seminar - venus atmospheric entry flow duplication in the x2 superorbital expansion tube

32
Venus atmospheric entry flow duplication in the X2 superorbital expansion tube Guerric de Crombrugghe Centre for Hypersonics & The University of Queensland 01/10/2013 1 / 32

Upload: guerric-de-crombrugghe

Post on 08-Mar-2016

213 views

Category:

Documents


0 download

DESCRIPTION

Seminar given at the von Karman Institute on the 1st of November 2013.

TRANSCRIPT

Page 1: SEMINAR - Venus Atmospheric Entry Flow Duplication in the X2 Superorbital Expansion Tube

Venus atmospheric entry flow duplication in theX2 superorbital expansion tube

Guerric de Crombrugghe

Centre for Hypersonics& The University of Queensland

01/10/2013

1 / 32

Page 2: SEMINAR - Venus Atmospheric Entry Flow Duplication in the X2 Superorbital Expansion Tube

PART I:THE CENTRE FOR HYPERSONICSadapted from various presentations of Pr. R. Morgan

2 / 32

Page 3: SEMINAR - Venus Atmospheric Entry Flow Duplication in the X2 Superorbital Expansion Tube

Australia is a very large country

This country is scaringly huge.

3 / 32

Page 4: SEMINAR - Venus Atmospheric Entry Flow Duplication in the X2 Superorbital Expansion Tube

The University of Queensland

• Founded in 1909;

• > 5,000 teaching staff;

• > 32,400 undergraduate student;

• > 12,200 postgraduate student.

4 / 32

Page 5: SEMINAR - Venus Atmospheric Entry Flow Duplication in the X2 Superorbital Expansion Tube

The Centre for Hypersonics

• ∼ 60 people, including 5 VKI alumni;

• Active in:• Development of hypervelocity test facilities;• Scramjet propulsion (experiment, analysis and design);• Rocket flight testing;• Aerothermodynamic experimentation and analysis;• Advanced instrumentation for aerodynamic measurements;• Computational fluid dynamic analysis of hypervelocity flows;• Optical diagnostics for hypervelocity superorbital flows.

• Four facilities:• T4 shock tunnel (scramjet);• X2 expansion tube (super-orbital entry);• X3 expansion tube (scramjet & super-orbital entry);• Drummond tube (education).

5 / 32

Page 6: SEMINAR - Venus Atmospheric Entry Flow Duplication in the X2 Superorbital Expansion Tube

Schematic operation of tubes

6 / 32

Page 7: SEMINAR - Venus Atmospheric Entry Flow Duplication in the X2 Superorbital Expansion Tube

The X2 expansion tube

7 / 32

Page 8: SEMINAR - Venus Atmospheric Entry Flow Duplication in the X2 Superorbital Expansion Tube

The X2 expansion tube

8 / 32

Page 9: SEMINAR - Venus Atmospheric Entry Flow Duplication in the X2 Superorbital Expansion Tube

High enthalpy scaling, ρL approach

Binary dissociation rate behind a normal shock RD = ρT ne−EdkT (1− α)

T >> Ed/k, and kT ≃ v2/2Ed → duplication parameter: v2/2Ed

If recombination can be neglected, Damkholer number Da = lDL

lD ∼ 1/ρ → duplication parameter: ρL

Reynolds number for viscous effect Re = ρvLµ

→ proper scaling requires using same fluid, same v , and duplication of ρL

9 / 32

Page 10: SEMINAR - Venus Atmospheric Entry Flow Duplication in the X2 Superorbital Expansion Tube

High enthalpy scaling, ρL approach

Binary recombination length scale lD ∼ 1/ρ2

→ recombination and equilibrium are not properly modelled

Only accounts for binary reactions→ complex combustions are not properly modelled

Radiation not scaled properly→ issue if Goulard number Γ = 2qrad

1/2ρv3 > 0.01

10 / 32

Page 11: SEMINAR - Venus Atmospheric Entry Flow Duplication in the X2 Superorbital Expansion Tube

High enthalpy scaling, ρL approach

Centreline profile Titan for Titan entry at 5.7 km/s and 1/100 scale(Gnoffo, 2005)

11 / 32

Page 12: SEMINAR - Venus Atmospheric Entry Flow Duplication in the X2 Superorbital Expansion Tube

Pros of expansion tubes

• High total enthalpy simulation of aerodynamic flows possible;

• Equivalent flight speeds up to 15 km/s demonstrated;

• Large range of conditions / test gases available;

• Nonequilibrium radiant and chemical phenomena can be created;

• Continuum and rarefied flows;

• Heat transfer / force / pressure measurement / laser diagnostics;

• High total pressure and ρL simulation capability;

• Can operate with nozzles for enlarged core flow area;

• Cheap.

12 / 32

Page 13: SEMINAR - Venus Atmospheric Entry Flow Duplication in the X2 Superorbital Expansion Tube

Cons of expansion tubes

• Short run times (15 µs to 1 ms);

• Complex chemistry and fluid dynamics involved in determining testconditions;

• Diaphragm inertia influences flow;

• Restricted core flow at high Mach numbers;

• Unusable flow quality if incorrectly operated;

• Low density at very high speeds;

• Long tube lengths sometimes required;

• Diaphragm debris;

• Turbulent boundary layers at high Reynolds numbers.

13 / 32

Page 14: SEMINAR - Venus Atmospheric Entry Flow Duplication in the X2 Superorbital Expansion Tube

PART II:PLUMBING THE ATMOSPHERE OF VENUS

14 / 32

Page 15: SEMINAR - Venus Atmospheric Entry Flow Duplication in the X2 Superorbital Expansion Tube

Rationales for Venus exploration

1. How did Venus originate and evolve? Whatare the implications for the characteristiclifetime and conditions of habitableenvironments on Venus and similar extrasolarsystems?

2. What are the processes that have shaped andstill shape the planet?

3. What does Venus tell us about the fate ofEarths environment?

S. Limay and S. Smrekar. Pathways for VenusExploration. Technical report, Venus ExplorationAnalysis Group, 2009.

15 / 32

Page 16: SEMINAR - Venus Atmospheric Entry Flow Duplication in the X2 Superorbital Expansion Tube

Challenges of Venus exploration

P. Gnoffo, K. Wailmuenster and H. Hamilton. Computational

Aerothermodynamics Design Issues for Hypersonic Vehicles Journal of

Spacecraft and Rockets, 36(1):2143, 1999.16 / 32

Page 17: SEMINAR - Venus Atmospheric Entry Flow Duplication in the X2 Superorbital Expansion Tube

Venus entry vs. Mars entry

0 2 4 6 8 10 12

10−4

10−3

10−2

10−1

Flight velocity [km/s]

Fre

e−

str

eam

density [kg/m

3]

Mars direct ballistic entryPioneer Venus Day probe, 1978

Slowest Venus entryVega 1, 1984

17 / 32

Page 18: SEMINAR - Venus Atmospheric Entry Flow Duplication in the X2 Superorbital Expansion Tube

Challenges of Venus exploration

• 11 · · · 12 km/s entry velocity;

• 15 · · · 50 gs peak deceleration;

• 3 · · · 40 MW/m2 peak heat flux;

• sulphuric acid cloud layer;

• up to 100 m/s high altitude winds;

• > 725 K surface temperature;

• 9,200 kPa surface pressure.

18 / 32

Page 19: SEMINAR - Venus Atmospheric Entry Flow Duplication in the X2 Superorbital Expansion Tube

Venus atmospheric entry probes

Venera first generation(1967-1972)

Venera second generation(1975-1984)

Pioneer Venus(1978)

19 / 32

Page 20: SEMINAR - Venus Atmospheric Entry Flow Duplication in the X2 Superorbital Expansion Tube

Pioneer Venus multiprobe

20 / 32

Page 21: SEMINAR - Venus Atmospheric Entry Flow Duplication in the X2 Superorbital Expansion Tube

Aeroheating rebuilding

Day probe

7075808590951001051101151200

2

4

6

8

10

12

14

16

Altitude (km)

Heat flux (

MW

/m2)

Convective

Radiative

Total

North probe

7075808590951001051101151200

2

4

6

8

10

12

14

16

Altitude (km)H

eat flux (

MW

/m2)

Convective

Radiative

Total

C. Park and H.-K. Ahn. Stagnation-point heat transfer rates for Pioneer-Venus

probes. Journal of Thermophysics and Heat Transfer, 13(1):3341, 1999.

21 / 32

Page 22: SEMINAR - Venus Atmospheric Entry Flow Duplication in the X2 Superorbital Expansion Tube

Shock layer radiation

B.A. Cruden. Absolute radiation measurement during planetary entry in the

Nasa Ames electric arc shock tube facility. In 27th International Symposium on

Rarefied Gas Dynamics, 2011.22 / 32

Page 23: SEMINAR - Venus Atmospheric Entry Flow Duplication in the X2 Superorbital Expansion Tube

Post-shock conditions

7 7.5 8 8.5 9 9.5 10 10.5 11 11.56000

7000

8000

9000

10000

11000

12000

Po

st−

sh

ock t

em

pe

ratu

re [

K]

7 7.5 8 8.5 9 9.5 10 10.5 11 11.50

100

200

300

400

500

600

Shock velocity [km/s]

Po

st−

sh

ock p

ressu

re [

kP

a]

Temperature

Pressure

23 / 32

Page 24: SEMINAR - Venus Atmospheric Entry Flow Duplication in the X2 Superorbital Expansion Tube

Post-shock conditions

7 7.5 8 8.5 9 9.5 10 10.5 11 11.510

−6

10−5

10−4

10−3

10−2

10−1

100

Shock velocity [km/s]

Mo

lar

fra

ctio

n [

mo

l/m

ol]

CCONN2NOOCNCO2C2C2OO2

7 7.5 8 8.5 9 9.5 10 10.5 11 11.510

−6

10−5

10−4

10−3

10−2

10−1

100

Shock velocity [km/s]

Mo

lar

fra

ctio

n [

mo

l/m

ol]

C+N+O+e−C−CO+C2+NO+O−O2+

24 / 32

Page 25: SEMINAR - Venus Atmospheric Entry Flow Duplication in the X2 Superorbital Expansion Tube

Research objective

25 / 32

Page 26: SEMINAR - Venus Atmospheric Entry Flow Duplication in the X2 Superorbital Expansion Tube

Same test condition but different model size...

0 2 4 6 8 10 12

10−4

10−3

10−2

10−1

100

Flight equivalent velocity [km/s]

Fre

e−

str

ea

m d

en

sity [

kg

/m3

]

1/16 model

Flight

26 / 32

Page 27: SEMINAR - Venus Atmospheric Entry Flow Duplication in the X2 Superorbital Expansion Tube

...to study different points of the trajectory& the scaling law

0 2 4 6 8 10 12

10−4

10−3

10−2

10−1

Flight equivalent velocity [km/s]

Fre

e−

str

ea

m d

en

sity [

kg

/m3

]

Flight

27 / 32

Page 28: SEMINAR - Venus Atmospheric Entry Flow Duplication in the X2 Superorbital Expansion Tube

Post-processing: along the tunnel

4 5 6 7 8 9 10 11 12 13 144

6

8

10

12

14

16

Distance from the reservoir−driver interface [m]

Sh

ock v

elo

city [

km

/s]

L1dPitot ’shock−speed’Pitot ’flow−behind−shock’x2s2189x2s2194x2s2195

ACCELERATION TUBE

SHOCK TUBE

28 / 32

Page 29: SEMINAR - Venus Atmospheric Entry Flow Duplication in the X2 Superorbital Expansion Tube

Post-processing: in the test section

0 2 4 6 8 10 12 1410

−4

10−3

10−2

10−1

Equivalent flight velocity [km/s]

Fre

e−

str

eam

density [kg/m

3]

Day probeNorth probeNight probePeak radiative heatingPeak total heatingx2s2189x2s2194x2s2195

1/10 model

Flight

29 / 32

Page 30: SEMINAR - Venus Atmospheric Entry Flow Duplication in the X2 Superorbital Expansion Tube

Next steps

• Second Pitot survey to achieve somewhat slower flows for similardensity;

• Numerical rebuilding of the experiments to perform (in-house code:Eilmer);

• Test campaign (IR and UV spectrometry, possibly also VUV).

30 / 32

Page 31: SEMINAR - Venus Atmospheric Entry Flow Duplication in the X2 Superorbital Expansion Tube

Possible campaign in shock tube mode

6 7 8 9 10 11 12

101

102

103

Shock velocity [km/s]

Sta

tic p

ressure

[P

a]

Day probe

Without secondary driver

With secondary driver (optimum)

EAST data points

Radiative heating starts

Radiative heating stops

Peak radiative heating

31 / 32

Page 32: SEMINAR - Venus Atmospheric Entry Flow Duplication in the X2 Superorbital Expansion Tube

THANK YOUAny questions?

32 / 32