semiconductor lasers operating principle : outlinepbrosson.free.fr/eso/01_laser.pdfsemiconductor...

33
1 Philippe Brosson/ESO/2005/Semiconductor Lasers and integrated devices/ 1- S.L. Operating principle/ Semiconductor Lasers operating principle : outline -> gain and recombination processes, threshold, QW lasers waveguiding in semiconductor lasers Distributed FeedBack lasers (DFB) Semiconductor Laser structures 1

Upload: others

Post on 02-Jun-2020

21 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Semiconductor Lasers operating principle : outlinepbrosson.free.fr/eso/01_laser.pdfSemiconductor Lasers operating principle : outline gain and recombination processes, thresold, QW

1Philippe Brosson/ESO/2005/Semiconductor Lasers and integrated devices/ 1- S.L. Operating principle/

Semiconductor Lasers operating principle : outline

-> gain and recombination processes, threshold, QW lasers waveguiding in semiconductor lasers Distributed FeedBack lasers (DFB) Semiconductor Laser structures

1

Page 2: Semiconductor Lasers operating principle : outlinepbrosson.free.fr/eso/01_laser.pdfSemiconductor Lasers operating principle : outline gain and recombination processes, thresold, QW

2Philippe Brosson/ESO/2005/Semiconductor Lasers and integrated devices/ 1- S.L. Operating principle/

Double-heterojunction laser

refr

activ

ein

dex

profi

le

field

profi

leI

PN

active layer0.2 µm (bulk)9 nm (quant. well)

current flow(a few mAs)

300 µm

100 µm

lightcleaved facet {110}R=0.3-0.4

2

Page 3: Semiconductor Lasers operating principle : outlinepbrosson.free.fr/eso/01_laser.pdfSemiconductor Lasers operating principle : outline gain and recombination processes, thresold, QW

3Philippe Brosson/ESO/2005/Semiconductor Lasers and integrated devices/ 1- S.L. Operating principle/

Optical transitions

ENER

GYEN

ERGY h ν

ENER

GY

h ν

h νh ν

Absorption

Spontaneous emission

Stimulated emission

3

Page 4: Semiconductor Lasers operating principle : outlinepbrosson.free.fr/eso/01_laser.pdfSemiconductor Lasers operating principle : outline gain and recombination processes, thresold, QW

4Philippe Brosson/ESO/2005/Semiconductor Lasers and integrated devices/ 1- S.L. Operating principle/

Optical gain

φdφ = g dz

φ0

⇒0 z⇒

φ φ0 e g z=

gain region

Φ ( photons s-1cm-2 ) photon fluxg ( cm-1 ) optical gain

4

Page 5: Semiconductor Lasers operating principle : outlinepbrosson.free.fr/eso/01_laser.pdfSemiconductor Lasers operating principle : outline gain and recombination processes, thresold, QW

5Philippe Brosson/ESO/2005/Semiconductor Lasers and integrated devices/ 1- S.L. Operating principle/

Carrier confinement in a homo-junction laser, @ 0 K

no bias, V=0

electrons

Fermi level

valence band

conductionband

EgEg

valence band

conductionband

P type N type

}

populationinversion

EFc

VEFvh ν

Carriers can diffuse and are poorly confined

forward bias V

5

Page 6: Semiconductor Lasers operating principle : outlinepbrosson.free.fr/eso/01_laser.pdfSemiconductor Lasers operating principle : outline gain and recombination processes, thresold, QW

6Philippe Brosson/ESO/2005/Semiconductor Lasers and integrated devices/ 1- S.L. Operating principle/

Carrier and optical confinement in a double-heterojunction laser

forward biasDouble-heterojunctionlaser

Condition for Net stimulated emissionEg < hν < E g + EF c +EF v

[M.G. A. Bernard, G. Duraffourg, Phys. Status Solidi, 1, 699, 1961]

refra

ctive

inde

x

injected electrons

holes

conduction band

valence band hν ≈ Eg

P NInP InP GaInAsP

d ≈ 0.1-0.3 µm

ener

gy

[I. Hayashi, M. B. Panish, F. K. Reinhart, « GaAs-Alx Ga 1-x As double-heterostructure injection lasers », J. App. Phys., vol. 42, pp 1929-1941, Apr. 1971]

6

Page 7: Semiconductor Lasers operating principle : outlinepbrosson.free.fr/eso/01_laser.pdfSemiconductor Lasers operating principle : outline gain and recombination processes, thresold, QW

7Philippe Brosson/ESO/2005/Semiconductor Lasers and integrated devices/ 1- S.L. Operating principle/

Threshold condition for a Fabry-Perot laser

Φ0Φ0 Exp(g-α)L

R2Φ0 Exp(g-α)LR2Φ0 Exp(g-α)2 L

R1R2Φ0 Exp(g-α)2 L

mirror loss

Φ0 = R1R2Φ0 Exp(g-α)2 Lg = α + (1/L) Ln(1/Sqrt(R1R2) )

internal loss

LR1 R2

gain

7

Page 8: Semiconductor Lasers operating principle : outlinepbrosson.free.fr/eso/01_laser.pdfSemiconductor Lasers operating principle : outline gain and recombination processes, thresold, QW

8Philippe Brosson/ESO/2005/Semiconductor Lasers and integrated devices/ 1- S.L. Operating principle/

Light-current characteristics

0 20 40 60 80 1000

1

2

3

4

5

I ( mA )

P ( m

W )

Jth(kA/cm2) = 100 Ith(mA)L(µm) w(µm)

Linear gain approximationgth = a ( Nth -Nt)

Case of a Double-Hetero structure laserΓgth = Γαint + (1-Γ)αcladd. + 1/L Ln(1/R)

-> threshold carrier density Nth(cm-3)

Optical confinement

Recombination rateJ/ed = Rrad (N) + Rnon rad (N)

-> threshold current density Jth(kA/cm-2)

gth = 100 cm-1

Nth = 2x10 18 cm-3

Jth = 1 kA/ cm2

Γ= 0.2

8

Page 9: Semiconductor Lasers operating principle : outlinepbrosson.free.fr/eso/01_laser.pdfSemiconductor Lasers operating principle : outline gain and recombination processes, thresold, QW

9Philippe Brosson/ESO/2005/Semiconductor Lasers and integrated devices/ 1- S.L. Operating principle/

Spontaneous and external differential efficiencies

Spontaneous radiative efficiency

External differential efficiency(per facet)

9

Page 10: Semiconductor Lasers operating principle : outlinepbrosson.free.fr/eso/01_laser.pdfSemiconductor Lasers operating principle : outline gain and recombination processes, thresold, QW

10Philippe Brosson/ESO/2005/Semiconductor Lasers and integrated devices/ 1- S.L. Operating principle/

Optical spectrum for a Fabry-Perot laser

Longitudinal mode spacing Δλqby differentiation of (1)

L = 400 µmλ= 1494 nmn = 3.53dn/dλ = -0.12 µm-1ne = 3.70Δλq = 0.75 nm

Effective group index

q integerλ free space wavelengthL cavity lengthn effective index

10

Page 11: Semiconductor Lasers operating principle : outlinepbrosson.free.fr/eso/01_laser.pdfSemiconductor Lasers operating principle : outline gain and recombination processes, thresold, QW

11Philippe Brosson/ESO/2005/Semiconductor Lasers and integrated devices/ 1- S.L. Operating principle/

Threshold current density and active layer thickness

The threshold current density is minimum around 0.15 micrometer

Thre

shol

d cu

rrent

den

sity

(kA/

cm2 )

11

Page 12: Semiconductor Lasers operating principle : outlinepbrosson.free.fr/eso/01_laser.pdfSemiconductor Lasers operating principle : outline gain and recombination processes, thresold, QW

12Philippe Brosson/ESO/2005/Semiconductor Lasers and integrated devices/ 1- S.L. Operating principle/

Threshold current density in a Quantum Well laser

The threshold current density is minimum for a 5-well laser

12

Page 13: Semiconductor Lasers operating principle : outlinepbrosson.free.fr/eso/01_laser.pdfSemiconductor Lasers operating principle : outline gain and recombination processes, thresold, QW

13Philippe Brosson/ESO/2005/Semiconductor Lasers and integrated devices/ 1- S.L. Operating principle/

Quantum well semiconductor lasers

Lz

E 1c

E 2c

E 1hhE 2hh

E 1lhE 2lhE 3lh

E 3c

E 3hh

Egh ν ≈ Eg + E1c + E1hh

∆Ec

∆Ev

conduction band

valence band

En = h2

2 m* nπLz

2for an infinitely deep well

InP GaInAsP

GaInAs

D2 D2transition with highest gain

multiple quantum well laser

13

Page 14: Semiconductor Lasers operating principle : outlinepbrosson.free.fr/eso/01_laser.pdfSemiconductor Lasers operating principle : outline gain and recombination processes, thresold, QW

14Philippe Brosson/ESO/2005/Semiconductor Lasers and integrated devices/ 1- S.L. Operating principle/

Control of the emission wavelength in a quantum qwell laser

the energy hν of the peak gain is determined by the width Lz of the well the emission wavelength is controlled by Lz

Lz = 5 nmλ = 1.4 µm

Lz = 9 nmλ = 1.55 µm

14

Page 15: Semiconductor Lasers operating principle : outlinepbrosson.free.fr/eso/01_laser.pdfSemiconductor Lasers operating principle : outline gain and recombination processes, thresold, QW

15Philippe Brosson/ESO/2005/Semiconductor Lasers and integrated devices/ 1- S.L. Operating principle/

Maximum material gain in a quantum well laser

well: GaInAsbarrier: GaInAsP, λg = 1.2 µm

0

500

1000

1500

2000

2500M

axim

um G

ain

(cm

-1)

0 1 2 3 4 5N (10^18 cm-3)

G(N) Data

quantum well

bulk GaInAs

[Zielinski]

in quantum well lasers:• threshold carrier density is lower• higher modulation bandwith (due to higher dg/dN)

15

Page 16: Semiconductor Lasers operating principle : outlinepbrosson.free.fr/eso/01_laser.pdfSemiconductor Lasers operating principle : outline gain and recombination processes, thresold, QW

16Philippe Brosson/ESO/2005/Semiconductor Lasers and integrated devices/ 1- S.L. Operating principle/

Temperature dependence of the threshold current density

Split-Off

ConductionBand

HeavyHole

Light Hole

Δ

Eg

E k

1

2

3

acceptor

IVBA

Split-Off

ConductionBand

HeavyHole

Light Hole

Δ

Eg

E k

1

2

3

Auger

origin of the low T0 in GaInAsP• carrier leakage over barriers• Inter Valence Band Absorption• Auger recombination

low T0 <-> high temperature sensitivity

Jth ( T ) ≈ J0 eTT 0

400300200100100

1000

10000

TEMPERATURE(K)

Thre

shol

d cu

rren

tde

nsity

(A/c

m2

)

T0 = 110 K

T0 = 60 K

GaAs T0 = 120 K

GaInAsP

16

Page 17: Semiconductor Lasers operating principle : outlinepbrosson.free.fr/eso/01_laser.pdfSemiconductor Lasers operating principle : outline gain and recombination processes, thresold, QW

17Philippe Brosson/ESO/2005/Semiconductor Lasers and integrated devices/ 1- S.L. Operating principle/

Semiconductor Lasers operating principle : outline

gain and recombination processes, thresold, QW lasers->waveguiding in semiconductor lasers Distributed FeedBack lasers (DFB) Semiconductor Laser structures

17

Page 18: Semiconductor Lasers operating principle : outlinepbrosson.free.fr/eso/01_laser.pdfSemiconductor Lasers operating principle : outline gain and recombination processes, thresold, QW

18Philippe Brosson/ESO/2005/Semiconductor Lasers and integrated devices/ 1- S.L. Operating principle/

Waveguide structure

Y

x

z

exponential

exponential

cosine {fie

ldpr

ofile

refr

activ

ein

dex

profi

leEy

Electric field

18

Page 19: Semiconductor Lasers operating principle : outlinepbrosson.free.fr/eso/01_laser.pdfSemiconductor Lasers operating principle : outline gain and recombination processes, thresold, QW

19Philippe Brosson/ESO/2005/Semiconductor Lasers and integrated devices/ 1- S.L. Operating principle/

Beam ray description of guided modes

θc = sin-1 ( ncladncore )

θ0 = sin-1 ( neff0ncore )

θ1 = sin-1 ( neff1ncore )

cladding nclad

cladding nclad

core nlcore

θc

TE0 TE1

d

critical angle θc for total internal reflection

guided modes:θ > θc

ncore = 3.53nclad = 3.17d = 0.75 µm2 modes TE0, TE1

neffTE0TE1

critical

796764

3.463.253.17

θ (°)

guided

modes

19

Page 20: Semiconductor Lasers operating principle : outlinepbrosson.free.fr/eso/01_laser.pdfSemiconductor Lasers operating principle : outline gain and recombination processes, thresold, QW

20Philippe Brosson/ESO/2005/Semiconductor Lasers and integrated devices/ 1- S.L. Operating principle/

Optical field profile (perpend. to junction plane)

dact = 0.4 µmneff = 3.38Γ = 0.77 d I/e2 = 0.65 µm

ncore = 3.53nclad. = 3.17

dact = 0.1 µmneff = 3.20Γ = 0.17 d I/e2 = 1.1 µm

20

Page 21: Semiconductor Lasers operating principle : outlinepbrosson.free.fr/eso/01_laser.pdfSemiconductor Lasers operating principle : outline gain and recombination processes, thresold, QW

21Philippe Brosson/ESO/2005/Semiconductor Lasers and integrated devices/ 1- S.L. Operating principle/

6 mW

0.6 mW

-50 +50 -50 +50Angl e(°)

//⊥

10 mW

Beam divergence

Y

x

z

half intensity contour

θ//

θ⊥

θ// = 23 °θ⊥ = 24 °A. Accard, F. Brillouet, E. Duda, B. Fernier, G. Gelly, L. Goldstein, D. Leclerc, D. Lesterlin,

J. Phys. III, France, Vol 2, p1727-1738, 1992

E⊥ (θ ) = E (x) e - j [k sin θ ] x dx

21

Page 22: Semiconductor Lasers operating principle : outlinepbrosson.free.fr/eso/01_laser.pdfSemiconductor Lasers operating principle : outline gain and recombination processes, thresold, QW

22Philippe Brosson/ESO/2005/Semiconductor Lasers and integrated devices/ 1- S.L. Operating principle/

Semiconductor Lasers operating principle : outline

gain and recombination processes, QW lasers waveguiding in semiconductor lasers-> Distributed FeedBack lasers (DFB)

22

Page 23: Semiconductor Lasers operating principle : outlinepbrosson.free.fr/eso/01_laser.pdfSemiconductor Lasers operating principle : outline gain and recombination processes, thresold, QW

23Philippe Brosson/ESO/2005/Semiconductor Lasers and integrated devices/ 1- S.L. Operating principle/

Principle of DFB lasers (Distributed FeedBack)

Optical feeback is achieved by a periodic perturbation along the propagation direction z (modulation of the effective index)with a grating

case of index coupling:the interaction between waves R and S is described by a real coupling coefficientΚ(cm-1)

optical feedback due to constructive interferences betweenthe two waves R and S travelling in opposite directions

Λ = grating period

confinement layergrating layeractive layerconfinement layer

Λ

R S

z

23

Page 24: Semiconductor Lasers operating principle : outlinepbrosson.free.fr/eso/01_laser.pdfSemiconductor Lasers operating principle : outline gain and recombination processes, thresold, QW

24Philippe Brosson/ESO/2005/Semiconductor Lasers and integrated devices/ 1- S.L. Operating principle/

Selective feedback for λ ≅ λ Bragg

Λ cladding layer

cladding layer

grating layeractive layer

Λ

θ

[ Λ + Λ sin θ ] neff = q λ Bragg

θ = π/2

first order grating (q=1)λBragg ≅ 1.5 µm Λ ≅ 0.2 µm

second order grating (q=2)λBragg ≅ 1.5 µm Λ ≅ 0.4 µm

Λ = λBragg

2 neff

24

Page 25: Semiconductor Lasers operating principle : outlinepbrosson.free.fr/eso/01_laser.pdfSemiconductor Lasers operating principle : outline gain and recombination processes, thresold, QW

25Philippe Brosson/ESO/2005/Semiconductor Lasers and integrated devices/ 1- S.L. Operating principle/

Modes and respective threshold

Wavelength

L igh

t int

ens it

y(a

rb. u

nit )

thre

shol

d

Wavelength L i

ght i

nten

s ity

(arb

. un i

t )th

resh

old

DFB laser Fabry-Perot laser

25

Page 26: Semiconductor Lasers operating principle : outlinepbrosson.free.fr/eso/01_laser.pdfSemiconductor Lasers operating principle : outline gain and recombination processes, thresold, QW

26Philippe Brosson/ESO/2005/Semiconductor Lasers and integrated devices/ 1- S.L. Operating principle/

References (DFB lasers)[1] Kogelnik H., Shank C. V., " Coupled-wave theory of distributed-feedback lasers ", J. Appl. Phys.,1972, 43, pp2327-2335

[2 ] STREIFER, W., SCIFRES, D. R., BURNHAM, R. D., "Coupling coefficients for distributed feedbacksingle-and double-heterostructure diode lasers ", IEEE J. Quantum Electron., 1975, QE-11, pp. 867-873

[3] Kihara K., Soda H., Ishikawa H., Imai H. , "Evaluation of the coupling coefficient of a distributed feedbacklaser with residual facet reflectivity ", J. Appl. Phys.,1987, 62, pp 1526-1527

[4] STREIFER, W., BURNHAM, R. D., SCIFRES, D. R. :"Effect of external reflectors on longitudinal modes ofdistributed feedback lasers", IEEE J. Quantum Electron., 1975, QE-11, pp. 154-161

[5] Wang S., " Design considerations of the DBR injection laser and the waveguiding structure for integratedoptics " ,IEEE J. Quantum Electron., 1977, QE-13, pp. 176-186

[6] P. Brosson, C. Artigue, B. Fernier, D. Leclerc, J. Jacquet, J. Benoit, “A simple determination of the couplingcoefficient in DFB waveguide structures“, Electron. Letters, Vol. 24, pp 990, 1988.

26

Page 27: Semiconductor Lasers operating principle : outlinepbrosson.free.fr/eso/01_laser.pdfSemiconductor Lasers operating principle : outline gain and recombination processes, thresold, QW

27Philippe Brosson/ESO/2005/Semiconductor Lasers and integrated devices/ 1- S.L. Operating principle/

Semiconductor Lasers operating principle : outline

gain and recombination processes, QW lasers waveguiding in semiconductor lasers Distributed FeedBack lasers (DFB)-> Semiconductor Laser structures

27

Page 28: Semiconductor Lasers operating principle : outlinepbrosson.free.fr/eso/01_laser.pdfSemiconductor Lasers operating principle : outline gain and recombination processes, thresold, QW

28Philippe Brosson/ESO/2005/Semiconductor Lasers and integrated devices/ 1- S.L. Operating principle/

Vertical laser structure(bulk active layer)

GaInAsP contact layer p+

InP p

InP substrate n

InP n 0.2 µm

GaInAsP λg = 1.3 µm

λg = 1.55 µm GaInAsP

0.1 µm

0.1 µm

28

Page 29: Semiconductor Lasers operating principle : outlinepbrosson.free.fr/eso/01_laser.pdfSemiconductor Lasers operating principle : outline gain and recombination processes, thresold, QW

29Philippe Brosson/ESO/2005/Semiconductor Lasers and integrated devices/ 1- S.L. Operating principle/

Vertical laser structure(Quantum Well)

GaInAs contact layer p+ InP p

InP substrate n

g grating layer

wells (9 nm) andbarriers (9 nm)

D2 = 9 - 150 nm

D2 = 9 - 150 nm

GaInAsP

GaInAsP λg = 1.2 µm

GaInAsP λg = 1.2 µm InP n D3 = 100 - 400 nm

λg = 1.2 µm

B. FERNIER, L. GOLDSTEIN, A. OLIVIER, A. PERALES, C. STARCK andJ. BENOIT :" Multiquantum welllasers at 1.5µm by GSMBE ",15th ECOC, SWEDEN, WeB 14 - 6, pp. 264 - 267, (1989)

29

Page 30: Semiconductor Lasers operating principle : outlinepbrosson.free.fr/eso/01_laser.pdfSemiconductor Lasers operating principle : outline gain and recombination processes, thresold, QW

30Philippe Brosson/ESO/2005/Semiconductor Lasers and integrated devices/ 1- S.L. Operating principle/

Broad area lasers

n InP substrate

n InPGaInAsP active

p InPp GaInAsP

100 µmcontactSimple laser structure to

test the lasers• no lateral current spreading• good determination of

- Jthreshold (kA/cm2)- external efficiency

requires pulsed operationto avoid heating(high Ithreshold = 0.5-3 A)

30

Page 31: Semiconductor Lasers operating principle : outlinepbrosson.free.fr/eso/01_laser.pdfSemiconductor Lasers operating principle : outline gain and recombination processes, thresold, QW

31Philippe Brosson/ESO/2005/Semiconductor Lasers and integrated devices/ 1- S.L. Operating principle/

Stripe lasers

n InP substrate

p InP

10 µm Sio2

100 µm

n InP substrate

p InP

p+ GaInAsP

GaInAsP activen GaInAsP passive

≈ ≈

SiO2 InP p, Zn

InP n

InP p, BeW &B

InP n substrate

Index guided∆n =

0.0

01- 0

.01

∆n =

0.1

- 0.3

Gain guided(light is absorbed in

the unpumped region)

31

Page 32: Semiconductor Lasers operating principle : outlinepbrosson.free.fr/eso/01_laser.pdfSemiconductor Lasers operating principle : outline gain and recombination processes, thresold, QW

32Philippe Brosson/ESO/2005/Semiconductor Lasers and integrated devices/ 1- S.L. Operating principle/

Buried double-hetero-structure laser processing(1)

n InP substraten InP

p InPp+ GaInAsP

1 epitaxy

2 SiO2 deposition

3 SiO2 engraving

4 mesa engraving

5 epitaxial regrowth

6 AuZn contact &engraving

32

Page 33: Semiconductor Lasers operating principle : outlinepbrosson.free.fr/eso/01_laser.pdfSemiconductor Lasers operating principle : outline gain and recombination processes, thresold, QW

33Philippe Brosson/ESO/2005/Semiconductor Lasers and integrated devices/ 1- S.L. Operating principle/

Buried double-hetero-structure laser processing(2)

7 SiO2 deposition 8 TiPtAu p contact 9• lapping & chemicalpolishing• AuGeNi n contact

n InP substrate

GaInAsP activep InP

p+ GaInAsPZn diffusionSiO2

n InP

n InPp InP

x x x x

≈≈

x x x x

33