seive column design

Upload: gautam96948069

Post on 04-Jun-2018

236 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/13/2019 Seive Column Design

    1/103

    Sieve ColumnDesign

  • 8/13/2019 Seive Column Design

    2/103

    Given: Ethanol-Water System

    D = 300,000 L/day

    XF= 0.10 by volume

    XB= 0.01 % by volume

    XD= azeotropic concentration

    95.6 % ETOH - 4.4 % H20 by wt.

    Operating Conditions:

    25 oC and 1 atm

  • 8/13/2019 Seive Column Design

    3/103

    Seive Column Design

    TRAY

    Tray Spacing, Tray thickness, Number ofholes, hole diameter, Pitch

    COLUMN

    Number of Equilibrium Stages andColumn Diameter

    DOWNCOMER ASSEMBLY

    Weir length, Weir height, DowncomerLength

  • 8/13/2019 Seive Column Design

    4/103

  • 8/13/2019 Seive Column Design

    5/103

    Data TOP BOTTOM

    Pressure, (psia)

    Temperature, (o

    C)L (lb/cu. ft)

    V (lb/cu. ft)

    Internal reflux

    Max vapor, Qv(lb/hr)

    Max liquid, QL (lb/hr)

    Max vapor, Qv(cu. ft/hr)

    Max liquid, QL(cu. ft/hr)Max liquid, QL(gpm)

    Surface Tension, (dynes/cm)

    Tray Spacing, (ft.)

  • 8/13/2019 Seive Column Design

    6/103

    XD= 0 8947

    18.016kg

    14.4kg

    46.069kg

    195.6kg

    46.069kg

    195.6kg

    fraction)(molXDmolmol

    mol

  • 8/13/2019 Seive Column Design

    7/103

    Convert XF= 0.01 by vol. to by percent by mole

    From Perrys (Table 2-28)H2O@ 25

    oC = 997.045 kg/m3

    From (Table 2-30)

    ))/1(1(

    2

    14

    3C

    CTEtOH

    C

    C

  • 8/13/2019 Seive Column Design

    8/103

  • 8/13/2019 Seive Column Design

    9/103

    Convert XF= 0.01 by vol. to by percent by mole

    From Perrys (Table 2-28)H2O@ 25

    oC = 997.045 kg/m3

    From (Table 2-30)

    ))/1(1(

    2

    14

    3C

    CTEtOH

    C

    C

    ))92.513/15.2981(1(

    2331.0

    27627.0

    648.1

    EtOH

    305082236.17

    m

    kmolEtOH

  • 8/13/2019 Seive Column Design

    10/103

    kg

    kmol

    m

    kg

    m

    kmol

    m

    kmol

    XF

    016.18

    1045.99790.00508.1710.0

    0508.1710.0

    33

    3

    0331.0FX

  • 8/13/2019 Seive Column Design

    11/103

    Convert XBinto mole fraction:

    Since given is XB= 0.01% by volume- the fraction of ethanol in the bottoms

    can be assumed to be negligible

    Thus, assume the temperature in the

    bottom plate can be assumed to be 100 oC- the boiling point of water at 1 atm

  • 8/13/2019 Seive Column Design

    12/103

    From Table 2-28 of Perrys (p.2-91)

    3

    3

    3100

    7492.59

    28.3

    1

    1

    2.2365.9580

    2

    f t

    lb

    f t

    m

    kg

    lb

    m

    kgCatOH

    37492.59

    f tlb

    LV

  • 8/13/2019 Seive Column Design

    13/103

    3

    92.513

    15.37311

    100 4429.15

    27627.0

    648.12331.00

    m

    kmolCatetOH

    kg

    kmol

    m

    kg

    m

    kmol

    m

    kmol

    XB

    016.18

    1365.9580001.014429.150001.0

    4429.150001.0

    33

    3

    5109035.2

    xXB

    Solving for XB

  • 8/13/2019 Seive Column Design

    14/103

    Determination of Densities

    Saturation temperature at azeotropic concentrationTsat= 78.10

    oC

    Interpolating from Table 2-256 of Perrys

    Tsat= 273.15 + 78.10 = 351.25 K

  • 8/13/2019 Seive Column Design

    15/103

  • 8/13/2019 Seive Column Design

    16/103

    351.25 0.001 33505

  • 8/13/2019 Seive Column Design

    17/103

    Determination of Densities

    Saturation temperature at azeotropic concentrationTsat= 78.10

    oC

    Interpolating from Table 2-256 of Perrys

    Tsat= 273.15 + 78.10 = 351.25 K

    kg

    mxVf

    3

    31033505.1

    3

    3

    3 6985.462.2

    28.3

    11

    f t

    lb

    kg

    lb

    f t

    m

    kg

    mVF

    LV

  • 8/13/2019 Seive Column Design

    18/103

    Assuming that the gas phase behaves ideally,

    manipulation of the ideal gas equation:

    L

    g

    KKmol

    atmL

    atmmol

    g

    RT

    MP

    V

    mVT 5881.0

    15.3730821.0

    1016.18

    3

    3 28.3

    1

    1

    1000

    1000

    2.25881.0

    f t

    m

    m

    L

    g

    lb

    L

    gVT

    30167.0

    f t

    lbVT

  • 8/13/2019 Seive Column Design

    19/103

    3

    3 28.31

    11000

    12.2

    100014951.1

    15.2731.780821.0

    11150.43

    f tm

    mL

    k glb

    gk g

    Lg

    KKmol

    atmL

    atm

    mol

    g

    RTMP

    Vm

    VB

    VB

    30932.0

    f tlb

    VB

  • 8/13/2019 Seive Column Design

    20/103

    Data TOP BOTTOM

    Pressure, psia

    Temperature,o

    CL lb/cu. ft

    V lb/cu. ft

    Internal reflux

    Max vapor, lb/hr

    Max liquid, lb/hr

    Max vapor, cu. ft/hr

    Max liquid, cu. ft/hrMax liquid, gpm

    Surface Tension , dynes/cm

    Tray Spacing, ft.

  • 8/13/2019 Seive Column Design

    21/103

    Data TOP BOTTOM

    Pressure, psia 14.7 14.7

    Temperature,o

    CL lb/cu. ft

    V lb/cu. ft

    Internal reflux

    Max vapor, lb/hr

    Max liquid, lb/hr

    Max vapor, cu. ft/hr

    Max liquid, cu. ft/hrMax liquid, gpm

    Surface Tension , dynes/cm

    Tray Spacing, ft.

  • 8/13/2019 Seive Column Design

    22/103

    Data TOP BOTTOM

    Pressure, psia 14.7 14.7

    Temperature,o

    C 78.1 100L lb/cu. ft

    V lb/cu. ft

    Internal reflux

    Max vapor, lb/hr

    Max liquid, lb/hr

    Max vapor, cu. ft/hr

    Max liquid, cu. ft/hrMax liquid, gpm

    Surface Tension , dynes/cm

    Tray Spacing, ft.

  • 8/13/2019 Seive Column Design

    23/103

    Data TOP BOTTOM

    Pressure, psia 14.7 14.7

    Temperature,o

    C 78.1 100L lb/cu. ft 46.6985 59.7491

    V lb/cu. ft

    Internal reflux

    Max vapor, lb/hr

    Max liquid, lb/hr

    Max vapor, cu. ft/hr

    Max liquid, cu. ft/hrMax liquid, gpm

    Surface Tension , dynes/cm

    Tray Spacing, ft.

  • 8/13/2019 Seive Column Design

    24/103

    Data TOP BOTTOM

    Pressure, psia 14.7 14.7

    Temperature,o

    C 78.1 100L lb/cu. ft 46.6985 59.7491

    V lb/cu. ft 0.0932 0.0367

    Internal reflux

    Max vapor, lb/hr

    Max liquid, lb/hr

    Max vapor, cu. ft/hr

    Max liquid, cu. ft/hrMax liquid, gpm

    Surface Tension , dynes/cm

    Tray Spacing, ft.

  • 8/13/2019 Seive Column Design

    25/103

    MF= 0.0331(46.069) + (1 - 0.0381)(18.016)= 18.9446 g/mol

    MD= 0.8947(46.069) + (1 - 0.8947)(18.016)= 43.1150 g/mol

    MB= 2.9033x10-5

    (46.069) + (1 - 2.9033x10-5

    )= 18.0168 g/mol

  • 8/13/2019 Seive Column Design

    26/103

    OMB: F = D + B

    hr

    day

    kg

    kmol

    m

    kg

    L

    m

    day

    L

    hrday

    kgmol

    mkg

    Lm

    dayLD

    24

    1

    016.18

    1974.972

    1000

    1000,3008947.01

    241

    069.461036.749

    10001000,3008947.0

    3

    3

    3

    3

    Material Balances

    hrlbmolD 095.550

  • 8/13/2019 Seive Column Design

    27/103

    CMB: FXF= DXD+ BXB

    5

    109033.2095.550

    8947.0095.5500331.0

    xhr

    lbmol

    F

    hr

    lbmolF

    hrlbmolB

    hrlbmol

    F

    626.332,14

    721.882,14

  • 8/13/2019 Seive Column Design

    28/103

    Determination of L and V (McCabe-ThieleGraphical Method)

    D

    Lo

    RD

    min)50.105.1( DDactual RR

    ESOL Eqn:

    ND

    Dn X

    R

    RY

    1

    1

    1

    D

    D

    R

    X

    Dn XV

    DX

    V

    L

    SSOL Eqn:

    1n

    Y

    B

    B

    mB

    B

    R

    X

    XR

    R 1

    Bm XV

    BX

    V

    L

  • 8/13/2019 Seive Column Design

    29/103

    XF = 0.0331

    77oF

    q = 4

    q - line

    XD = 0.8947

    F

    Fvap

    H

    HH

    q

    33.1

    3

    4

    1

    q

    qm

  • 8/13/2019 Seive Column Design

    30/103

    XF = 0.0331

    XD = 0.8947

    ESOL for RDmin

    70769.01min

    min DD

    RRESOLofslope

    RDmin = 2.4211

    2666.01

    intmin

    D

    D

    R

    XESOLofy RDmin = 2.3551

    RDmin,ave = 2.3881RDactual =

    1.50(RDmin)

    RDactual = 3.58215

  • 8/13/2019 Seive Column Design

    31/103

    XF = 0.0331

    XD = 0.8947

    7993.01 Dactual

    Dactualactual

    RRESOLofslope

    XB

    N = 20

    Feed Stage, NF= 17

    2706.11

    B

    B

    RRSSOLofslopeRB =3.6957

  • 8/13/2019 Seive Column Design

    32/103

    58215.3D

    LoRD

    L = 3.58215D = 3.58215(550.095)

    L = 1970.523 lbmol/hr

    Balance over Top Plate:

    V = L + D

    V = 1970.523 + 550.095

    V = 2520.618 lbmol/hr

    V

    L

    V

  • 8/13/2019 Seive Column Design

    33/103

    B

    B

    R

    R 1

    mm

    mm

    25.4

    4.5Slope of SSOL, = 1.2706

    RB= 3.6957 =B

    V

    332.626)3.6957(14,3.6957B V

    V

    VBL lbmol/hr67,301.712L

    = 52,969.086 lbmol/hr

    = 14,332.626 + 52,969.086

    Balance Over Bottom Plate

    V

    L

    V

  • 8/13/2019 Seive Column Design

    34/103

    N = 20

    Feed Stage = 17

  • 8/13/2019 Seive Column Design

    35/103

    FLOW RATES FOR TOP PLATE

    lb/hr84,959.11

    1150.431970.523L

    lbmol

    lb

    hr

    lbmol

    /sft0.50543600

    1

    6985.46

    184,959.1 3

    3

    s

    hr

    lb

    ft

    hr

    lb

    gpm40.67min1

    60

    785412.3

    1

    283.3

    10000.5054

    3

    3

    s

    L

    gal

    ft

    L

    s

    ft

    lb/hr5108,676.441150.43

    2520.618V

    lbmol

    lb

    hr

    lbmol

    /sft323.9053600

    1

    0932.0

    15108,676.44

    33

    s

    hr

    lb

    ft

    hr

    lb

  • 8/13/2019 Seive Column Design

    36/103

    FLOW RATES FOR BOTTOM PLATE

    lb/hr4851,212,561.1

    0168.1867,301.712L lbmol

    lb

    hr

    lbmol

    /sft5.6373600

    1

    7492.59

    14851,212,561. 3

    3

    s

    hr

    lb

    f t

    hr

    lb

    gpm453.591min1

    60

    785412.3

    1

    283.3

    10005.637

    3

    3

    s

    L

    gal

    ft

    L

    s

    ft

    lb/hr86954,333.42

    0168.18

    52,969.086V

    lbmol

    lb

    hr

    lbmol

    /sft7223.2323600

    1

    0167.0

    186954,333.42 3

    3

    s

    hr

    lb

    ft

    hr

    lb

  • 8/13/2019 Seive Column Design

    37/103

    Data TOP BOTTOM

    Pressure, psia 14.7 14.7

    Temperature,o

    C 78.1 100L lb/cu. ft 46.6985 59.7491

    V lb/cu. ft 0.0932 0.0367

    Internal reflux 3.58215 3.6957

    Max vapor, lb/hr

    Max liquid, lb/hr

    Max vapor, cu. ft/hr

    Max liquid, cu. ft/hrMax liquid, gpm

    Surface Tension , dynes/cm

    Tray Spacing, ft.

  • 8/13/2019 Seive Column Design

    38/103

    Data TOP BOTTOM

    Pressure, psia 14.7 14.7

    Temperature,o

    C 78.1 100L lb/cu. ft 46.6985 59.7491

    V lb/cu. ft 0.0932 0.0367

    Internal reflux 3.58215 3.6957

    Max vapor, lb/hr 108,676.445 954,333.429

    Max liquid, lb/hr

    Max vapor, cu. ft/hr

    Max liquid, cu. ft/hrMax liquid, gpm

    Surface Tension , dynes/cm

    Tray Spacing, ft.

  • 8/13/2019 Seive Column Design

    39/103

    Data TOP BOTTOM

    Pressure, psia 14.7 14.7

    Temperature,o

    C 78.1 100L lb/cu. ft 46.6985 59.7491

    V lb/cu. ft 0.0932 0.0367

    Internal reflux 3.58215 3.6957

    Max vapor, lb/hr 108,676.445 954,333.429

    Max liquid, lb/hr 84,959.1 1,212,561.5

    Max vapor, cu. ft/hr

    Max liquid, cu. ft/hrMax liquid, gpm

    Surface Tension , dynes/cm

    Tray Spacing, ft.

  • 8/13/2019 Seive Column Design

    40/103

    Data TOP BOTTOM

    Pressure, psia 14.7 14.7

    Temperature,o

    C 78.1 100L lb/cu. ft 46.6985 59.7491

    V lb/cu. ft 0.0932 0.0367

    Internal reflux 3.58215 3.6957

    Max vapor, lb/hr 108,676.445 954,333.429

    Max liquid, lb/hr 84,959.1 1,212,561.5

    Max vapor, cu. ft/hr 323.905 7,225.232

    Max liquid, cu. ft/hrMax liquid, gpm

    Surface Tension , dynes/cm

    Tray Spacing, ft.

  • 8/13/2019 Seive Column Design

    41/103

    Data TOP BOTTOM

    Pressure, psia 14.7 14.7

    Temperature,o

    C 78.1 100L lb/cu. ft 46.6985 59.7491

    V lb/cu. ft 0.0932 0.0367

    Internal reflux 3.58215 3.6957

    Max vapor, lb/hr 108,676.445 954,333.429

    Max liquid, lb/hr 84,959.1 1,212,561.5

    Max vapor, cu. ft/hr 323.905 7,225.232

    Max liquid, cu. ft/hr 0.5054 5.637Max liquid, gpm

    Surface Tension , dynes/cm

    Tray Spacing, ft.

  • 8/13/2019 Seive Column Design

    42/103

    Data TOP BOTTOM

    Pressure, psia 14.7 14.7

    Temperature,o

    C 78.1 100L lb/cu. ft 46.6985 59.7491

    V lb/cu. ft 0.0932 0.0367

    Internal reflux 3.58215 3.6957

    Max vapor, lb/hr 108,676.445 954,333.429

    Max liquid, lb/hr 84,959.1 1,212,561.5

    Max vapor, cu. ft/hr 323.905 7,225.232

    Max liquid, cu. ft/hr 0.5054 5.637Max liquid, gpm 40.67 453.5941

    Surface Tension , dynes/cm

    Tray Spacing, ft.

  • 8/13/2019 Seive Column Design

    43/103

    For Surface Tension:

    mmNm /40.71

    At 100oC: mmNwater /91.58

    mmN

    mmN

    etOH

    water

    /55.17

    /32.59

    894701244.0D

    X

    At 78.1oC:

    105298756.02 OHX

  • 8/13/2019 Seive Column Design

    44/103

    6277.3

    1

    log

    log1

    log

    10

    )0185.0)(32.59(2

    0627.055.17

    25.351

    21.44

    )0627.0)(8947.0()0185.0)(1053.0(

    0627.08947.00185.01053.01010

    3

    2

    32

    1

    2

    w

    w

    x

    w

    w

  • 8/13/2019 Seive Column Design

    45/103

    cm

    dyne

    xx

    x

    water

    water

    etOH

    w

    ww

    w

    w

    9313.17

    )55.17(9848.0)32.59(0152.0

    9848.00152.01

    0152.0

    103567.2103567.2

    103567.21

    25.025.0

    44

    4

    4

    1

    2

  • 8/13/2019 Seive Column Design

    46/103

    Data TOP BOTTOM

    Pressure, psia 14.7 14.7

    Temperature,

    o

    C 78.1 100L lb/cu. ft 46.6985 59.7491

    V lb/cu. ft 0.0932 0.0367

    Internal reflux 3.58215 3.6957

    Max vapor, lb/hr 10345.44 90840.23

    Max liquid, lb/hr 8087.69 115420.53

    Max vapor, cu. ft/hr 30.83 687.56

    Max liquid, cu. ft/hr 0.0481 0.5366Max liquid, gpm 21.61 241.03

    Surface Tension , dynes/cm 17.93 58.91

    Tray Spacing, ft.

  • 8/13/2019 Seive Column Design

    47/103

    Data TOP BOTTOM

    Pressure, psia 14.7 14.7

    Temperature,

    o

    C 78.1 100L lb/cu. ft 46.6985 59.7491

    V lb/cu. ft 0.0932 0.0367

    Internal reflux 3.58215 3.6957

    Max vapor, lb/hr 10345.44 90840.23

    Max liquid, lb/hr 8087.69 115420.53

    Max vapor, cu. ft/hr 30.83 687.56

    Max liquid, cu. ft/hr 0.0481 0.5366Max liquid, gpm 21.61 241.03

    Surface Tension , dynes/cm 17.93 58.91

    Tray Spacing, ft. 1.5 1.5

  • 8/13/2019 Seive Column Design

    48/103

    TOWER DIAMETER

    CALCULATIONS

  • 8/13/2019 Seive Column Design

    49/103

    *Assuming a non-foaming system* Based on 80% flooding and the use of splash baffle

    5.0

    L

    V

    FV

    LP

    0349.06985.46

    0932.0

    445.108676

    91.84959 5.0

    0315.7492.59

    0367.0

    4286.954333

    485.1212561 5.0

    TOP PLATE BOTTOM PLATE

  • 8/13/2019 Seive Column Design

    50/103

    From Figure 13.21 of Van Winkle,With a Tray Spacing of 1.5 ft

  • 8/13/2019 Seive Column Design

    51/103

    0.275

    0.280

  • 8/13/2019 Seive Column Design

    52/103

    From Figure 13.12 of Van WinkleWith a Tray Spacing of 1.5ft

    275.0CP

    280.0CP 269.0

    20

    93.17275.0

    ,

    8.0

    ,

    corrC

    corrC

    P

    P

    348.020

    91.58280.0

    ,

    8.0

    ,

    corrC

    corrC

    P

    P

  • 8/13/2019 Seive Column Design

    53/103

    For 100% flood,

    fpsU

    U

    VN

    VN

    015.6

    0932.0

    0932.06985.46269.0

    5.0

    fpsU

    U

    VN

    VN

    047.14

    0367.00367.07492.59348.0

    5.0

    5.0

    V

    VLCVN PU

  • 8/13/2019 Seive Column Design

    54/103

    Computing for vapor flow net area ANfor 80 %of flood,

    8.0VNV

    NU

    QA

    ftsqAN 312.67

    8.0015.6905.323

    ftsqAN 231.643

    8.0037.14

    232.7223

  • 8/13/2019 Seive Column Design

    55/103

    Assume Ad= 0.1A,Thus A = AN+ 2Ad= AN+ 0.2A

    A = 67.312 + 0.2AA = 84.14 sq. ft.

    A = 643.231 + 0.2AA = 804.039 sq. ft.

    From

    5.0

    2 44

    ADDA

    D = 10.35 ft D = 31 ft

  • 8/13/2019 Seive Column Design

    56/103

    Check the validity of the assumption from Table 14.2

    Table 14.2 Recommended Limits: Tray and Column design

    Perforated Trays

    Column diameter

    basis: % flood

    Tray Spacing

    Tray

    Flow arrangementGeneral

    med. diam. 6-12 ft

    large diam. 12-24 ft

    Tray layout

    1-24ft

    80-85% NF

    70-75%

    Fig. 13.21

    12-36 in.Col. diam. 2.0-4.0ft; 12-18 in

    Col. diam. 5.0-24 ft; 24-36 in

    check: liquid backup, entrainment

    (table 14.3)

    Cross flow

    DP

    Multiple pass

    Hole diam.: 1/81/2 in.Hole area: 6-15% col. Area

    Spacing: pitch/hole diam., 2-4

    tray thickness: 16 gage to in.

    AssumedTray Spacingless thanminimum fora 10ftcolumn

    Assumedwas 18in

  • 8/13/2019 Seive Column Design

    57/103

    Check the validity of the assumption from Table 14.2

    Change tray spacing to 36 inches (3ft)

    Read Pc from Table 13.2

  • 8/13/2019 Seive Column Design

    58/103

    0.48

    0.49

  • 8/13/2019 Seive Column Design

    59/103

    Check the validity of the assumption from Table 14.2

    Change tray spacing to 36 inches (3 ft)

    Read Pc from Table 13.2

    Pc= 0.48

    Following previously done calculations

    D = 23.5 ft

    Pc= 0.49

    D = 7.5 ft

  • 8/13/2019 Seive Column Design

    60/103

    Check for Percent Flood

    AVN

    V

    AUQflood %

    )51.10)(321.45)1.0(2321.45(

    905.323%

    flood

    )525.24)(125.433)(1.0(2125.433(

    232.7223%

    flood

    %85% flood %85% flood

  • 8/13/2019 Seive Column Design

    61/103

    A = 45.321 ft2 A = 433.125 ft2

    A = 0.1(A)

    = 4.5321 ft2

    AA= A2(0.1)A= 2 36.257 ft2

    A = 0.1(A)

    = 4.5321 ft2

    AA= A2(0.1)A= 346.5 ft2

  • 8/13/2019 Seive Column Design

    62/103

    D = 23.5 ft

    D = 7.5 ft

  • 8/13/2019 Seive Column Design

    63/103

    SEIVE TRAY

    DESIGNCALCULATIONS

  • 8/13/2019 Seive Column Design

    64/103

    dhtp

    P

  • 8/13/2019 Seive Column Design

    65/103

    Tray Spacing, Stray

  • 8/13/2019 Seive Column Design

    66/103

    From Table 14.2, create a pre-assumedTray Layout

  • 8/13/2019 Seive Column Design

    67/103

    Table 14.2 Recommended Limits: Tray and Column design

    Perforated Trays

    Column diameter

    basis: % flood

    Tray Spacing

    Tray

    Flow arrangement

    General

    med. diam. 6-12 ft

    large diam. 12-24 ft

    Tray layout

    1-24ft

    80-85% NF

    70-75%

    Fig. 13.21

    12-36 in.

    Col. diam. 2.0-4.0ft; 12-18 in

    Col. diam. 5.0-24 ft; 24-36 in

    check: liquid backup, entrainment

    (table 14.3)

    Cross flow

    DP

    Multiple pass

    Hole diam.: 1/81/2 in.

    Hole area: 6-15% col. Area

    Spacing: pitch/hole diam., 2-4

    tray thickness: 16 gage to in.

    Hole clearance:

    hole-tower wall, 1.5 in.

    hole-weir, 2.0in., min

    hole-apron, 2.0 in., min

    Ave. dyanamic seal hds:

    vacuum, 0.50.6 in.

    atmospheric, 0.51.5 in.

    pressure, 1.5-3.0 in.

  • 8/13/2019 Seive Column Design

    68/103

    From Table 14.2, create a pre-assumed

    Tray Layout

    Top Plate Bottom Plate

    Tray Spacing 3.0 ft 3.0 ft

    PlateThickness, tp

    0.25 in 0.25 in

    Hole

    Diameter, dh

    0.50 in 0.50 in

    P/dhPitch, P

    4

    2 in

    4

    2 in

  • 8/13/2019 Seive Column Design

    69/103

    WEIR ANDDOWNCOMERASSEMBLY

  • 8/13/2019 Seive Column Design

    70/103

    Weir (Outlet Weir)

    Downcomer

    Weir Height, hw

    Weir length, lw

  • 8/13/2019 Seive Column Design

    71/103

    Weir Length, lw

    From Table 14.8, select hw= 3.0 in

    Ad= 0.1A, 1.0A

    Ad

    From Table 14.10

  • 8/13/2019 Seive Column Design

    72/103

  • 8/13/2019 Seive Column Design

    73/103

  • 8/13/2019 Seive Column Design

    74/103

    Check for ENTRAINMENT

    From Tower Diameter calculations

    PF= 0.0349 PF= 0.0315

    From Figure 13-26 (Entrainment Correlation)

  • 8/13/2019 Seive Column Design

    75/103

    0.165

    0.160

  • 8/13/2019 Seive Column Design

    76/103

    Check for ENTRAINMENT

    From Tower Diameter calculations

    PF= 0.0349 PF= 0.0315

    From Figure 13-26 (Entrainment Correlation)

    Entrainment , moles/moles of downflow = 0.160 = 0.0165

  • 8/13/2019 Seive Column Design

    77/103

  • 8/13/2019 Seive Column Design

    78/103

    5.2

    w

    Lw

    l

    QfF

    5.2

    w

    L

    l

    Q

    0946.25435.2

    61.21

    5.2

    6931.1267.7

    03.2415.2

  • 8/13/2019 Seive Column Design

    79/103

    From Figure 13.7

    With L/D = 0.7267

  • 8/13/2019 Seive Column Design

    80/103

    L/D = 0.7267

    1.020

    1.022

  • 8/13/2019 Seive Column Design

    81/103

    From Figure 13.7

    Fw= 1.022 Fw= 1.020

    67.0

    48.0

    w

    L

    wow l

    Q

    Fh

    inh

    h

    ow

    ow

    35.012525.5

    67.40)022.1(48.0

    67.0

    inh

    h

    ow

    ow

    82.012085.17

    591.453)020.1(48.0

    67.0

  • 8/13/2019 Seive Column Design

    82/103

    h(equivalent surface tension head loss, in.)

    hLdh

    04.0

    inh

    h

    0307.0

    )50.0)(6985.46(

    )93.17(04.0

    inh

    h

    0789.0

    )55.0)(7492.59(

    )91.58(04.0

  • 8/13/2019 Seive Column Design

    83/103

    ho(equivalent head loss through holes, in.)

    2

    186.0

    o

    h

    L

    vo

    C

    Uh

    Uh= velocity of vapor through holes

    h

    vh

    A

    QU

    Ah= total hole area

    From Table 14.8, with

    10Ah

  • 8/13/2019 Seive Column Design

    84/103

    ,

    1.0A

    Ah

    2

    2

    6257.3

    257.361.0

    ftA

    ftA

    h

    h

    2

    2

    65.34

    5.3461.0

    f tA

    ftA

    h

    h

    fpsUh 46.20865.34232.7223

    h

    p

    dt 50.0

    50.0

    25.0

    50.050.0

    25.0

    89.34fps3.6257

    323.905

    hU

    From Figure 13 18

  • 8/13/2019 Seive Column Design

    85/103

    From Figure 13.18,

    725.0oC

    725.0oC

    Solving for ho

    2

    186.0

    o

    h

    L

    vo

    C

    Uh

    inh

    h

    o

    o

    64.5725.0

    34.89

    6985.46

    0932.0186.0

    2

    inh

    h

    o

    o

    45.9725.0

    46.208

    7492.59

    0367.0186.0

    2

    t

  • 8/13/2019 Seive Column Design

    86/103

    1.0AA

    h

    50.050.0

    25.0

    in

    in

    d

    t

    h

    p

    0.50

    0.725

    From Figure 13 18

  • 8/13/2019 Seive Column Design

    87/103

    From Figure 13.18,

    725.0oC

    725.0oC

    Solving for ho

    2

    186.0

    o

    h

    L

    vo

    C

    Uh

    inh

    h

    o

    o

    64.5725.0

    34.89

    6985.46

    0932.0186.0

    2

    inh

    h

    o

    o

    45.9725.0

    46.208

    7492.59

    0367.0186.0

    2

    (relative foam density)

  • 8/13/2019 Seive Column Design

    88/103

    (relative foam density)

    )( vaFf 5.0

    )( vVAVA UF

    UVA=vapor v eloci ty based on act ive area, fps

    A

    Q

    A

    QU v

    A

    v

    VA8.0

    93.8257.36

    905.323VAU

    87.205.346

    232.7223VAU

    5.0

    )( vVAVA UF

    727.2

    )0932.0)(93.8( 5.0

    VA

    VA

    F

    F

    0.4

    )0367.0)(87.20( 5.0

    VA

    VA

    F

    F

    From Figure 13 16

  • 8/13/2019 Seive Column Design

    89/103

    From Figure 13.16

  • 8/13/2019 Seive Column Design

    90/103

    0.56

    0.55

    From Figure 13 16

  • 8/13/2019 Seive Column Design

    91/103

    From Figure 13.16

    56.0

    55.0

    Solving for total pressure drop

    hhhhH owwT )( 0

    inH

    H

    T

    T

    5802.7

    0307.064.5)35.00.3(56.0

    inH

    H

    T

    T

    5917.11

    789.045.9)82.00.3(55.0

    WEEP POINT

  • 8/13/2019 Seive Column Design

    92/103

    WEEP POINTCalculated (h

    o+ h) > Theoretical (ho+ h)

    (ho+ h)calc

    6707.5)0307.064.5(

    5289.9)0789.045.9(

    (hw+ h

    ow)

    35.3)35.00.3(

    82.3)82.00.3(

    From Figure 13.22,

  • 8/13/2019 Seive Column Design

    93/103

    0.53

    0.55

    WEEP POINT

  • 8/13/2019 Seive Column Design

    94/103

    WEEP POINTCalculated (h

    o+ h) > Theoretical (ho+ h)

    (ho+ h

    )

    calc

    6707.5)0307.064.5(

    5289.9)0789.045.9(

    (hw+ h

    ow)

    35.3)35.00.3(

    82.3)82.00.3(

    From Figure 13.22

    53.0h(h o theo

    55.0h(h o theo

    LIQUID BACKUP IN DOWNCOMER

  • 8/13/2019 Seive Column Design

    95/103

    LIQUID BACKUP IN DOWNCOMER

    d

    dowwTD hhhHH1

    2

    = liquid gradient, in.

    hd= equivalent head loss in downcomer, in.

    d= froth density in downcomer

    2

    10003.0

    dm

    L

    d A

    Q

    h

    Adm

    = minimum area of liquid flow in downcomer assembly

    AAP= (apron clearance)(l

    w)

    Assume Apron clearance of 1.5 in

  • 8/13/2019 Seive Column Design

    96/103

    2691.0

    )525.5(

    12

    1)5.1(

    f tA

    ft

    in

    ftinA

    AP

    AP

    2136.2

    )085.17(

    12

    1)5.1(

    ftA

    ft

    in

    f tinA

    AP

    AP

    2

    10003.0

    dm

    L

    d A

    Q

    h

    inh

    h

    d

    d

    4.01.0

    )691.0(100

    67.4003.0

    2

    inh

    h

    d

    d

    135.0

    )136.2(100

    591.453

    03.0

    2

  • 8/13/2019 Seive Column Design

    97/103

    Assume: = 0.10 d= 0.5

    Solving for HD

    inH

    H

    D

    D

    99.10

    5.0

    10104.0

    2

    10.035.00.35802.7

    inH

    H

    D

    D

    5967.15

    5.0

    1

    135.02

    10.0

    82.00.35917.11

    LIQUID RESIDENCE TIME IN DOWNCOMER

  • 8/13/2019 Seive Column Design

    98/103

    LIQUID RESIDENCE TIME IN DOWNCOMER,

    rateflowdowncomerofvolume

    ssft

    in

    ft

    inft 2126.8/5054.0

    12

    1

    )99.10(5321.43

    2

    ssft

    in

    ftinft

    987.9/637.5

    12

    1)5967.15(3125.43

    3

    2

    L

    Dd

    QHA

    SUMMARY

  • 8/13/2019 Seive Column Design

    99/103

    TOP BOTTOM

    Tower diameter 7.5 ft 23.5 ftTray spacing 3 ft 3 ft

    Active area 36.257 ft2 346.5 ft2

    Area of holes 3.6257 ft2 34.65 ft2

    Area downcomer 4.5321 ft2 43.3125 ft2

    Ah/A 0.08 0.08

    Ad/A 0.1 0.1

    Ah/AA 0.1 0.1

    dh 0.5 in 0.5 in

    lw 5.525 ft 17.085 fthw 3.0 in 3.0 in

    Tray thickness 0.25 in 0.25 in

    Downcomer clearance

    SUMMARY

    SUMMARY Z = 60 ft

  • 8/13/2019 Seive Column Design

    100/103

    SUMMARY

    N = 20

    DISTILLATION COLUMN

    NF= 17

    DT= 7.5 ft

    DB= 23.5 ft

    TOTAL CONDENSER ANDPARTIAL REBOILER

    Z = 60 ft

    SUMMARY

  • 8/13/2019 Seive Column Design

    101/103

    SUMMARY

    TRAY LAYOUT

    Stray = 3 ft

    Top and Bottom Plates

    dh = 0.50 in

    tp = 0.25 in

    P = 2 in

    Number ofholes=

    SUMMARY

  • 8/13/2019 Seive Column Design

    102/103

    SUMMARY

    DOWNCOMER ASSEMBLY

    Top Plate

    hw= 3 in

    lw = 5.525 ft

    R f

  • 8/13/2019 Seive Column Design

    103/103

    References:

    Barrientos, Melvin Buensalido.

    Foust, Alan S., et al. Principles of Unit Operations. 2nded. Singapore:John wiley & Sons. 1980

    McCabe, Warren L., et al. Unit Operations for Chemical Engineers. 7th

    ed. USA: McGraw-Hill Inc. 2006.

    Molina, Claudia Arabelle.

    Perry, Robert H., and Don W. Green. Perrys Chemical EngineeringHandbook, 7thed. USA: McGraw-Hill, Inc. 1997.

    Van Winkle, Matthew. Distillation.