse Bryaton Cycle

    Net Work Done :

    1234

    4312

    44331122

    exp

    1

    1

    1

    1

    TTTTCmn

    n

    TTTTRmn

    n

    VPVPVPVPn

    n

    WWW

    P

    ncomp

    For Isentropic Process :

    1234

    exp

    TTTTCm

    WWW

    P

    ncomp

  • 7/18/2019 seprodthermochapter5refrigeration

    22/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    BellColeman / Reverse Bryaton Cycle

    COP :

    1234

    41

    1

    1

    )(

    TTTTCmn

    n

    TTCm

    W

    Q

    QQ

    AddedWorkCOP

    P

    P

    net

    added

    addedrejected

    1234

    41

    1

    1

    )(

    TTTTn

    n

    TTCOP

  • 7/18/2019 seprodthermochapter5refrigeration

    23/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Air Refrigeration Cycle - Merits / Demerits

    Merits :

    1. No risk of fire (as in case of NH3); as air is nonflammable.

    2. Cheaper (than other systems); as air is easily available.

    3. Weight per tonne of refrigeration is quite low (compared to other systems).

    Demerits :

    1. Low COP (compared with other systems).

    2. Weight of air (as Refrigerant) is more (compared to other systems).

  • 7/18/2019 seprodthermochapter5refrigeration

    24/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Example 4

    A BellColeman refrigerator operates between pressure limits of 1 bar and 8 bar. Air is

    drawn from the cold chamber at 9 C, compressed and then cooled to 29 C beforeentering the expansion cylinder. Expansion and compression follow the law PV1.35= Const.

    Calculate the theoretical COP.

    For air, take = 1.4 and Cp= 1.003 kJ/kg.

    Polytropic Compression 1-2 :

    Kbar

    barK

    P

    PTT

    n

    n

    2.4821

    8)282(

    35.1

    135.11

    1

    212

    Polytropic Expansion 3-4 :

    KT

    bar

    barTK

    P

    PTT

    n

    n

    6.176

    1

    8)302(

    4

    35.1

    135.1

    4

    1

    4

    343

    3 2

    14

    PV1.35=C

    Pr

    essure

    Volume

    P2= 8 bar

    P1= 1 bar

    282 K

    302 K

  • 7/18/2019 seprodthermochapter5refrigeration

    25/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Heat Extracted from Cold Chamber:kgkJKKXkgkJTTCP /7.105)6.176282()/(003.1)( 41

    Example 4.contd

    Heat Rejected to Heat Exchanger:

    kgkJKKXkgkJTTCP /7.180)3022.482()/(003.1)( 32

    Net Work Done :

    kgkJW

    KKKKkgkJW

    TTTTCmn

    nW

    net

    net

    Pnet

    /8.82

    2822.4823026.176)/003.1(4.1

    14.1

    135.1

    35.1

    1

    1 1234

    27.1/8.82

    /7.105

    kgkJ

    kgkJ

    doneWork

    absorbedHeatCOPrefrig .ANS

  • 7/18/2019 seprodthermochapter5refrigeration

    26/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Example 5

    An air refrigeration open system operating between 1 MPa and 100 kPa is required to

    produce a cooling effect of 2000 kJ/min. temperature of the air leaving the cold chamber is-5 C, and at leaving the cooler is 30 C. Neglect losses and clearance in the compressor

    and expander. Determine :

    i) Mass of air circulated per min. ii) Compressor Work, Expander Work, Cycle Work.

    ii) COP and Power in kW required.

    3 2

    14

    PV=C

    Pre

    ssure

    Volume

    P2= 1 MPa

    P1= 100 kPa

    268 K

    303 K

    Polytropic Expansion 3-4 :

    KT

    MPa

    MPaTK

    P

    PTT

    9.156

    1.0

    1)302(

    4

    4.1

    14.1

    4

    1

    4

    343

    Refrig. Effect per kg:

    kgkJ

    KKXkgkJ

    TTCP

    /66.111

    )9.156268()/(003.1

    )( 41

  • 7/18/2019 seprodthermochapter5refrigeration

    27/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Example 5.contd

    min/91.17/66.111

    min/2000

    .Re

    .Rekg

    kgkJ

    kJ

    kgperEffectfrig

    Effectfrig

    Mass of air circulated per min :

    .ANS

    Polytropic Compression 1-2 :KkPa

    kPa

    KP

    P

    TT 4.517100

    1000

    )268(

    4.1

    14.11

    1

    2

    12

    .ANS

    Compressor Work :

    min/85.4486

    2684.517)/287.0(min)/91.17(14.1

    4.11

    12

    kJW

    KKkgkJkgW

    TTRmW

    comp

    comp

    comp

    .ANS

  • 7/18/2019 seprodthermochapter5refrigeration

    28/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Expander Work :

    min/42.2628

    9.156303)/287.0(min)/91.17(14.1

    4.1

    1 43exp

    kJW

    KKkgkJkgW

    TTRmW

    comp

    comp

    .ANS

    Example 5.contd

    Cycle Work = Wcycle= WcompWexp

    = 4486.85 kJ/min2628.42 kJ/min = 1858.43 kJ/minANS

    076.1min/43.1858

    min/2000.Re kJkJ

    requiredWorkEffectfrigCOPrefrig .ANS

    Power required : kWkJ

    time

    WP

    cycle97.30

    minsec/60

    min/43.1858 .ANS

    i f i i Ai C i i i

  • 7/18/2019 seprodthermochapter5refrigeration

    29/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Vapour Compression System

    Elements of this system :

    1. Compressor.

    2. Condenser.

    3. Expansion Valve.

    4. Evaporator.

    Vapour @ Pr. and Temp. (State 1)

    Isentropic Compression:

    Pr. and Temp. (State 2)

    Condenser : Pr. Liquid (State 3)

    Throttling : Pr. Temp. (State 4)

    Evaporator : Heat Extraction from surrounding;

    Pr. vapour (State 1).

    1

    2

    3

    4

    1

    23

    4

    I d i R f i i d Ai C di i i

  • 7/18/2019 seprodthermochapter5refrigeration

    30/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Vapour Compression System

    Merits :

    1. High COP; as very close to Reverse Carnot Cycle.

    2. Running Cost is 1/5th of that of Air Refrigeration Cycle.

    3. Size of Evaporator is small; for same Refrigeration Effect.

    Demerits :

    1. Initial cost is high.

    2. Inflammability.

    4. Evaporator temperature adjustment is simple; by adjusting Throttle Valve.

    3. Leakage.

    4. Toxicity.

    I t d ti t R f i ti d Ai C diti i

  • 7/18/2019 seprodthermochapter5refrigeration

    31/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Vapour Compression System : T-sDiagram

    Case A. Dry and Saturated Vapour after Compression :

    Work done by Compressor

    = W = Area 1-2-3-4-1

    Heat Absorbed

    = W = Area 1-4-g-f-1

    Entropy, s

    Temperature,

    T Condensation

    Compression

    Evaporation

    Expansion

    T2

    T1

    3

    4

    2

    1

    Compressor Work,

    (W)

    Net Refrig. Effect,(Rn)

    Sat. Vapour L ine

    Sat. Liq. Line

    fg

    12

    41

    14321

    141

    hh

    hh

    Area

    fgArea

    DoneWork

    AbsorbedHeatCOP

    I t d ti t R f i ti d Ai C diti i

  • 7/18/2019 seprodthermochapter5refrigeration

    32/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Vapour Compression System : T-sDiagram

    Case B. Superheated Vapour after Compression :

    Work done by Compressor

    = W = Area 1-2-2-3-4-1

    Heat Absorbed

    = W = Area 1-4-g-f-1

    12

    41

    143'221

    141

    hh

    hh

    Area

    fgArea

    DoneWork

    AbsorbedHeatCOP

    Entropy, s

    Temperature,

    T Condensation

    Compression

    Evaporation

    Expansion

    T2

    T1

    3

    4

    2

    1

    Compressor Work,

    (W)

    Net Refrig. Effect,(Rn)

    Sat. Vapour L ine

    Sat. Liq. Line

    fg

    2

    NOTE : h2= h2 + Cp(TsupTsat)

    I t d ti t R f i ti d Ai C diti i

  • 7/18/2019 seprodthermochapter5refrigeration

    33/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Vapour Compression System : T-sDiagram

    Case C. Wet Vapour after Compression :

    Work done by Compressor

    = W = Area 1-2-3-4-1

    Heat Absorbed

    = W = Area 1-4-g-f-1

    Entropy, s

    Temperature,

    T Condensation

    Compression

    Evaporation

    Expansion

    T2

    T1

    3

    4

    2

    1

    Compressor Work,

    (W)

    Net Refrig. Effect,(Rn)

    Sat. Vapour L ine

    Sat. Liq. Line

    fg

    12

    41

    14321

    141

    hh

    hh

    Area

    fgArea

    DoneWork

    AbsorbedHeatCOP

    NOTE : h2= (hf + x.hfg)2

    Introd ction to Refrigeration and Air Conditioning

  • 7/18/2019 seprodthermochapter5refrigeration

    34/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Vapour Compression System : P-hDiagram

    Enthalpy, h

    Pressure,

    P

    r

    Isothermal,

    T=Const

    Isenthalpic,

    h=

    Const.

    Isobaric,

    P = Const

    Sub-cooled

    L iq. region 2 phase

    region

    Superheated

    region

  • 7/18/2019 seprodthermochapter5refrigeration

    35/60

    Introduction to Refrigeration and Air Conditioning

  • 7/18/2019 seprodthermochapter5refrigeration

    36/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Factors Affecting Vapour Compression System

    A. Effect of Suction Pressure :

    Enthalpy, h

    Pressure,

    Pr

    1

    23

    4

    14

    2

    P1

    P212

    41

    hh

    hh

    W

    RCOP n

    COP of Original Cycle :

    COP when Suction Pr. decreased :

    2'2'1112

    '1141

    '1'2

    '4'1

    hhhhhh

    hhhh

    hh

    hh

    W

    RCOP n

    Thus,

    Refrig. Effect Work Input COP

    Introduction to Refrigeration and Air Conditioning

  • 7/18/2019 seprodthermochapter5refrigeration

    37/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Factors Affecting Vapour Compression System

    B. Effect of Delivery Pressure :

    12

    41

    hh

    hh

    W

    RCOP n

    COP of Original Cycle :

    COP when Delivery Pr. increased :

    2'212

    4'441

    1'2

    '41

    hhhh

    hhhh

    hh

    hh

    W

    RCOP n

    Thus,

    Refrig. Effect Work Input COP

    Enthalpy, h

    Pressure,

    Pr

    1

    2

    3

    4

    3

    4

    2

    P1

    P2

    Introduction to Refrigeration and Air Conditioning

  • 7/18/2019 seprodthermochapter5refrigeration

    38/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.

    Factors Affecting Vapour Compression System

    C. Effect of Superheating :

    12

    41

    hh

    hh

    W

    RCOP n

    COP of Original Cycle :

    Thus,

    Refrig. Effect Work Input or COP or

    Enthalpy, h

    Pressure,

    Pr

    1

    23

    4

    1

    2

    P1

    P2

    1'12'212

    1'141

    '1'2

    4'1

    hhhhhh

    hhhh

    hh

    hh

    W

    RCOP n

    COP when Delivery Pr. increased :

    ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Introduction to Refrigeration and Air - Conditioning

  • 7/18/2019 seprodthermochapter5refrigeration

    39/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.

    Factors Affecting Vapour Compression System

    D. Effect of Sub-cooling :

    12

    41

    hh

    hh

    W

    RCOP n

    COP of Original Cycle :

    Thus,

    Refrig. Effect Work Input : SAME

    COP

    12

    '4441

    12

    '41

    hh

    hhhh

    hh

    hh

    W

    RCOP n

    COP when Delivery Pr. increased :

    Enthalpy, h

    Pressure,

    Pr

    1

    23

    4

    1

    3

    P1

    P2

    4

    ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Introduction to Refrigeration and Air - Conditioning

  • 7/18/2019 seprodthermochapter5refrigeration

    40/60

    Introduction to Refrigeration and Air - Conditioning

    S. Y. B. Tech. Prod Engg.

    Factors Affecting Vapour Compression System

    E. Effect of Suction & Condenser Temperatures :

    ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Now, Condenser Temp. Evaporator Temp.

    12

    41

    '1'4'3'2'1

    1'44'11

    hh

    hh

    Area

    fgArea

    DoneWorkAbsorbedHeatCOP

    COP of Modified Cycle :

    COP of Original Cycle :

    12

    41

    14321

    141

    hh

    hh

    Area

    fgArea

    DoneWork

    AbsorbedHeatCOP

    COP Entropy, s

    Temperature,

    T Condensation

    Compression

    Evaporation

    Expansion

    T2

    T1

    3

    4

    2

    1

    fg

    1

    4

    23

    Introduction to Refrigeration and Air - Conditioning

  • 7/18/2019 seprodthermochapter5refrigeration

    41/60

    Introduction to Refrigeration and Air Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Vapour Compression SystemMathematical Analysis

    A. Refrigerating Effect :

    )/(41 kgkJHeatdSuperheateHeatLatenthhQevap

    = Amount of Heat absorbed in Evaporator.

    B. Mass of Refrigerant :

    = Amount of Heat absorbed / Refrigerating Effect.

    )sec/(

    3600

    000,14

    41

    tonnekghh

    m

    1 TR = 14,000 kJ/hr

    C. Theoretical Piston Displacement := Mass of Refrigerant X Sp. Vol. of Refrigerant Gas (vg)1.

    )sec/(

    3600

    000,14.. 3

    141

    tonnemvhh

    DisplPistonTh g

    Introduction to Refrigeration and Air - Conditioning

  • 7/18/2019 seprodthermochapter5refrigeration

    42/60

    Introduction to Refrigeration and Air Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Vapour Compression SystemMathematical Analysis

    )(

    )/(

    12

    12

    kWhhmP

    kgkJhhW

    theor

    comp

    a) Isentropic Compression :D. Theoretical Power Required :

    )(1

    )/(1

    1122

    1122

    kWVPVPn

    nmP

    kgkJVPVPn

    nW

    theor

    comp

    a) Polytropic Compression :

    E. Heat removed through Condenser :

    )/(32 kgkJhhmQcond

    Introduction to Refrigeration and Air - Conditioning

  • 7/18/2019 seprodthermochapter5refrigeration

    43/60

    Introduction to Refrigeration and Air Conditioning

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Example 7Example 6A refrigeration machine is required to produce ice at 0 C from water at 20 C. The

    machine has a condenser temperature of 298 K while the evaporator temperature is 268K. The relative efficiency of the machine is 50 % and 6 kg of Freon-12 refrigerant is

    circulated through the system per minute. The refrigerant enters the compressor with a

    dryness fraction of 0.6. Specific heat of water is 4.187 kJ/kg.K and the latent heat of ice is

    335 kJ/kg. Calculate the amount of ice produced on 24 hours. The table of properties if

    Freon-12 is given below:

    Temperature

    (K)

    Liquid Heat

    (kJ/kg)

    Latent Heat

    (kJ/kg)

    Entropy of Liquid

    (kJ/kg)

    298 59.7 138.0 0.2232

    268 31.4 154.0 0.1251

    hf1 = 31.4 kJ/kghfg1= 154.0 kJ/kg

    hf2 = 59.7 kJ/kg

    hfg2= 138.0 kJ/kg

    hf3 = h4= 59.7 kJ/kg

    m =6 kg/minrel=50 %

    x2 = 0.6

    Cpw= 4.187 kJ/kg.K

    Latent Heat of ice = 335.7 kJ/kgGiven :

    Introduction to Refrigeration and Air - Conditioning

  • 7/18/2019 seprodthermochapter5refrigeration

    44/60

    Introduction to Refrigeration and Air Conditioning

    S. Y. B. Tech. Prod Engg.

    Example 6.contd

    Entropy, s

    Tem

    perature,

    T298 K

    268 K

    3

    4

    2

    1

    Sat. Vapour L ine

    Sat. Liq. Line

    fg

    kgkJhxhh fgf /8.1230.154)6.0(4.31111

    kgkJhxhh fgf /2.1330.138)5325.0(7.5922 22

    5325.0

    268

    0.1546.01251.0

    298

    0.1382232.0

    2

    2

    1

    1

    112

    2

    22

    111222

    12

    x

    x

    T

    h

    xsT

    h

    xs

    sxssxs

    ss

    fg

    f

    fg

    f

    fgffgf

    Isentropic Compression :1-2

    kgkJhh f /7.5934

    COP of Original Cycle :

    82.6

    /8.1232.133

    /7.598.123

    12

    41

    kgkJ

    kgkJ

    hh

    hh

    W

    RCOP n

    ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Introduction to Refrigeration and Air - Conditioning

  • 7/18/2019 seprodthermochapter5refrigeration

    45/60

    oduc o o e ge o d Co d o g

    S. Y. B. Tech. Prod Engg.

    Example 6.contd

    Actual COP = relX COPtheor= 0.5 X 6.82 = 3.41

    Heat extracted from 1 kg of water at 20 C to form 1 kg of ice at 0 C :

    kgkJ

    kgkJ

    CXKkgkJXkg

    /74.418

    )/(335

    )()020()./(187.4)(1

    Entropy, s

    Temperatur

    e,

    T298 K

    268 K

    3

    4

    2

    1

    Sat. Vapour L ine

    Sat. Liq. Line

    fg

    Now;

    .ANS

    hrsintonneXX

    kg

    kgkJ

    kgkJXkgm

    hhm

    Xm

    W

    RCOP

    ice

    iceactualn

    actual

    24661.01000

    2460459.0

    min/459.0

    41.3/74.418

    )/(8.1232.133)(6

    74.41841.3

    12

    )(

    ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Introduction to Refrigeration and Air - Conditioning

  • 7/18/2019 seprodthermochapter5refrigeration

    46/60

    g g

    S. Y. B. Tech. Prod Engg.

    Example 7

    28 tonnes of ice from and at 0 C is produced per day in an ammonia refrigerator. The

    temperature range in the compressor is from 25 C to -15oC. The vapour is dry andsaturated at the end of compression and an expansion valve is used. Assuming a

    co-efficient of performance of 62% of the theoretical, calculate the power required to

    drive the compressor. Take latent heat of ice = 335 kJ/kg.

    Temp

    (C)

    Enthalpy (kJ/kg) Entropy of

    Liquid(kJ/kg.K)

    Entropy of Vapour

    (kJ/kg.K)Liquid Vapour

    25 100.04 1319.22 0.3473 4.4852

    -15 -54.56 1304.99 -2.1338 5.0585

    ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    hf1 = -54.56 kJ/kghg1= 1304.99kJ/kg

    hf2 = 100.04 kJ/kg

    hg2= 1319.22 kJ/kg

    hf3 = h4= 100.04 kJ/kg

    Tcond =25 CTevap=-15 C

    x2 = 1.dry saturated vapour

    COPactual= 0.62 (COPtheor)

    Latent Heat of ice = 335.7 kJ/kgGiven :

    Introduction to Refrigeration and Air - Conditioning

  • 7/18/2019 seprodthermochapter5refrigeration

    47/60

    g g

    S. Y. B. Tech. Prod Engg.

    91.823.119622.1319

    04.10023.1196

    12

    41

    hh

    hhCOP ltheoreticaCOP of the Cycle :

    Entropy, s

    Temperatur

    e,

    T298 K

    258 K

    3

    4

    2

    1

    Sat. Vapour L ine

    Sat. Liq. Line

    fg

    Example 7.contd

    processcIsenthalpikgkJhh ...../04.10043

    kgkJ

    hxhh fgf

    /23.1196

    )56.54(99.1304)92.0()56.54(

    )( 1111

    92.0

    1338.20585.5)1338.2(4852.4

    2

    1

    1112

    12

    x

    x

    sxss

    ss

    fgfg

    Isentropic Compression :1-2

    kgkJhh g /22.131922

    Introduction to Refrigeration and Air - Conditioning

  • 7/18/2019 seprodthermochapter5refrigeration

    48/60

    g g

    S. Y. B. Tech. Prod Engg.

    Example 7.contd

    ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Actual COP = relX COPtheor

    = 0.62 X 8.91

    = 5.52

    Entropy, s

    Temperatur

    e,

    T298 K

    258 K

    3

    4

    2

    1

    Sat. Vapour L ine

    Sat. Liq. Line

    fg

    Actual Rn= COPactualX Work done

    = 5.52 X (h2h1)

    = 5.52 X (1319.221196.23)

    = 678.9 kJ/kg

    Heat extracted from 28 tonnes of water at 0 C to form ice at 0 C :

    )(sec/56.108

    )(sec/3600)(24

    )/(335)/(1000)(28

    kWkJ

    hrXhr

    kgkJXtonnekgXkg

    Mass of refrigerant : kg

    kgkJ

    kJ1599.0

    )/(9.678

    sec)/(56.108

    Total Work done by Compressor :

    )(sec/67.19

    /)23.119622.1319()(1599.012

    kWkJ

    kgkJXkghhXmrefrig

    .ANS

    Introduction to Refrigeration and Air - Conditioning

  • 7/18/2019 seprodthermochapter5refrigeration

    49/60

    g g

    S. Y. B. Tech. Prod Engg.

    Example 8

    In a standard vapour compression refrigeration cycle, operating between an evaporator

    temperature of -10 C and a condenser temperature of 40 C, the enthalpy of therefrigerant, Freon-12, at the end of compression is 220 kJ/kg. Show the cycle diagram on

    T-s plane. Calculate:

    1. The C.O.P. of the cycle.

    2. The refrigerating capacity and the compressor power assuming a refrigerant flow

    rate of 1 kg/min.

    You may use the extract of Freon-12 property table given below:

    Temp (C) Pr (MPa) hf(kJ/kg) hg(kJ/kg)

    -10 0.2191 26.85 183.1

    40 0.9607 74.53 203.1

    ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    hf1 = 26.85 kJ/kghg1= h1=183.1 kJ/kg

    hf2 = 74.53 kJ/kg

    hg2= 203.1 kJ/kg

    hf3 = h4= 74.53 kJ/kg

    Tcond =40 C

    Tevap=-10 C

    x1 = 1.dry saturated vapour

    h2=220 kJ/kgGiven :

    Introduction to Refrigeration and Air - Conditioning

  • 7/18/2019 seprodthermochapter5refrigeration

    50/60

    S. Y. B. Tech. Prod Engg.

    Example 8.contd

    COP of Original Cycle :

    94.2/1.1830.220

    /53.741.183

    12

    41

    kgkJ

    kgkJ

    hh

    hh

    W

    R

    COP

    n

    .ANS

    Refrigerating Capacity :

    min/57.108

    /53.741.183)(141

    kJ

    kgkJXkghhm

    .ANS

    Compressor Power :

    kW

    kJ

    kgkJXkghhm

    615.0

    min/9.36

    /1.1830.220)(112

    .ANS

    Entropy, s

    Temperatu

    re,

    T40 C

    -10 C

    3

    4

    2

    1

    Sat. Vapour L ine

    Sat. Liq. Line

    fg

    2

    Introduction to Refrigeration and Air - Conditioning

  • 7/18/2019 seprodthermochapter5refrigeration

    51/60

    S. Y. B. Tech. Prod Engg.

    Example 9

    A Freon-12 refrigerator producing a cooling effect of 20 kJ/sec operates on a simple

    cycle with pressure limits of 1.509 bar and 9.607 bar. The vapour leaves the evaporatordry saturated and there is no undercooling. Determine the power required by the

    machine. If the compressor operates at 300 rpm and has a clearance volume of 3% of

    stroke volume, determine the piston displacement of the compressor. For compressor

    assume that the expansion following the law PV1.3= Constant.

    ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Temp

    (oC)

    Ps(bar)

    vg

    (m3/kg)

    Enthalpy

    hf

    (kJ/kg)

    Enthalpy

    hg

    (kJ/kg)

    Entropy

    sf

    (kJ/kg)

    Entropy

    sg

    (kJ/kg)

    Specific

    heat

    (kJ/kg.K)

    -20 1.509 0.1088 17.8 178.61 0.073 0.7082 ---

    40 9.607 --- 74.53 203.05 0.2716 0.682 0.747

    hf1 = 17.8 kJ/kghg1= h1=178.61 kJ/kg

    hf2 = 74.53 kJ/kg

    hg2= 203.05 kJ/kg

    hf3 = h4= 74.53 kJ/kg

    Tcond =40 C

    Tevap=-20 C

    x1 = 1.dry saturated vapour

    h2=220 kJ/kgGiven :

    Introduction to Refrigeration and Air - Conditioning

  • 7/18/2019 seprodthermochapter5refrigeration

    52/60

    S. Y. B. Tech. Prod Engg.

    Example 9.contd

    Refrigerating Capacity :

    sec/192.0

    /53.7461.1782041

    kgm

    kgkJXmkWhhm

    KT

    T

    TTCss

    ss

    P

    2.324

    313ln747.0682.07082.0

    ln

    2

    2

    '2

    2'21

    21

    Isentropic Compression :1-2

    kgkJ

    KKkgkJkgkJ

    TTChh P

    /4.211

    0.3132.324./747.0)/(05.203

    '22'22

    ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Entropy, s

    Tempera

    ture,

    T313 K

    253 K

    3

    4

    2

    1

    Sat. Vapour L ine

    Sat. Liq. Line

    fg

    2

    Introduction to Refrigeration and Air - Conditioning

  • 7/18/2019 seprodthermochapter5refrigeration

    53/60

    S. Y. B. Tech. Prod Engg.

    Example 9

    .ANS

    Power Required :

    kW

    kgkJXkghhm

    29.6

    /61.1784.211sec)/(192.012

    Vol. Efficiency :

    %6.87

    509.1

    607.903.003.01

    1

    13.1/1

    /1

    bar

    bar

    P

    Pkk

    n

    S

    dvol

    Vol of Refrigerant

    at Intake :

    sec/02089.0)/(1088.0sec)/(192.0

    3

    3

    mkgmXkg

    vm g

    Piston Displ. Vol. : 3

    3

    00477.0)(300876.0

    min)(sec/60sec)/(02089.0

    )(

    .m

    rpm

    m

    rpm

    VolActual

    vol

    .ANS

    ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Entropy, s

    Temperature,

    T313 K

    253 K

    3

    4

    2

    1

    Sat. Vapour L ine

    Sat. Liq. Line

    fg

    2

    Introduction to Refrigeration and Air - Conditioning

  • 7/18/2019 seprodthermochapter5refrigeration

    54/60

    S. Y. B. Tech. Prod Engg.

    Example 10

    A food storage locker requires a refrigeration capacity of 50 kW. It works between a

    condenser temperature of 35 C and an evaporator temperature of -10 C. The refrigeratoris ammonia. It is sub-cooled by 5 C before entering the expansion valve. By the dry

    saturated vapour leaving the evaporator. Assuming a single-cylinder, single-acting

    compressor operating at 1000 rpm with stroke equal to 1.2 times the bore, determine :

    1. The power required.

    2. The cylinder dimensions.

    Properties of ammonia are :

    Sat.

    Temp.

    (oC)

    Pr.(bar)

    Enthalpy

    (kJ/kg)

    Entropy

    (kJ/kg)

    Sp. Vol.

    (m3/kg)

    Sp. Heat

    (kJ/kg.K)

    Liquid Vapour Liquid Vapour Liquid Vapour Liquid Vapour

    -10 2.9157 154.056 1450.22 0.82965 5.7550 --- 0.417477 --- 2.49235 13.522 366.072 1488.57 1.56605 5.2086 1.7023 0.095629 4.556 2.903

    ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    h1 = 1450.22 kJ/kg

    h2 = 1488.57 kJ/kg

    hf3 = 366.072 kJ/kg

    Tcond =35 C

    Tevap=-10 C

    x1 = 1.dry saturated vapour

    State 3 =Sub-cooled by 5 CGiven :

    Introduction to Refrigeration and Air - Conditioning

  • 7/18/2019 seprodthermochapter5refrigeration

    55/60

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Example 10.contd

    kgkJ

    kgkJkgkJ

    TTChhh subcoolsatliqPf

    /29.343

    )/(30330856.405)/(07.366

    34'3

    KT

    T

    T

    TCssss P

    8.371

    308ln903.22086.5755.5

    ln

    2

    2

    '2

    2'2121

    Isentropic Compression :1-2

    kgkJ

    KKkgkJkgkJ

    TTChh P

    /8.1673

    0.3088.371./903.2)/(57.1488

    '22'22

    Entropy, s

    Temper

    ature,

    T308 K

    263 K

    3

    4

    2

    1Sat. Vapour L ine

    Sat. Liq. Line

    fg

    2

    3

    303 K

    Introduction to Refrigeration and Air - Conditioning

  • 7/18/2019 seprodthermochapter5refrigeration

    56/60

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Example 10.contd

    sec/04517.0

    /29.34322.1450

    )(50

    /

    )(50

    41

    kg

    kgkJ

    kW

    kgkJhh

    kWm

    Mass of Refrigerant :

    Compressor Power :

    kW

    kgkJXkg

    hhm

    1.10

    /22.14508.1673)(04517.0

    12

    .ANS

    Cylinder Dimensions :

    mmL

    mD

    kgm

    rpmDD

    v

    NLD

    kgmg

    228.0)19.0(2.1

    19.0

    /417477.0

    60

    )(1000)2.1(4604

    sec)/(04517.03

    22

    .ANS

    .ANS

    Entropy, s

    Tempe

    rature,

    T308 K

    263 K

    3

    4

    2

    1Sat. Vapour L ine

    Sat. Liq. Line

    fg

    2

    3303 K

    Introduction to Refrigeration and Air - Conditioning

  • 7/18/2019 seprodthermochapter5refrigeration

    57/60

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Vapour Absorption System

    1

    2

    4

    3

    Solubility of NH3in water @ Temp and Pr.is MOREthan that @ Temp. and Pr.

    NH3vapour from Evaporator(State 1) is readily absorbed in Absorber. Heat Rejection

    This solution is then pumped to Temp. and Pr. @Generator.

    Reduction in stability of solution Vapour removed from Solution.

    Vapour passes to Condenser.

    Weak Solution returns to Absorber.

    Introduction to Refrigeration and Air - Conditioning

  • 7/18/2019 seprodthermochapter5refrigeration

    58/60

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Vapour Absorption System

    Merits :

    2. Work done on Compression is LESS.

    1. Pumping work is much less than work for Compressing vapour.

    Demerits :

    2. Low COP.

    1. Heat input to the Generator is required.

    COP :

    PumpLiquidondoneWorkGeneratorinpliedHeat

    EvaporatorinextractedHeatCOP

    sup

    Introduction to Refrigeration and Air - Conditioning

  • 7/18/2019 seprodthermochapter5refrigeration

    59/60

    S. Y. B. Tech. Prod Engg.ME0223 SEM-IV Applied Thermodynamics & Heat Engines

    Vapour Compression Vs. Vapour Absorption

    Sr.No.

    Particulars Vapour CompressionSystems

    Vapour AbsorptionSystems

    1. Type of Energy Supplied Mechanical High Grade Heat Low Grade2. Energy Supply Rate Low High3. Wear & Tear More Less4. Performance of Part

    Load Poor Not affected at Part Load5. Suitability Used where High Grade Mechanical

    Energy is available

    Can be used at Remote

    Places, as can be used with

    simple Kerosene lamp

    6. Charging of Refrigerant Simple Difficult7. Leakage More chances No chances, as no Compressor

    or Reciprocating Part

    8. Damage Liquid traces in Suction Linemay damage Compressor

    No danger

    Introduction to Refrigeration and Air - Conditioning

  • 7/18/2019 seprodthermochapter5refrigeration

    60/60

    Thank You !