semiconductor processing: lithography part i...300 nm pmma, si substrate 10 nm beam diameter 10 kev...

25
Semiconductor Processing: Lithography Part I Professor Benjamín Alemán Department of Physics University of Oregon

Upload: others

Post on 18-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Semiconductor Processing: Lithography Part I...300 nm PMMA, Si Substrate 10 nm beam diameter 10 keV 100 keV The proximity effect limits e-beam resolution Extrem UV (100 eV) lithography

Semiconductor Processing:Lithography Part I

Professor Benjamín AlemánDepartment of PhysicsUniversity of Oregon

Page 2: Semiconductor Processing: Lithography Part I...300 nm PMMA, Si Substrate 10 nm beam diameter 10 keV 100 keV The proximity effect limits e-beam resolution Extrem UV (100 eV) lithography

Planar Processing with Semiconductors (Silicon):Course Map

• Crystal growth (semiconductors)• Wafer doping (in situ)• Wafer characteristics• SiO2 growth*• Defects and impurities

• SiO2 growth*• LITHOGRAPHY• Masked diffusion doping• Vacuum Systems• Thin Films: CVD, MBE,

PVD, ALD• Implantation• Wet and Dry Etching• Integration

Page 3: Semiconductor Processing: Lithography Part I...300 nm PMMA, Si Substrate 10 nm beam diameter 10 keV 100 keV The proximity effect limits e-beam resolution Extrem UV (100 eV) lithography

Diffraction through a single slit

𝑊 =2𝐿𝜆

𝑏

Page 4: Semiconductor Processing: Lithography Part I...300 nm PMMA, Si Substrate 10 nm beam diameter 10 keV 100 keV The proximity effect limits e-beam resolution Extrem UV (100 eV) lithography

Resolution and Depth-of-focus of an optical system

𝑙𝑚 = 𝑘1𝜆

𝑁𝐴𝐷𝑂𝐹 = 𝑘2

𝜆

(𝑁𝐴)2𝑁𝐴 ≡

𝐷

𝑓≡ 𝑛 sin 𝜃

Resolution Depth of field Numerical aperture

Page 5: Semiconductor Processing: Lithography Part I...300 nm PMMA, Si Substrate 10 nm beam diameter 10 keV 100 keV The proximity effect limits e-beam resolution Extrem UV (100 eV) lithography

The challenges of registration illustrated by the 7 nm transistor

(Gatan, 2003)

Page 6: Semiconductor Processing: Lithography Part I...300 nm PMMA, Si Substrate 10 nm beam diameter 10 keV 100 keV The proximity effect limits e-beam resolution Extrem UV (100 eV) lithography

An example of registration in e-beam lithography

Page 7: Semiconductor Processing: Lithography Part I...300 nm PMMA, Si Substrate 10 nm beam diameter 10 keV 100 keV The proximity effect limits e-beam resolution Extrem UV (100 eV) lithography

An example of registration in e-beam lithography

Page 8: Semiconductor Processing: Lithography Part I...300 nm PMMA, Si Substrate 10 nm beam diameter 10 keV 100 keV The proximity effect limits e-beam resolution Extrem UV (100 eV) lithography

Phase Shifting

Page 9: Semiconductor Processing: Lithography Part I...300 nm PMMA, Si Substrate 10 nm beam diameter 10 keV 100 keV The proximity effect limits e-beam resolution Extrem UV (100 eV) lithography

Optical Proximity Correction (OPC)

Mask Wafer

Page 10: Semiconductor Processing: Lithography Part I...300 nm PMMA, Si Substrate 10 nm beam diameter 10 keV 100 keV The proximity effect limits e-beam resolution Extrem UV (100 eV) lithography

Electron-beam lithography

Page 11: Semiconductor Processing: Lithography Part I...300 nm PMMA, Si Substrate 10 nm beam diameter 10 keV 100 keV The proximity effect limits e-beam resolution Extrem UV (100 eV) lithography

An example of electron-beam lithography

Page 12: Semiconductor Processing: Lithography Part I...300 nm PMMA, Si Substrate 10 nm beam diameter 10 keV 100 keV The proximity effect limits e-beam resolution Extrem UV (100 eV) lithography

Simulating proximity effect with CASINOmonte CArlo SImulation of electroN trajectory in sOlids

300 nm PMMA, Si Substrate

10 nm beam diameter

10 keV 100 keV

Page 13: Semiconductor Processing: Lithography Part I...300 nm PMMA, Si Substrate 10 nm beam diameter 10 keV 100 keV The proximity effect limits e-beam resolution Extrem UV (100 eV) lithography

The proximity effect limits e-beam resolution

Page 14: Semiconductor Processing: Lithography Part I...300 nm PMMA, Si Substrate 10 nm beam diameter 10 keV 100 keV The proximity effect limits e-beam resolution Extrem UV (100 eV) lithography

Extrem UV (100 eV) lithography

Page 15: Semiconductor Processing: Lithography Part I...300 nm PMMA, Si Substrate 10 nm beam diameter 10 keV 100 keV The proximity effect limits e-beam resolution Extrem UV (100 eV) lithography

Double Patterning

Page 16: Semiconductor Processing: Lithography Part I...300 nm PMMA, Si Substrate 10 nm beam diameter 10 keV 100 keV The proximity effect limits e-beam resolution Extrem UV (100 eV) lithography

Roadmap

wikipedia

Page 17: Semiconductor Processing: Lithography Part I...300 nm PMMA, Si Substrate 10 nm beam diameter 10 keV 100 keV The proximity effect limits e-beam resolution Extrem UV (100 eV) lithography

Photoresist Materials

Page 18: Semiconductor Processing: Lithography Part I...300 nm PMMA, Si Substrate 10 nm beam diameter 10 keV 100 keV The proximity effect limits e-beam resolution Extrem UV (100 eV) lithography

Exposure-Response Curves of Photoresist

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∝1

𝐷0𝛾 =

1

log𝐷100𝐷0

(𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡)

Page 19: Semiconductor Processing: Lithography Part I...300 nm PMMA, Si Substrate 10 nm beam diameter 10 keV 100 keV The proximity effect limits e-beam resolution Extrem UV (100 eV) lithography

An example of calculating γ

𝐷0 = 0.6𝐷100 = 1.8

𝛾 = 1/ log1.8

0.6

= 2.1

𝐷0 𝐷100

Page 20: Semiconductor Processing: Lithography Part I...300 nm PMMA, Si Substrate 10 nm beam diameter 10 keV 100 keV The proximity effect limits e-beam resolution Extrem UV (100 eV) lithography

Exposure-Response Curves of Photoresist:Sensitivity and Contrast

Sensitivity

Contrast

Page 21: Semiconductor Processing: Lithography Part I...300 nm PMMA, Si Substrate 10 nm beam diameter 10 keV 100 keV The proximity effect limits e-beam resolution Extrem UV (100 eV) lithography

Resist contrast determines resolution, sidewall angle and line width (minimum feature size)

High Contrast

Low Contrast

High Contrast

Low Contrast

Page 22: Semiconductor Processing: Lithography Part I...300 nm PMMA, Si Substrate 10 nm beam diameter 10 keV 100 keV The proximity effect limits e-beam resolution Extrem UV (100 eV) lithography

SU-8 is a negative tone resist with high contrast

Microchem

Page 23: Semiconductor Processing: Lithography Part I...300 nm PMMA, Si Substrate 10 nm beam diameter 10 keV 100 keV The proximity effect limits e-beam resolution Extrem UV (100 eV) lithography

Critical resist Modulation Transfer Function (CMTF) and the Modulation Transfer Function (MTF)

𝐶𝑀𝑇𝐹 =𝐷100 − 𝐷0𝐷100 + 𝐷0

=10 1 𝛾 − 1

10 1 𝛾 + 1

𝑀𝑇𝐹 =𝑀𝑖𝑚𝑎𝑔𝑒

𝑀𝑚𝑎𝑠𝑘

𝑀 =𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥 + 𝐼𝑚𝑖𝑛

𝑀𝑇𝐹 = 𝑀𝑖𝑚𝑎𝑔𝑒 =𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥 + 𝐼𝑚𝑖𝑛

No image is formed if 𝑪𝑴𝑻𝑭 > 𝑴𝑻𝑭.

Page 24: Semiconductor Processing: Lithography Part I...300 nm PMMA, Si Substrate 10 nm beam diameter 10 keV 100 keV The proximity effect limits e-beam resolution Extrem UV (100 eV) lithography

Modulation Transfer Function

Mask

Image

Page 25: Semiconductor Processing: Lithography Part I...300 nm PMMA, Si Substrate 10 nm beam diameter 10 keV 100 keV The proximity effect limits e-beam resolution Extrem UV (100 eV) lithography

SU-8 Thickness vs. spin-speed curve

Microchem