seismic surveying - tomoquest.com

47
1 Dr. Laurent Marescot Seismic Surveying Course given at the University of Fribourg (2009) Contact: [email protected]

Upload: others

Post on 01-Jun-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Seismic Surveying - tomoquest.com

1

Dr. Laurent Marescot

Seismic Surveying

Course given at the University of Fribourg (2009)

Contact:

[email protected]

Page 2: Seismic Surveying - tomoquest.com

2

Introduction

Seismic surveying…

Investigation based on the propagation of man-made

seismic waves through the subsurface. The parameter of

interest is the propagation velocity of these waves in the

subsurface. This propagation depends on the elastic

properties of the rocks.

Page 3: Seismic Surveying - tomoquest.com

3

Application

• Exploration of fossil fuels (oil, gas, coal)

• Exploration of bulk mineral deposits (sand, gravel)

• Exploration of underground water supplies

• Engineering/construction site investigation

• Archaeology

Page 4: Seismic Surveying - tomoquest.com

4

Structure of the Lecture

1. Seismic Waves and Seismic Rock Properties

2. Surveying Techniques

3. Seismic Interpretation and Examples

4. Conclusions

Page 5: Seismic Surveying - tomoquest.com

5

1. Seismic Waves and Seismic Rock

Properties

Page 6: Seismic Surveying - tomoquest.com

6

Seismic waves

We will describe here only two types of waves:

• P waves

• S waves

Page 7: Seismic Surveying - tomoquest.com

7

P waves

Compression or primary waves

Page 8: Seismic Surveying - tomoquest.com

8

S Waves

Secondary or shear waves

Does not exist in water!

Page 9: Seismic Surveying - tomoquest.com

9

Rock Velocities

Factors that influence rock velocities V:

• Porosity

• Depth

• Age

11

rock matrice fluideV V V

Page 10: Seismic Surveying - tomoquest.com

10

Rock Velocities

Classification selon le matériel

________________________________________________________________

Matériel Vitesse en m/sec

________________________________________________________________

Air 330

Terrain d'altération en surface 300 - 600

Graviers, sable sec... 500 - 1000

Sable humide 600 - 1850

Eau (selon la température et la salinité ) 1430 - 1680

Eau de mer 1460 - 1530

Grès 1800 - 3500

Argiles 2750 - 4250

Craie 1850 - 3950

Calcaire 2100 - 6100

Sel 4250 - 5200

Granite 4580 - 5800

Roches métamorphiques 3000 - 7000

Page 11: Seismic Surveying - tomoquest.com

11

2. Survey Techniques

Page 12: Seismic Surveying - tomoquest.com

12

Surveying Techniques

Page 13: Seismic Surveying - tomoquest.com

13

Seismic Acquisition

Page 14: Seismic Surveying - tomoquest.com

14

Seismic Source: Gun

Page 15: Seismic Surveying - tomoquest.com

15

Seismic Source: Hammer

Page 16: Seismic Surveying - tomoquest.com

16

Seismic Receiver: Geophone

Page 17: Seismic Surveying - tomoquest.com

17

Data Recording: Seismograph

Page 18: Seismic Surveying - tomoquest.com

18

Background Noise

0

-5

-10

-15

-20

-25

-30

-35

9 12 15 18 21 24 3 6

dB

vertical-component

local time [h]

Page 19: Seismic Surveying - tomoquest.com

19

Seismic Interpretation

Three techniques:

• Refraction seismic: based on the direct and refracted waves

• Reflection seismic: based on the reflected waves

• Seismic refraction tomography : based on the direct and

refracted waves

Page 20: Seismic Surveying - tomoquest.com

20

Waves Propagation: Snell Law

Analogy with optics: the Snell law

1 2

1 2

sin( ) sin( )i i

V V

when i2=90 , then sin (i2)=1 and 1

1

2

sin( )V

iV

In this case, i1 is called the critical angle ic

Page 21: Seismic Surveying - tomoquest.com

21

Page 22: Seismic Surveying - tomoquest.com

22

Seismic Tomography

Page 23: Seismic Surveying - tomoquest.com

23

Shot S1

0 100 m

T-D

ist/

200

0 [

ms]

0

100

150

50-50NW SE

Page 24: Seismic Surveying - tomoquest.com

24

Seismic

tomography

inversion

Page 25: Seismic Surveying - tomoquest.com

25

Initial Traveltimes

50

40

30

20

10

00 50 100 150 200 250

T-D

ist/

20

00 [

ms]

Distance [m]

Page 26: Seismic Surveying - tomoquest.com

26

Final Traveltimes

50

40

30

20

10

00 50 100 150 200 250

T-D

ist/

20

00 [

ms]

Distance [m]

Page 27: Seismic Surveying - tomoquest.com

27

Final Traveltimes504030201000 50 100 150 200 250T-Dist/2000 [ms]

Distance [m]

Raypaths q2NW

20

25

30

35

Dep

th [

m]

40

45

500 50

Distance [m]150 200100

l1 l2 l3SE

Page 28: Seismic Surveying - tomoquest.com

28

Refraction Seismic

Page 29: Seismic Surveying - tomoquest.com

29

Refraction Seismic

Page 30: Seismic Surveying - tomoquest.com

30

Refraction Seismic

Page 31: Seismic Surveying - tomoquest.com

31

Interpretation of Refraction Data

Solution for two horizontal layers. The unknown parameters are the depth h and the velocities of the two layers.

• V1 is given by the slope of the direct arrival segment

• V2 is given by the slope of the refracted arrival segment

• h using the crossover distance:

• h using the intercept time:

2 1

2 12

bX V Vh

V V

1 2

2 2

2 12

Ti V Vh

V V

Page 32: Seismic Surveying - tomoquest.com

32

Reflection Seismic

Page 33: Seismic Surveying - tomoquest.com

33

Reflection Seismic

Concept of Common Midle Point (CMP)

Acquisition

Page 34: Seismic Surveying - tomoquest.com

34

Reflection

seismic

processing

Page 35: Seismic Surveying - tomoquest.com

35

Migration and result: the seismic section

Page 36: Seismic Surveying - tomoquest.com

36

Some Examples

Some examples of refraction, reflection and tomography

seismic for archeological applications…

Page 37: Seismic Surveying - tomoquest.com

37

MappingtheAncient Port at the Archaeological Siteof Itanos (Greece)

Using Shallow Seismic Methods

Vafidis et al., 2007, Archeological Prospection, 10, 163-173shots

Page 38: Seismic Surveying - tomoquest.com

38

MappingtheAncient Port at the Archaeological Siteof Itanos (Greece)

Using Shallow Seismic Methods

Vafidis et al., 2007, Archeological Prospection, 10, 163-173

Refraction

profile

Page 39: Seismic Surveying - tomoquest.com

39

Mapping the Ancient Port at the Archaeological Site of Itanos (Greece)

Using Shallow Seismic Methods

Vafidis et al., 2007, Archeological Prospection, 10, 163-173

Page 40: Seismic Surveying - tomoquest.com

40Jones et al., 2000, Archeological Prospection, 70, 147-170

Exploration of the Canal of Xerxes, Northern Greece

Reflection

profile

Refraction

profile

Page 41: Seismic Surveying - tomoquest.com

41

Investigation of a Monumental

Macedonian Tumulus by Three dimensional Seismic Tomography

Polymenakos et al., 2004, Archeological Prospection, 11, 145-158

Page 42: Seismic Surveying - tomoquest.com

42

Combined Seismic Tomographic and Ultrashallow Seismic Reflection Study

of an Early Dynastic Mastaba, Saqqara, Egypt

Metwaly et al., 2005,

Archeological Prospection, 12, 245-256

Page 43: Seismic Surveying - tomoquest.com

43

Refraction

Metwaly et al., 2005, Archeological Prospection, 12, 245-256

Page 44: Seismic Surveying - tomoquest.com

44

Reflection profile in time

Reflection profile in depth

Reflection profile

(migration for the first part)

Comparison with refraction

Metwaly et al., 2005,

Archeological Prospection, 12, 245-256

Page 45: Seismic Surveying - tomoquest.com

45

3. Conclusions for archaeology

Page 46: Seismic Surveying - tomoquest.com

46

Advantages

• Seismic used mainly to explore the geology related to

archeological features (canal, port, bedrock)

• For results in the first meters, very high resolution seismic

is used (distance between the geophones from a few cm to

a few meters)

• Useful complement to resistivity

Page 47: Seismic Surveying - tomoquest.com

47

Drawbacks

• Sensitive to noise in urban areas

• Reflection seismic needs important processing steps

• The velocity must increase with depth for refraction!

• Velocity contrast must exist (void, slab, wall, soil)