see 78267 chapter 06

40
 Skeletal System: Bones and Joints 6 110 Module 5 Skeletal System LEARN TO PREDICT Dr. Thomas Moore and Dr. Roberta Rutledge had worked together for almost two decades, and Roberta knew something was bothering Thomas. She noticed him wincing in pain whenever he bent down to retrieve something from a bottom shelf, and he was short- tempered rather than his usual happy self. Roberta knew  Thomas would never admit to being injured if it meant he couldn’t care for his patients, even if only for a few days. Finally , Roberta convinced him to let her x-ray his lower back. Right away, when Roberta showed Thomas the x-ray, he pointed to the cause of the pain he’d been suering. Using knowledge of the vertebral column, predict the source of Thomas’s pain, based on his x-ray shown in this photo. Also, using your knowledge of vertebral anatomy, predict the region of the injury and explain why this region of the vertebral column is more prone to this type of injury than other regions. limited movement; others allow no apparent movement. The struc- ture of a given joint is directly correlated to its degree of movement.  Although the skeleton is usually thought of as the framework of the body, the skeletal system has many other functions in addi- tion to support. The major functions of the skeletal system include:  1. Support.  Rigid, strong bone is well suited for bearing weight and is the major supporting tissue of the body. Cartilage provides firm yet flexible support within certain structures, such as the nose, external ear, thoracic cage, and trachea. Ligaments are strong bands of f ibrous connective tissue that attach to bones and hold t hem together.  2. Protection.  Bone is hard and protects the organs it surrounds. For example, the skull encloses and protects the brain, and the vertebrae surround the spinal cord. The rib cage protects the heart, lungs, and other organs of the thorax. 6.1 FUNCTION S OF THE SKELETAL SYSTEM Learning Outcome  After re ading this section, you should be ab le to A. Explain the functions of the skeletal system. Sitting, standing, walking, picking up a pencil, and taking a breath all involve the skeletal system. Without the skeletal system, there would be no rigid framework to support the soft tissues of the body and no system of joints and levers to allow the body to move. The skeletal system consists of bones, such as those shown in figure 6.1, as well as their associated connective tissues, which include cartilage, tendons, and ligaments. The term skeleton is derived from a Greek word meaning dried. But the skeleton is far from being dry and nonliving. Rather, the skeletal system consists of dynamic, living tissues that are able to grow, detect pain stimuli, adapt to stress, and undergo repair after injury.  A joint, or an articulation, is a place where two bones come together. Many joints are movable, although some of them allow only

Upload: smilecaturas

Post on 02-Nov-2015

10 views

Category:

Documents


0 download

DESCRIPTION

See 78267 Chapter 06

TRANSCRIPT

  • Skeletal System: Bones and Joints6

    c H a P t E rc H a P t E r

    110

    Module5 SkeletalSystem

    lEarnToPrEDictDr.thomasMooreandDr.robertarutledgehadworkedtogether for almost two decades, and roberta knewsomething was bothering thomas. She noticed himwincing in pain whenever he bent down to retrievesomething from a bottom shelf, and he was short-temperedratherthanhisusualhappyself.robertaknewthomaswouldneveradmittobeinginjuredif itmeanthe couldnt care for his patients, even if only for a fewdays.Finally,robertaconvincedhimtoletherx-rayhislowerback.rightaway,whenrobertashowedthomasthex-ray,hepointedtothecauseofthepainhedbeensuffering.

    using knowledge of the vertebral column, predictthesourceofthomasspain,basedonhisx-rayshowninthis photo. also, using your knowledge of vertebralanatomy, predict the region of the injury and explainwhythisregionofthevertebralcolumnismorepronetothistypeofinjurythanotherregions.

    limitedmovement;othersallownoapparentmovement.Thestruc-tureofagivenjointisdirectlycorrelatedtoitsdegreeofmovement. Althoughtheskeletonisusuallythoughtofastheframeworkofthebody,theskeletalsystemhasmanyotherfunctionsinaddi-tiontosupport.Themajorfunctionsoftheskeletalsysteminclude:

    1. Support.Rigid,strongboneiswellsuitedforbearingweightandisthemajorsupportingtissueofthebody.Cartilageprovidesfirmyetflexiblesupportwithincertainstructures,suchasthenose,externalear,thoraciccage,andtrachea.Ligamentsarestrongbandsoffibrousconnectivetissuethatattachtobonesandholdthemtogether.

    2. Protection.Boneishardandprotectstheorgansitsurrounds.Forexample,theskullenclosesandprotectsthebrain,andthevertebraesurroundthespinalcord.Theribcageprotectstheheart,lungs,andotherorgansofthethorax.

    6.1 FunctionSoFtHESKElEtalSYStEMLearning Outcome After reading this section, you should be able to

    A. Explainthefunctionsoftheskeletalsystem.

    Sitting,standing,walking,pickingupapencil,andtakingabreathall involvetheskeletalsystem.Withouttheskeletalsystem,therewould be no rigid framework to support the soft tissues of thebody and no system of joints and levers to allow the body tomove.Theskeletalsystemconsistsofbones,suchasthoseshowninfigure6.1,aswellastheirassociatedconnectivetissues,whichinclude cartilage, tendons, and ligaments. The term skeleton isderivedfromaGreekwordmeaningdried.Buttheskeletonisfarfrombeingdryandnonliving.Rather,theskeletalsystemconsistsofdynamic,livingtissuesthatareabletogrow,detectpainstimuli,adapttostress,andundergorepairafterinjury. A joint,oranarticulation, isaplacewheretwobonescometogether.Manyjointsaremovable,althoughsomeofthemallowonly

    see78267-Chapter06.indd 110 11-12-01 3:25 PM

  • SkeletalSystem:BonesandJoints 111Skeletal

    3. Movement.Skeletalmusclesattachtobonesbytendons,whicharestrongbandsofconnectivetissue.Contractionoftheskeletalmusclesmovesthebones,producingbodymovements.Joints,wheretwoormorebonescometogether,allowmovementbetweenbones.Smoothcartilagecoverstheendsofboneswithinsomejoints,allowingthebonestomovefreely.Ligamentsallowsomemovementbetweenbonesbutpreventexcessivemovement.

    4. Storage.Somemineralsinthebloodprincipally,calciumandphosphorusaretakenintoboneandstored.Shouldbloodlevelsofthesemineralsdecrease,themineralsarereleasedfromboneintotheblood.Adiposetissueisalsostoredwithinbonecavities.Ifneeded,thelipidsarereleasedintothebloodandusedbyothertissuesasasourceofenergy.

    5. Blood cell production.Manybonescontaincavitiesfilledwithredbonemarrow,whichproducesbloodcellsandplatelets(seechapter11).

    6.2 ExtracEllularMatrixLearning Outcome After reading this section, you should be able to

    A.Describethecomponentsoftheextracellularmatrix,andexplainthefunctionofeach.

    Thebone,cartilage,tendons,andligamentsoftheskeletalsystemare all connective tissues. Their characteristics are largely deter-minedbythecompositionoftheirextracellularmatrix.Thematrixalways contains collagen, ground substance, and other organic

    molecules,aswellaswaterandminerals.Butthetypesandquan-titiesofthesesubstancesdifferineachtypeofconnectivetissue. Collagen (koll-jen; koila, glue + -gen, producing) is atough,ropelikeprotein.Proteoglycans(prt--glkanz;proteo,protein+glycan,polysaccharide)arelargemoleculesconsistingofpolysaccharidesattachedtocoreproteins,muchastheneedlesofapinetreeareattachedtothetreesbranches.Theproteoglycansformlargeaggregates,muchaspinebranchescombinetoformawholetree.Proteoglycanscanattractandretainlargeamountsofwaterbetweentheirpolysaccharideneedles. Theextracellularmatrixof tendons and ligaments containslarge amounts of collagen fibers, making these structures verytough, like ropesor cables.The extracellularmatrixofcartilage(karti-lij) contains collagen and proteoglycans. Collagenmakescartilage tough, whereas the water-filled proteoglycans make itsmoothandresilient.Asaresult,cartilageisrelativelyrigid,butit springs back to its original shape after being bent or slightlycompressed.Itisanexcellentshockabsorber. Theextracellularmatrixofbonecontainscollagenandminer-als,includingcalciumandphosphate.Theropelikecollagenfibers,likethereinforcingsteelbarsinconcrete,lendflexiblestrengthtothe bone.Themineral component, like the concrete itself, givesthe bone compression (weight-bearing) strength. Most of themineralinboneisintheformofcalciumphosphatecrystalscalledhydroxyapatite(h-droks-ap--tt).

    Predict 2

    What would a bone be like if all of the minerals were removed? What would it be like if all of the collagen were removed?

    acaSEinPoint

    Brittle Bone Disease

    Maytrix isa10-year-oldgirlwhohasahistoryofnumerousbrokenbones.atfirst,physicianssuspectedshewasavictimofchildabuse,buteventually theydetermined that shehasbrittle bone disease,orosteogenesis imperfecta,which literallymeans imperfect boneformation.May is short for her age, andher limbs are short andbowed.Hervertebralcolumnisalsoabnormallycurved.Brittlebonedisease is a raredisorder causedbyanyoneofanumberof faultygenes that results in either too little collagen formationor poorqualitycollagen.asaresult,thebonematrixhasdecreasedflexibilityandismoreeasilybrokenthannormalbone.

    6.3 GEnEralFEaturESoFBonELearning Outcomes After reading this section, you should be able to

    A. Explainthestructuraldifferencesbetweencompactboneandspongybone.

    B. outlinetheprocessesofboneossification,growth,remodeling,andrepair.

    Therearefourcategoriesofbone,basedontheirshape:long,short,flat,andirregular.Long bonesarelongerthantheyarewide.Mostofthebonesoftheupperandlower limbsare longbones.Short bones areapproximatelyasbroadas theyare long;examplesarethebonesofthewristandankle.Flat boneshavearelativelythin,

    Skull

    Sternum

    RadiusUlna

    Vertebralcolumn

    Ribs

    Clavicle

    Humerus

    Femur

    Tibia

    Fibula

    Pelvis

    Figure 6.1 Major Bones of the Skeletal System

    see78267-Chapter06.indd 111 11-12-01 3:25 PM

  • 112 Chapter 6Skeletal

    StructureofalongBoneAlongboneservesasausefulmodelforillustratingthepartsofa typical bone (figure 6.2). Each long bone consists of a centralshaft,calledthediaphysis(d-afi-sis;growingbetween),andtwo

    flattenedshape.Examplesofflatbonesarecertainskullbones,theribs, the scapulae (shoulder blades), and the sternum. Irregular bones include thevertebraeandfacialbones,whichhaveshapesthatdonotfitreadilyintotheotherthreecategories.

    Epiphysis

    Articular cartilage

    Diaphysis

    Compact bone

    Medullary cavity (containsred marrow in juveniles andyellow marrow in adults)

    Periosteum

    Endosteum

    Epiphyseal linesin adults

    Epiphyseal platesin juveniles

    Diaphysis

    Spongy bone

    Adult bone

    Young bone

    Endosteum

    Central canals

    Connecting vessels

    Osteons(haversian systems)

    Inner layer

    Outerlayer

    Compact bone

    Medullarycavity

    Periosteum

    Spongy bonewith trabeculae

    Adult bone

    Figure 6.2 Structure of a Long Bone(a)Younglongbone(thefemur)showingtheepiphysis,epiphysealplates,anddiaphysis.(b)adultlongbonewithepiphyseallines.(c)internalfeaturesofaportionofthediaphysisin(a).

    (a)

    (c)

    (b)

    see78267-Chapter06.indd 112 11-12-01 3:25 PM

  • SkeletalSystem:BonesandJoints 113Skeletal

    HistologyofBoneThe periosteum and endosteum contain osteoblasts (ost--blasts; bone-forming cells), which function in the formation ofbone, as well as in the repair and remodeling of bone. Whenosteoblastsbecomesurroundedbymatrix,theyarereferredtoasosteocytes(ost--stz;bonecells). Bone is formed in thin sheets of extracellularmatrix calledlamellae (l-mel; plates), with osteocytes located between thelamellae within spaces called lacunae (l-koon; a hollows)(figure6.3).Cellprocessesextendfromtheosteocytesacrosstheextracellularmatrixofthelamellaewithintinycanalscalledcana-liculi(kan--lik-l;sing.canaliculus,littlecanal). Therearetwomajortypesofbone,basedontheirhistologicalstructure.Compact boneismostlysolidmatrixandcells.Spongy bone,orcancellous(kans-ls)bone,consistsofalacynetworkofbonewithmanysmall,marrow-filledspaces.

    Compact BoneCompactbone(figure6.3)formsmostofthediaphysisoflongbonesandthe thinnersurfacesofallotherbones.Mostof the lamellaeofcompactboneareorganizedintosetsofconcentricrings,witheachsetsurroundingacentral canal,orHaversian(ha-vershan)canal.Bloodvesselsthatrunparalleltothelongaxisoftheboneare containedwithin the central canals.Eachcentral canal,withthe lamellae and osteocytes surrounding it, is called an osteon(ost-on),orHaversian system.Eachosteon,seenincrosssection,lookslikeamicroscopictarget,withthecentralcanalasthebulls-eye(figure6.3).Osteocytes,locatedinlacunae,areconnectedtooneanotherbycellprocessesincanaliculi.Thecanaliculigivetheosteontheappearanceofhavingtinycrackswithinthelamellae.

    ends,eachcalledanepiphysis(e-pifi-sis;growingupon).Athinlayerofarticular(ar-tik-lr;joint)cartilagecoverstheendsoftheepiphyseswherethebonearticulates(joins)withotherbones.A long bone that is still growing has an epiphyseal plate, orgrowth plate, composedof cartilage,betweeneachepiphysis andthediaphysis(figure6.2a).Theepiphysealplateiswherethebonegrows in length.When bone growth stops, the cartilage of eachepiphysealplate is replacedbyboneandbecomesanepiphyseal line(figure6.2b). Bonescontaincavities,suchasthelargemedullary cavityinthediaphysis, aswellas smallercavities in theepiphysesof longbones and in the interiorofotherbones.These spaces are filledwith soft tissue calledmarrow. Yellow marrow consists mostlyof adipose tissue. Red marrow consists of blood-forming cellsandistheonlysiteofbloodformationinadults(seechapter11).Childrens bones have proportionately more red marrow thando adult bones because, as a person ages, redmarrow ismostlyreplacedbyyellowmarrow.Inadults, redmarrowisconfinedtothebonesinthecentralaxisofthebodyandinthemostproximalepiphysesofthelimbs. Mostoftheoutersurfaceofboneiscoveredbydenseconnec-tive tissue called theperiosteum (per--ost-m;peri, around+osteon,bone),whichcontainsbloodvesselsandnerves(figure6.2c).Thesurfaceofthemedullarycavityislinedwithathinnerconnec-tivetissuemembrane,theendosteum(en-dost-m;endo,inside).

    Lamellae between osteons

    Periosteum

    Blood vesselconnecting to a central canalbetween osteons

    Blood vesselsconnecting to a central canal

    Blood vesselswithin a central(Haversian) canal

    Lamellae on surface of boneConcentric rings

    of lamellae

    OsteonOsteon

    Blood vessel withinthe periosteum

    CanaliculiOsteocytes inlacunae

    CanaliculiLacunae

    Central canal

    LM 400x

    (a) (b)

    Figure 6.3 Structure of Bone Tissue(a)Photomicrographofcompactbone.(b)Finestructureofcompactbone.

    see78267-Chapter06.indd 113 11-12-01 3:25 PM

  • 114 Chapter 6Skeletal

    BoneossificationOssification (osi-fi-kshn;os, bone+ facio, tomake) is theformation of bone by osteoblasts. After an osteoblast becomescompletely surrounded by bone matrix, it becomes a maturebone cell, or osteocyte. In the fetus, bones develop by two pro-cesses,eachinvolvingtheformationofbonematrixonpreexistingconnectivetissue(figure6.5).Boneformationthatoccurswithinconnective tissue membranes is called intramembranous ossifi-cation, and bone formation that occurs inside cartilage is calledendochondralossification.Bothtypesofboneformationresultincompactandspongybone.

    Nutrients leave the blood vessels of the central canals anddiffuse to the osteocytes through the canaliculi.Waste productsdiffuseintheoppositedirection.Thebloodvesselsinthecentralcanals, inturn,areconnectedtobloodvessels intheperiosteumandendosteum.

    Spongy BoneSpongybone,socalledbecauseofitsappearance,islocatedmainlyin the epiphyses of longbones. It forms the interior of all otherbones. Spongy bone consists of delicate interconnecting rods orplates of bone called trabeculae (tr-bek-l; beams), whichresemblethebeamsorscaffoldingofabuilding(figure6.4a).Likescaffolding, the trabeculae add strength to a bone without theaddedweight thatwouldbepresent if thebonewere solidmin-eralizedmatrix.Thespacesbetween the trabeculaeare filledwithmarrow.Eachtrabeculaconsistsofseverallamellaewithosteocytesbetweenthem(figure6.4b).Usually,nobloodvesselspenetratethetrabeculae, and the trabeculae have no central canals.Nutrientsexitvesselsinthemarrowandpassbydiffusionthroughcanaliculitotheosteocytesofthetrabeculae.

    Trabeculae

    Spaces containingbone marrow andblood vessels

    Compact bone

    Spongybone

    Osteoblast

    Osteoclast

    Osteocyte

    Lamellae Canaliculus

    Trabecula

    Parietalbone

    Ossificationcenter

    OssificationcenterSuperior part

    of occipitalbone

    Inferior partof occipital bone

    Temporal bone

    Vertebrae

    Styloidprocess

    Mandible

    MaxillaZygomatic bone

    Frontal bone

    Nasal boneEthmoid bone

    Sphenoid bone

    Intramembranousbones forming

    Fontanel

    Cartilage

    Endochondralbones forming

    Figure 6.4 Spongy Bone(a)Beamsofbone,thetrabeculae,surroundspacesinthebone.inlife,thespacesarefilledwithredoryellowbonemarrowandwithbloodvessels.(b)transversesectionofatrabecula.

    Figure 6.5 Bone Formation in a Fetus(a)intramembranousossificationoccursina12-week-oldfetusatossificationcentersintheflatbonesoftheskull(yellow).Endochondralossificationoccursinthebonesformingtheinferiorpartoftheskull(blue).(b)radiographofan18-week-oldfetus,showingintramembranousandendochondralossification.intramembranousossificationoccursatossificationcentersintheflatbonesoftheskull.Endochondralossificationhasformedbonesinthediaphysesoflongbones.theepiphysesarestillcartilageatthisstageofdevelopment.

    (a)

    (b)

    (a)

    (b)

    see78267-Chapter06.indd 114 11-12-01 3:25 PM

  • SkeletalSystem:BonesandJoints 115Skeletal

    increase in number, enlarge, and die. Then the cartilagematrixbecomescalcified(figure6.6,step2).Asthisprocessisoccurringin thecenterof thecartilagemodel,bloodvesselsaccumulate inthe perichondrium. The presence of blood vessels in the outersurfaceoffuturebonecausessomeoftheunspecifiedconnectivetissuecellsonthesurfacetobecomeosteoblasts.Theseosteoblaststhen produce a collar of bone around part of the outer surfaceof thediaphysis, and theperichondriumbecomesperiosteum inthatarea.Bloodvesselsalsogrowintothecenterofthediaphyses,bringing in osteoblasts and stimulating ossification. The centerpartof thediaphysis,wherebonefirstbeginstoappear, iscalledtheprimary ossification center (figure 6.6, step 3).Osteoblastsinvadespacesinthecenteroftheboneleftbythedyingcartilagecells. Some of the calcified cartilagematrix is removed by cellscalled osteoclasts (ost--klastz; bone-eating cells), and theosteoblastslineupontheremainingcalcifiedmatrixandbeginto

    Intramembranous(intr-membr-ns)ossificationoccurswhen osteoblasts begin to produce bone in connective tissuemembranes. This occurs primarily in the bones of the skull.Osteoblastslineuponthesurfaceofconnectivetissuefibersandbegin depositing bone matrix to form trabeculae. The processbegins in areas calledossification centers (figure 6.5a), and thetrabeculaeradiateoutfromthecenters.Usually,twoormoreossi-ficationcentersexist ineach flat skullbone,and the skullbonesresultfromfusionofthesecentersastheyenlarge.Thetrabeculaeare constantly remodeled after their initial formation, and theymayenlargeorbereplacedbycompactbone. Thebonesat thebaseoftheskullandmostoftheremainingskeletal system develop through the process of endochondral ossification from cartilage models. The cartilage models havethegeneralshapeofthematurebone(figure6.6,step1).Duringendochondral ossification, cartilage cells, called chondrocytes,

    Perichondrium

    Cartilage

    Perichondrium

    Bone collar

    Uncalcifiedcartilage

    Calcified cartilage

    Periosteum

    Blood vesselto periosteum

    Epiphysis

    Epiphysis

    Diaphysis

    A cartilage model, with the general shape of the mature bone, is produced by chondrocytes. A perichondrium surrounds most of the cartilage model.

    2. The chondrocytes enlarge, and cartilage is calcified. A bone collar is produced, and the perichondrium of the diaphysis becomes the periosteum.

    3. A primary ossification center forms as blood vessels and osteoblasts invade the calcified cartilage. The osteoblasts lay down bone matrix, forming trabeculae.

    4. Secondary ossification centers form in the epiphyses of long bones.

    Perichondrium

    Bone collar

    Cartilage

    Calcified cartilage

    Periosteum

    Blood vessel

    Primaryossificationcenter

    Trabecula

    Medullary cavity

    Secondaryossificationcenter

    Spongybone

    Cartilage

    Blood vessel

    Calcifiedcartilage

    Spongy bone

    PeriosteumBone collar

    Blood vessel

    Medullary cavity

    Space inbone

    1 2

    43

    Perichondrium

    Cartilage

    Perichondrium

    Bone collar

    Uncalcifiedcartilage

    Calcified cartilage

    Periosteum

    Blood vesselto periosteum

    Epiphysis

    Epiphysis

    Diaphysis

    A cartilage model, with the general shape of the mature bone, is produced by chondrocytes. A perichondrium surrounds most of the cartilage model.

    2. The chondrocytes enlarge, and cartilage is calcified. A bone collar is produced, and the perichondrium of the diaphysis becomes the periosteum.

    3. A primary ossification center forms as blood vessels and osteoblasts invade the calcified cartilage. The osteoblasts lay down bone matrix, forming trabeculae.

    4. Secondary ossification centers form in the epiphyses of long bones.

    Perichondrium

    Bone collar

    Cartilage

    Calcified cartilage

    Periosteum

    Blood vessel

    Primaryossificationcenter

    Trabecula

    Medullary cavity

    Secondaryossificationcenter

    Spongybone

    Cartilage

    Blood vessel

    Calcifiedcartilage

    Spongy bone

    PeriosteumBone collar

    Blood vessel

    Medullary cavity

    Space inbone

    1 2

    43

    PROCESS Figure 6.6 Endochondral Ossification of a Long Bone

    see78267-Chapter06.indd 115 11-12-01 3:25 PM

  • 116 Chapter 6Skeletal

    ofthebone,causingthebonetoelongate.Thenthechondrocytesenlargeanddie.Thecartilagematrixbecomescalcified.Muchofthe cartilage that formsaround the enlargedcells is removedbyosteoclasts, and the dying chondrocytes are replaced by osteo-blasts. The osteoblasts start forming bone by depositing bonelamellae on the surface of the calcified cartilage. This processproducesboneonthediaphysealsideoftheepiphysealplate.

    Predict 3

    Describe the appearance of an adult if cartilage growth did not occur in the long bones during childhood.

    BoneremodelingBone remodelinginvolvestheremovalofexistingbonebyosteoclastsandthedepositionofnewbonebyosteoblasts.Boneremodelingoccursinallbone.Remodelingisresponsibleforchangesinboneshape,theadjustmentofbonetostress,bonerepair,andcalciumionregulationinthebodyfluids.Remodelingisalsoinvolvedin

    formbonetrabeculae.Asthebonedevelops,itisconstantlychanging.Amedullarycavityformsinthecenterofthediaphysisasosteo-clastsremoveboneandcalcifiedcartilage,whicharereplacedbybonemarrow.Later, secondary ossification centers form in theepiphyses(figure6.6,step4).

    BoneGrowthBonegrowthoccursbythedepositionofnewbonelamellaeontoexisting bone or other connective tissue. As osteoblasts depositnewbonematrixonthesurfaceofbonesbetweentheperiosteumand the existing bone matrix, the bone increases in width, ordiameter. This process is called appositional growth. Growth inthelengthofabone,whichisthemajorsourceofincreasedheightinanindividual,occursintheepiphysealplate.Thistypeofbonegrowth occurs through endochondral ossification (figure 6.7).Chondrocytes increase in number on the epiphyseal side of theepiphysealplate.Theylineupincolumnsparalleltothelongaxis

    Calcified cartilageis replaced by bone.

    Chondrocytesdivide and enlarge.

    Length of boneincreases.

    Thickness ofepiphysealplate remainsunchanged.

    Bone isadded todiaphysis.

    Bone of diaphysis

    Epiphysealplate

    1

    2

    3

    4

    Femur

    Patella

    Epiphysis

    Epiphysealplate

    Diaphysis

    New cartilage isproduced on the epiphyseal sideof the plate as thechondrocytes divideand form stacksof cells.

    Chondrocytesmature and enlarge.

    Matrix is calcified,and chondrocytesdie.

    The cartilage onthe diaphyseal sideof the plate isreplaced by bone.

    Epiphyseal side

    Diaphyseal side

    1

    2

    3

    4LM 400x

    1

    2

    3

    4

    PROCESS Figure 6.7 Endochondral Bone Growth(a)locationoftheepiphysealplateinalongbone.(b)asthechondrocytesoftheepiphysealplatedivideandalignincolumns,thecartilageexpandstowardtheepiphysis,andtheboneelongates.atthesametime,theoldercartilageiscalcifiedandthenreplacedbybone,whichisremodeled,resultinginexpansionofthemedullarycavityofthediaphysis.thenetresultisanepiphysealplatethatremainsuniforminthicknessthroughtimebutisconstantlymovingtowardtheepiphysis,resultinginelongationofthebone.(c)Photomicrographofanepiphysealplate,demonstratingchondrocytedivisionandenlargementandtheareasofcalcificationandossification.

    (c)

    (b)

    (a)

    see78267-Chapter06.indd 116 11-12-01 3:25 PM

  • SkeletalSystem:BonesandJoints 117Skeletal

    Compactbone

    Periosteum

    Medullarycavity

    ClotDeadbone

    Newbone

    Compactbone atbreak site

    Spongybone

    Deadbone

    Cartilage

    Fibersand cartilage

    Clot formation Callus formation Callus ossification Bone remodeling

    1 When a bone is broken, a clot forms in the damaged area.

    2 Blood vessels and cells invade the clot and produce a network of fibers and cartilage called a callus.

    3 Osteoblasts enter the callus and form spongy bone.

    4 Most of the spongy bone is slowly remodeled to form compact bone and the repair is complete.

    Callus

    PROCESS Figure 6.8 Bone Repair

    bonegrowthwhennewly formedspongybone in theepiphysealplate forms compact bone.A long bone increases in length anddiameterasnewboneisdepositedontheoutersurfaceandgrowthoccursattheepiphysealplate.Atthesametime,boneisremovedfromtheinner,medullarysurfaceofthebone.Asthebonediameterincreases,thethicknessofthecompactbonerelativetothemedul-larycavitytendstoremainfairlyconstant.Ifthesizeofthemedullarycavity did not also increase as bone size increased, the compactboneofthediaphysiswouldbecomethickandveryheavy. Becauseboneisthemajorstoragesiteforcalciuminthebody,bone remodeling is important tomaintain blood calcium levelswithinnormallimits.Calciumisremovedfromboneswhenbloodcalciumlevelsdecrease,anditisdepositedwhendietarycalciumisadequate.Thisremovalanddepositionisunderhormonalcontrol(seeBoneandCalciumHomeostasislaterinthischapter). If too much bone is deposited, the bones become thick ordevelopabnormalspursor lumpsthatcan interferewithnormalfunction.Toolittleboneformationortoomuchboneremoval,asoccurs inosteoporosis,weakens thebonesandmakes themsus-ceptibletofracture(seeSystemsPathology,Osteoporosis).

    BonerepairSometimesaboneisbrokenandneedstoberepaired.Whenthisoccurs, blood vessels in the bone are also damaged.The vesselsbleed, anda clot forms in thedamagedarea (figure6.8, step1).Two to three days after the injury, blood vessels and cells fromsurrounding tissuesbegin to invade theclot.Someof thesecellsproduceafibrousnetworkofconnectivetissuebetweenthebrokenbones,whichholdsthebonefragmentstogetherandfillsthegapbetweenthem.Othercellsproduceisletsofcartilageinthefibrousnetwork.Thenetworkoffibersandisletsofcartilagebetweenthetwobonefragmentsiscalledacallus(figure6.8,step2).

    Osteoblastsenter thecallusandbegin formingspongybone(figure6.8,step3).Spongyboneformationinthecallusisusuallycomplete46weeksaftertheinjury.Immobilizationoftheboneiscriticaluptothistimebecausemovementcanrefracturethedeli-catenewmatrix.Subsequently,thespongyboneisslowlyremod-eledtoformcompactandspongybone,andtherepairiscomplete(figure6.8,step4).Althoughimmobilizationatafracturepointiscriticalduringtheearlystagesofbonehealing,completeimmobili-zationisnotgoodforthebone,themuscles,orthejoints.Notlongago,itwascommonpracticetoimmobilizeabonecompletelyforaslongas10weeks.Butwenowknowthat,ifaboneisimmobi-lizedforaslittleas2weeks,themusclesassociatedwiththatbonemayloseasmuchashalftheirstrength.Furthermore,ifaboneiscompletelyimmobilized,itisnotsubjectedtothenormalmechanicalstressesthathelpitform.Bonematrixisreabsorbed,andthestrengthofthebonedecreases.Inexperimentalanimals,completeimmobili-zationofthebackfor1monthresultedinuptoathreefolddecreasein vertebral compression strength. Modern therapy attempts tobalancebone immobilizationwithenoughexercise tokeepmuscleandbonefromdecreasinginsizeandstrengthandtomaintainjointmobility.Thesegoals areaccomplishedby limiting theamountoftimeacastisleftonthepatientandbyusingwalkingcasts,whichallowsomestressontheboneandsomemovement.Totalhealingofthefracturemayrequireseveralmonths.Ifabonehealsproperly,thehealedregioncanbeevenstrongerthantheadjacentbone.

    6.4 BonEanDcalciuMHoMEoStaSiSLearning Outcomes After reading this section, you should be able to

    A. Explaintheroleofboneincalciumhomeostasis.B. Describehowparathyroidhormoneandcalcitonininfluence

    bonehealthandcalciumhomeostasis.

    see78267-Chapter06.indd 117 11-12-01 3:25 PM

  • 118 Chapter 6Skeletal Bone fractures can be classi-

    fied as open (or compound), if the boneprotrudes through the skin, and closed(or simple), if the skin is not perforated.Figure 6a illustrates some of the differenttypes of fractures. if the fracture totallyseparates the two bone fragments, it iscalled complete; if it doesnt, it is calledincomplete. an incomplete fracture thatoccursontheconvexsideofthecurveofaboneiscalledagreenstick fracture.acom-minuted (komi-n-ted; broken into smallpieces) fracture is one in which the bonebreaks into more than two fragments. animpacted fractureoccurswhenoneof thefragmentsofonepartoftheboneisdrivenintothespongyboneofanotherfragment.

    Fracturescanalsobeclassifiedaccord-ing to the direction of the fracture line aslinear(paralleltothelongaxis);transverse

    (atrightanglestothelongaxis);orobliqueor spiral (at an angle other than a rightangletothelongaxis).

    CLINICALIMPACT Bone Fractures

    Complete

    Linear

    Incomplete

    Comminuted

    Transverse

    Impacted

    Oblique

    Spiral

    Figure 6A typesofbonefractures.

    PTH

    Osteoclastspromote Ca2+uptake frombone.

    Osteoblasts promoteCa2+ deposition in bone.

    Stimulatesosteoclasts

    Inhibitsosteoclasts

    Bone

    Ca2+

    Ca2+ Blood

    Vitamin D

    Kidney

    Small intestine

    Calcitonin

    Decreased blood Ca2+ stimulates PTH secretion from parathyroid glands.

    PTH stimulates osteoclasts to break down

    bone and release Ca2+ into the blood.

    In the kidneys, PTH increases Ca2+ reabsorption from the urine. PTH also stimulates active Vitamin D formation.

    Vitamin D promotes Ca2+ absorption from the small intestine into the blood.

    Increased blood Ca2+ stimulates calcitonin secretion from the thyroid gland.

    Calcitonin inhibits osteoclasts, which allows for enhanced osteoblast uptake of Ca2+ from the blood to deposit into bone.

    1

    2

    3

    4

    5

    6

    1

    2

    3

    4

    5

    6

    Posterior aspectof thyroid gland

    Parathyroidglands

    Thyroid gland

    Increasedblood Ca2+

    Decreasedblood Ca2+

    PROCESS Figure 6.9 Calcium Homeostasis

    see78267-Chapter06.indd 118 11-12-01 3:25 PM

  • SkeletalSystem:BonesandJoints 119Skeletal

    Calcitonin (kal-si-tnin), secreted from the thyroid glandwhenbloodcalciumlevelsaretoohigh,decreasesosteoclastactivityand thus decreases blood calcium levels. Increasing blood cal-ciumlevelsstimulatecalcitoninsecretion.PTHandcalcitoninaredescribedmorefullyinchapter10.

    6.5 GEnEralconSiDErationSoFBonEanatoMYLearning Outcome After reading this section, you should be able to

    A. listanddefinethemajorfeaturesofatypicalbone.

    It is traditional to list 206 bones in the average adult skeleton(table 6.1), although the actual number varies from person topersonanddecreaseswithageassomebonesfuse. Anatomists use several common terms to describe the fea-turesofbones(table6.2).Forexample,aholeinaboneiscalledaforamen(f-rmen;pl.foramina,f-rmin-;foro,topierce).Aforamenusuallyexistsinabonebecausesomestructure,suchasanerveorbloodvessel,passesthroughtheboneatthatpoint.Iftheholeiselongatedintoatunnel-likepassagethroughthebone,

    Boneisthemajorstoragesiteforcalciuminthebody,andmove-ment of calcium into and out of bone helps determine bloodcalcium levels, which is critical for normalmuscle and nervoussystem function.Calcium (Ca2+)moves intobone asosteoblastsbuildnewboneandoutofboneasosteoclastsbreakdownbone(figure6.9).Whenosteoblast andosteoclast activity is balanced,themovementsofcalciumintoandoutofaboneareequal. When blood calcium levels are too low, osteoclast activityincreases, osteoclasts release calcium from bone into the blood,and blood calcium levels increase. Conversely, if blood cal-ciumlevelsaretoohigh,osteoclastactivitydecreases,osteoblastsremovecalciumfromthebloodtoproducenewbone,andbloodcalciumlevelsdecrease. Calcium homeostasis is maintained by two hormones.Parathyroid hormone (PTH), secreted from the parathyroidglandswhenbloodcalciumlevelsaretoolow,stimulatesincreasedbonebreakdownandincreasedbloodcalciumlevelsbyindirectlystimulatingosteoclastactivity.PTHalsoincreasescalciumuptakefromtheurineinthekidney.Additionally,PTHstimulatesthekid-neystoformactivevitaminD,whichincreasescalciumabsorptionfromthesmallintestine.DecreasingbloodcalciumlevelsstimulatePTHsecretion.

    TABle6.1 Named Bones in the Adult Human Skeleton

    Bones NumberThoracic Cage ribs 24 Sternum(3parts,sometimesconsidered3bones) 1

    total thoracic cage 25

    total axial skeleton 80

    Appendicular Skeleton

    Pectoral Girdle Scapula 2 clavicle 2

    Upper Limb Humerus 2 ulna 2 radius 2 carpalbones 16 Metacarpalbones 10 Phalanges 28

    total girdle and upper limb 64

    Pelvic Girdle coxalbone 2

    Lower Limb Femur 2 tibia 2 Fibula 2 Patella 2 tarsalbones 14 Metatarsalbones 10 Phalanges 28

    total girdle and lower limb 62

    total appendicular skeleton 126

    total bones 206

    Bones NumberAxial Skeleton

    Skull Braincase Paired Parietal 2 temporal 2 unpaired Frontal 1 occipital 1 Sphenoid 1 Ethmoid 1

    Face Paired Maxilla 2 Zygomatic 2 Palatine 2 nasal 2 lacrimal 2 inferiornasalconcha 2

    unpaired Mandible 1 Vomer 1

    total skull 22

    Auditory Ossicles Malleus 2 incus 2 Stapes 2

    total 6

    Hyoid 1

    Vertebral Column cervicalvertebrae 7 thoracicvertebrae 12 lumbarvertebrae 5 Sacrum 1 coccyx 1

    total vertebral column 26

    see78267-Chapter06.indd 119 11-12-01 3:25 PM

  • 120 Chapter 6Skeletal

    TABle6.2 Anatomical Terms for Features of BonesTerm DescriptionMajor Features

    Body,shaft Mainportion

    Head Enlarged(oftenrounded)end

    neck constrictedareabetweenheadandbody

    condyle Smooth,roundedarticularsurface

    Facet Small,flattenedarticularsurface

    crest Prominentridge

    Process Prominentprojection

    tubercle,ortuberosity Knoborenlargement

    trochanter largetuberosityfoundonlyon proximalfemur

    Epicondyle Enlargementnearoraboveacondyle

    Openings or Depressions

    Foramen Hole

    canal,meatus tunnel

    Fissure cleft

    Sinus cavity

    Fossa Depression

    itiscalledacanalorameatus(m-tus;apassage).Adepressionin abone is called a fossa (fos).A lumponabone is called atubercle(toober-kl;aknob)oratuberosity(toober-osi-t),andaprojectionfromabone iscalledaprocess.Most tuberclesandprocesses are sites ofmuscle attachment on the bone. Increasedmuscle pull, as occurs when a person lifts weights to build upmusclemass,canincreasethesizeofsometubercles.Thesmooth,roundedendofabone,whereitformsajointwithanotherbone,iscalledacondyle(kondl;knuckle). Thebonesof the skeletonaredivided intoaxialandappen-dicularportions(figure6.10).

    6.6 axialSKElEtonLearning Outcomes After reading this section, you should be able to

    A. namethebonesoftheskullanddescribetheirmainfeaturesasseenfromthelateral,frontal,internal,andinferiorviews.

    B. listthebonesthatformthemajorityofthenasalseptum.C. Describethelocationsandfunctionsoftheparanasalsinuses.D. listthebonesofthebraincaseandtheface.e. Describetheshapeofthevertebralcolumn,andlistits

    divisions.F. Discussthecommonfeaturesofthevertebraeandcontrast

    vertebraefromeachregionofthevertebralcolumn.G. listthebonesandcartilageoftheribcage,includingthethree

    typesofribs.

    Theaxialskeletoniscomposedoftheskull,thevertebralcolumn,andthethoraciccage.

    SkullThe22bonesoftheskullaredividedintothoseofthebraincaseandthoseoftheface(seetable6.1).Thebraincase,whichenclosesthecranialcavity,consistsof8bones that immediatelysurroundandprotect the brain; 14 facial bones form the structure of theface.Thirteenof the facialbonesare rather solidlyconnected toformthebulkoftheface.Themandible,however,formsafreelymovablejointwiththerestoftheskull.Therearealsothreeaudi-toryossicles(osi-klz)ineachmiddleear(sixtotal). Manystudentsstudyinganatomyneverseetheindividualbonesoftheskull.Eveniftheydo,itmakesmoresensefromafunctional,or clinical, perspective to studymostof thebones as they appeartogetherintheintactskullbecausemanyoftheanatomicalfeaturesof theskullcannotbefullyappreciatedbyexaminingtheseparatebones.Forexample,severalridgesontheskullcrossmorethanonebone,andseveralforaminaare locatedbetweenbonesratherthanwithinasinglebone.Forthesereasons,itismorerelevanttothinkof the skull, excluding themandible, as a singleunit.Themajorfeaturesoftheintactskullarethereforedescribedfromfourviews.

    Lateral ViewTheparietal bones(p-r-tl;wall)andtemporal(temp-rl)bonesformalargeportionofthesideofthehead(figure6.11).(Theword temporal refers to time,and the temporalbone is sonamedbecausethehairsofthetemplesturnwhite,indicatingthepassageoftime.)Thesetwobonesjoineachotheronthesideoftheheadatthesquamous(skwms)suture.Asutureisajointunitingbonesof theskull.Anteriorly, theparietalbone is joinedtothefrontal(forehead)bonebythecoronal(kr-nl;corona,crown)suture,andposteriorlyitisjoinedtotheoccipital(ok-sipi-tl;backofthehead)bonebythelambdoid(lamdoyd)suture.Aprominentfea-tureofthetemporalboneisalargeopening,theexternal auditory canal,acanal thatenablessoundwaves toreachtheeardrum.Themastoid(mastoyd)processofthetemporalbonecanbeseenandfeltasaprominentlumpjustposteriortotheear.Importantneckmusclesinvolvedinrotationoftheheadattachtothemastoidprocess. Partofthesphenoid(sfnoyd)bonecanbeseenimmediatelyanteriortothetemporalbone.Althoughitappearstobetwosmall,pairedbonesonthesidesoftheskull,thesphenoidboneisactuallyasinglebonethatextendscompletelyacrosstheskull.Itresemblesabutterfly,with itsbody in thecenterof the skull and itswingsextendingtothesidesoftheskull.Anteriortothesphenoidboneisthezygomatic(z-g-matik)bone,orcheekbone,whichcanbeeasilyfelt.Thezygomatic arch,whichconsistsofjoinedprocessesof the temporal and zygomatic bones, forms a bridge across thesideofthefaceandprovidesamajorattachmentsiteforamusclemovingthemandible. Themaxilla (mak-sil; jawbone) forms the upper jaw, andthemandible (mandi-bl; jaw) forms the lower jaw.Themaxillaarticulatesbysuturestothetemporalbone.Themaxillacontainsthesuperiorsetofteeth,andthemandiblecontainstheinferiorteeth.

    Frontal ViewThemajorstructuresseenfromthefrontalviewarethefrontalbone,thezygomaticbones,themaxillae,andthemandible(figure6.12a).Theteethareveryprominentinthisview.Manybonesofthefacecanbeeasilyfeltthroughtheskin(figure6.12b).

    see78267-Chapter06.indd 120 11-12-01 3:25 PM

  • SkeletalSystem:BonesandJoints 121Skeletal

    UlnaRadius

    Carpal bonesMetacarpalbones

    PhalangesCoxalbone

    Femur

    Patella

    Tibia

    Fibula

    Tarsal bonesMetatarsal bonesPhalanges

    Anterior view Posterior view

    Axial Skeleton

    Skull

    Vertebralcolumn

    Mandible

    Ribs

    Sacrum

    Coccyx

    Appendicular Skeleton

    Clavicle

    Scapula

    Humerus

    Axial Skeleton

    Skull

    Vertebralcolumn

    MandibleHyoid bone

    Sternum

    Ribs

    Sacrum

    Figure 6.10 Complete SkeletonBonesoftheaxialskeletonarelistedinthefarleft-andright-handcolumns;bonesoftheappendicularskeletonarelistedinthecenter.(theskeletonisnotshownintheanatomicalposition.)

    see78267-Chapter06.indd 121 11-12-01 3:25 PM

  • 122 Chapter 6Skeletal

    Coronal suture

    Parietal bone

    Temporal bone

    Occipital bone

    Squamous suture

    Lambdoid suture

    External auditory canal

    Styloid process

    Zygomatic arch

    Frontal bone

    Sphenoid boneNasal boneLacrimal bone

    Ethmoid bone

    Zygomatic bone

    Maxilla

    Mental foramen

    Nasolacrimal canal

    Mastoid process

    Mandible

    Mandibular condyle

    Coronoid process

    Lateral view

    Figure 6.11 Skull as Seen from the Right Side (The names of bones are in bold.)

    Fromthisview, themostprominentopenings into the skullaretheorbits(rbitz;eyesockets)andthenasal cavity.Theorbitsarecone-shapedfossae, sonamedbecause theeyesrotatewithinthem.Thebonesoftheorbitsprovidebothprotectionfortheeyesandattachmentpointsforthemusclesthatmovetheeyes.Theorbitisagoodexampleofwhyitisvaluabletostudytheskullasanintactstructure.Nofewerthansevenbonescometogethertoformtheorbit,andforthemostpart,thecontributionofeachbonetotheorbitcannotbeappreciatedwhenthebonesareexaminedindividually. Each orbit has several openings through which structurescommunicate with other cavities (figure 6.12a). The largest ofthesearethesuperiorandinferior orbital fissures.Theyprovideopenings throughwhich nerves and blood vessels communicatewiththeorbitorpasstotheface.Theopticnerve,forthesenseofvision,passesfromtheeyethroughtheoptic foramenandentersthecranialcavity.Thenasolacrimal(n-z-lakri-ml;nasus,nose+lacrima,tear)canal(seefigure6.11)passesfromtheorbitintothenasalcavity.Itcontainsaductthatcarriestearsfromtheeyestothenasalcavity.Asmalllacrimal(lakri-ml)bonecanbeseenintheorbitjustabovetheopeningofthiscanal.

    Predict 4

    Why does your nose run when you cry?

    Thenasalcavityisdividedintorightandlefthalvesbyanasal septum(septm;wall)(figure6.12a).Thebonypartofthenasalseptum consists primarily of the vomer (vmer) inferiorly andtheperpendicular plateoftheethmoid(ethmoyd;sieve-shaped)bonesuperiorly.Theanteriorpartofthenasalseptumisformedbycartilage. The external part of thenose is formedmostly of cartilage.Thebridgeofthenoseisformedbythenasal bones. Each of the lateral walls of the nasal cavity has three bonyshelves, called the nasal conchae (konk; resembling a conchshell).Theinferiornasalconchaisaseparatebone,andthemiddleandsuperiorconchaeareprojectionsfromtheethmoidbone.Theconchaeincreasethesurfaceareainthenasalcavity.Theincreasedsurfaceareaoftheoverlyingepitheliumfacilitatesmoisteningandwarmingoftheairinhaledthroughthenose(seechapter15). Severalofthebonesassociatedwiththenasalcavityhavelargecavities within them, called the paranasal (par--nsl; para,alongside)sinuses (figure6.13),whichopen into thenasal cavity.Thesinusesdecrease theweightof theskullandactasresonatingchambersduringvoiceproduction.Compareanormalvoicewiththevoiceofapersonwhohasacoldandwhosesinusesarestoppedup.Thesinusesarenamedfortheboneswheretheyarelocatedandincludethefrontal,maxillary,ethmoidal,andsphenoidalsinuses.

    see78267-Chapter06.indd 122 11-12-01 3:25 PM

  • SkeletalSystem:BonesandJoints 123Skeletal

    formingthefloorofthecranialcavity,fromanteriortoposterior,arethefrontal,ethmoid,sphenoid,temporal,andoccipitalbones.Several foramina can be seen in the floor of the middle fossa.These allow nerves and blood vessels to pass through the skull.Forexample,theforamenrotundumandforamenovaletransmitimportantnervestotheface.Amajorarterytothemeninges(themembranesaroundthebrain)passesthroughtheforamenspino-sum.Theinternalcarotidarterypassesthroughthecarotidcanal,andtheinternaljugularveinpassesthroughthejugularforamen(see chapter 13). The large foramen magnum, through whichthe spinal cord joins the brain, is located in the posterior fossa.

    Theskullhasadditionalsinuses,calledthemastoid air cells,which are located inside themastoid processes of the temporalbone.Theseaircellsopenintothemiddleearinsteadofintothenasalcavity.Anauditorytubeconnectsthemiddleeartothenaso-pharynx(upperpartofthroat).

    Interior of the Cranial CavityWhenthefloorofthecranialcavityisviewedfromabovewiththeroofcutaway(figure6.14),itcanbedividedroughlyintothreecra-nialfossae(anterior,middle,andposterior),whichareformedasthedevelopingskullconformstotheshapeofthebrain.Thebones

    Superior orbital fissure

    Supraorbital foramen

    Optic foramen

    Coronal suture

    Inferior orbital fissure

    Infraorbital foramen

    Mental foramen

    Nasal cavity

    Middle nasal concha

    Sphenoid bone

    Frontal bone

    Parietal bone

    Mandible

    Orbit

    Temporal boneNasal boneLacrimal bone

    Zygomatic bone

    Perpendicular plateof ethmoid bone

    Vomer

    Inferior nasal concha

    Maxilla

    Nasalseptum

    Frontal view

    Zygomaticbone

    Maxilla

    Frontal bone

    Mandible

    Nasal bone

    (b)

    (a)

    Figure 6.12 Skull and Face (The names of bones are in bold.)(a)Frontalviewoftheskull.(b)Bonylandmarksoftheface.

    see78267-Chapter06.indd 123 11-12-01 3:25 PM

  • 124 Chapter 6Skeletal Frontal sinus

    Ethmoidal sinus

    Sphenoidal sinus

    Maxillary sinus

    Lateral view Anterior view

    Sphenoid bone

    Foramen rotundum

    Internal auditory canal

    Foramen magnum

    Frontal sinuses

    Crista galli

    Cribriform plateEthmoid bone

    Frontal bone

    Optic foramen

    Sella turcica

    Foramen ovaleForamen spinosum Carotid canal

    Jugular foramen

    Parietal bone

    Occipital bone

    Superior view

    Temporal bone

    Hypoglossal canal

    Anterior cranial fossa

    Middle cranial fossa

    Posterior cranial fossa

    Figure 6.13 Paranasal Sinuses

    (a) (b)

    Figure 6.14 Floor of the Cranial Cavity (The names of bones are in bold.)theroofoftheskullhasbeenremoved,andthefloorisviewedfromabove.

    see78267-Chapter06.indd 124 11-12-01 3:25 PM

  • SkeletalSystem:BonesandJoints 125Skeletal

    palatine(pal-tn)bones.Theconnectivetissueandmusclesthatmakeupthesoft palateextendposteriorlyfromthehard,orbony,palate. The hard and soft palates separate the nasal cavity andnasopharynxfromthemouth,enablingustochewandbreatheatthesametime.

    Hyoid BoneThehyoid bone(figure6.16)isanunpaired,U-shapedbone.Itisnotpartoftheskull(seetable6.1)andhasnodirectbonyattach-menttotheskull.Musclesandligamentsattachittotheskull.Thehyoidboneprovidesanattachmentforsometonguemuscles,andit isanattachmentpointforimportantneckmusclesthatelevatethelarynx(voicebox)duringspeechorswallowing.

    VertebralcolumnThevertebral column,orbackbone,isthecentralaxisoftheskel-eton,extendingfromthebaseoftheskulltoslightlypasttheendofthepelvis.Inadults, itusuallyconsistsof26individualbones,grouped into five regions (figure 6.17; see table 6.1): 7 cervical(serv-kal;neck)vertebrae(vert-br;verto,toturn),12thoracic(th-rasik) vertebrae, 5 lumbar (lmbar) vertebrae, 1 sacral(skrl)bone,and1coccyx (koksiks)bone.Theadultsacraland

    Thecentralregionofthesphenoidboneismodifiedintoastruc-tureresemblingasaddle,thesella turcica(seltrs-k;Turkishsaddle),whichcontainsthepituitarygland.

    Base of Skull Viewed from BelowManyof thesameforaminathatarevisible in the interiorof theskullcanalsobeseeninthebaseoftheskull,whenviewedfrombelow, with themandible removed (figure 6.15). Other special-izedstructures,suchasprocessesformuscleattachments,canalsobe seen. The foramenmagnum is located in the occipital bonenearthecenteroftheskullbase.Occipital condyles(ok-sipi-tlkondlz),thesmoothpointsofarticulationbetweentheskullandthevertebralcolumn,arelocatedbesidetheforamenmagnum. Two long, pointed styloid (stloyd; stylus or pen-shaped)processesprojectfromtheinferiorsurfaceofthetemporalbone.Themusclesinvolvedinmovingthetongue,thehyoidbone,andthepharynx(throat)originatefromthisprocess.Themandibular fossa,where themandiblearticulateswith the temporalbone, isanteriortothemastoidprocess. Thehard palate (palt) forms the floor of the nasal cavityand the roof of themouth. The anterior two-thirds of the hardpalate is formed by themaxillae, the posterior one-third by the

    Figure 6.15 Base of the Skull as Viewed from Below (The names of bones are in bold.)themandiblehasbeenremoved.

    Inferior orbital fissure

    Foramen ovaleForamen spinosum

    External auditory canal

    Jugular foramen

    Occipital condyle

    Incisive fossa

    Maxilla

    Hard palate

    Palatine process of maxillary bone

    Horizontal plate of palatine bone

    Vomer

    Zygomatic bone

    Styloid processMandibular fossaCarotid canal

    Mastoid process

    Temporal bone

    Occipital bone

    Foramen magnum

    Sphenoid bone

    Nuchal lines

    Inferior view

    see78267-Chapter06.indd 125 11-12-01 3:25 PM

  • 126 Chapter 6Skeletal

    coccyxbonesfusefrom5and34individualbones,respectively.Forconvenience,eachofthefiveregionsisidentifiedbyaletter,andthevertebraewithineachregionarenumbered:C1C7,T1T12,L1L5,S,andCO.Youcanrememberthenumberofvertebraeineachregionbyrememberingmealtimes:7,12,and5. The adult vertebral column has fourmajor curvatures. Thecervical regioncurvesanteriorly, the thoracicregioncurvespos-teriorly, the lumbar region curves anteriorly, and the sacral andcoccygealregionstogethercurveposteriorly. Abnormalvertebralcurvaturesarenotuncommon.Kyphosis(k-fsis)isanabnormalposteriorcurvatureofthespine,mostlyintheupperthoracicregion,resultinginahunchbackcondition.Lordosis (lr-dsis; curving forward) is an abnormal anteriorcurvatureofthespine,mainlyinthelumbarregion,resultinginaswaybackcondition.Scoliosis(sk-l-sis)isanabnormallateralcurvatureofthespine. Thevertebralcolumnperformsthefollowingfivemajorfunc-tions:(1)supportstheweightoftheheadandtrunk;(2)protectsthespinalcord; (3)allowsspinalnerves toexit thespinalcord;(4)providesasiteformuscleattachment;and(5)permitsmove-mentoftheheadandtrunk.

    General Plan of the VertebraeEachvertebra consists of a body, an arch, andvariousprocesses(figure6.18).Theweight-bearingportionofeachvertebra is thebody.Thevertebralbodiesareseparatedby intervertebral disks(seefigure6.17),whichareformedbyfibrocartilage.Thevertebral archsurroundsalargeopeningcalledthevertebral foramen.Thevertebral foraminaofall thevertebrae form thevertebral canal,where the spinal cord is located. The vertebral canal protectsthe spinal cord from injury. Each vertebral arch consists of two

    Figure 6.16 Hyoid Bone

    Figure 6.17 Vertebral Columncompletecolumnviewedfromtheleftside.

    Body

    Body

    Anterior view

    Lateral view(from the left side)

    Cervicalregion(curvedanteriorly)

    Thoracicregion(curvedposteriorly)

    Lumbarregion(curvedanteriorly)

    Sacral and coccygealregions(curvedposteriorly)

    First cervical vertebra(atlas)Second cervical vertebra(axis)

    Seventh cervical vertebraFirst thoracic vertebra

    Intervertebral disk

    Twelfth thoracic vertebra

    Intervertebral foramina

    First lumbar vertebra

    Body

    Transverse process

    Spinous process

    Fifth lumbar vertebra

    Sacrum

    Coccyx

    Lateral view

    Sacral promontory

    see78267-Chapter06.indd 126 11-12-01 3:25 PM

  • SkeletalSystem:BonesandJoints 127Skeletal

    pedicles(ped-klz),whichextendfromthebodytothetransverseprocessofeachvertebra,andtwolaminae(lami-n;thinplates),whichextendfromthetransverseprocessestothespinousprocess.Atransverse processextendslaterallyfromeachsideofthearch,between the pedicle and lamina, and a single spinous processprojectsdorsally fromwherethetwolaminaemeet.Thespinousprocessescanbeseenandfeltasaseriesoflumpsdownthemid-line of the back (see figure 6.24b). The transverse and spinousprocessesprovideattachmentsitesforthemusclesthatmovethevertebral column.Spinalnerves exit the spinal cord through theintervertebral foramina, which are formed by notches in thepediclesofadjacentvertebrae(seefigure6.17).Eachvertebrahasasuperiorandinferiorarticular processwherethevertebraearticu-latewith each other. Each articular process has a smooth littlefacecalledanarticular facet(faset).

    Regional Differences in VertebraeThe cervical vertebrae (figure 6.19ac) have very small bodies,except for the atlas, which has no body. Because the cervicalvertebraearerelativelydelicateandhavesmallbodies,dislocations

    Figure 6.18 Vertebra

    Superior articular process

    Articular facet

    Transverse process

    Vertebral foramen

    Body

    Pedicle

    Lamina

    Vertebral arch

    Spinous process

    Anterior

    Superior view

    Posterior

    Superiorarticular facet

    Spinous process

    Transverseprocess

    Transverseforamen

    Vertebral foramen

    Body

    Pedicle

    Lamina

    Posterior arch

    Atlas (first cervical vertebra), superior view

    Thoracic vertebra, superior view

    Lumbar vertebra, superior view

    Cervical vertebra, superior view

    Superior articularfacet (articulates with occipital condyle)Facet for dens

    Transverseprocess

    Transverseforamen

    Vertebral foramen

    Anterior arch

    Body

    Spinous process

    Transverseprocess

    Vertebral foramen

    Pedicle

    Lamina

    Superiorarticular facet

    Facets for ribattachment

    Superiorarticular facet

    Spinous process

    Transverseprocess

    Vertebral foramenPedicle

    Lamina

    Body

    Dens(articulateswith atlas)

    Dens

    Body

    Axis (second cervical vertebra),superior view

    Lateral view

    Figure 6.19 Regional Differences in Vertebraetheposteriorportionliesatthetopofeachillustration.

    (a)

    (d)

    (e)

    (b)

    (c)

    see78267-Chapter06.indd 127 11-12-01 3:25 PM

  • 128 Chapter 6Skeletal

    Vertebralcanal (sacralcanal)

    Posteriorsacralforamina

    Median sacralcrest

    Sacral hiatus

    Articular facet (articulates with fifth lumbar vertebra)

    CoccyxCoccyx

    Anterior view Posterior view

    Anteriorsacralforamina

    Sacral promontory

    Figure 6.20 Sacrum

    (a) (b)

    of thebodyof the first sacralvertebrabulges to form thesacral promontory (promon-t-r) (see figure 6.17), a landmark thatcanbefeltduringavaginalexamination.Itisusedasareferencepointtodetermineifthepelvicopeningsarelargeenoughtoallowfornormalvaginaldeliveryofababy. The coccyx,or tailbone,usually consistsof fourmore-or-lessfusedvertebrae.Thevertebraeofthecoccyxdonothavethetypicalstructureofmostothervertebrae.Theyconsistofextremelyreducedvertebralbodies,without the foraminaorprocesses,usually fusedintoasinglebone.Thecoccyxiseasilybrokenwhenapersonfallsbysittingdownhardonasolidsurfaceorinwomenduringchildbirth.

    ribcageTherib cage protectsthevitalorganswithinthethoraxandpre-ventsthecollapseofthethoraxduringrespiration.Itconsistsofthethoracicvertebrae,theribswiththeirassociatedcartilages,andthesternum(figure6.21).

    acaSEinPoint

    Rib Fractures

    HanD.Manns ladder fell as hewasworkingonhis roof, andhelandedontheladderwithhischest.threeribswerefracturedonhisright side. itwasdifficult forHan tocough, laugh,orevenbreathewithout severepain in the right sideofhis chest.themiddle ribsare thosemost commonly fractured, and theportionof each ribthat forms the lateralwall of the thorax is theweakest andmostcommonlybroken.thepain from rib fracturesoccursbecause thebrokenendsmoveduring respirationandother chestmovements,stimulatingpain receptors. Broken rib ends candamage internalorgans, suchas the lungs, spleen, liver, anddiaphragm. Fracturedribsarenotoftendislocated,butdislocatedribsmayhavetobesetforproperhealingtooccur.Bindingthechesttolimitmovementcanfacilitatehealingandlessenpain.

    andfracturesaremorecommoninthisareathaninotherregionsof the vertebral column. Each of the transverse processes has atransverse foramen through which the vertebral arteries passtowardthebrain.Severalofthecervicalvertebraealsohavepartlysplitspinousprocesses.Thefirstcervicalvertebra(figure6.19a)iscalledtheatlasbecauseitholdsupthehead,asAtlasinclassicalmythology held up theworld.Movement between the atlas andtheoccipitalboneisresponsibleforayesmotionofthehead.Italsoallowsaslighttiltingoftheheadfromsidetoside.Thesecondcervicalvertebra(figure6.19b)iscalledtheaxisbecauseaconsid-erableamountofrotationoccursatthisvertebra,asinshakingtheheadno.Thisrotationoccursaroundaprocesscalledthedens(denz),whichprotrudessuperiorlyfromtheaxis. Thethoracic vertebrae(figure6.19d)possesslong,thinspinousprocesses thataredirected inferiorly.Thethoracicvertebraealsohaveextraarticular facetsontheir lateral surfaces thatarticulatewiththeribs. Thelumbar vertebrae(figure6.19e)havelarge,thickbodiesandheavy,rectangulartransverseandspinousprocesses.Becausethelumbarvertebraehavemassivebodiesandcarryalargeamountofweight,rupturedintervertebraldisksaremorecommoninthisareathaninotherregionsofthecolumn.Thesuperiorarticularfacetsofthelumbarvertebraefacemedially,whereastheinferiorarticularfacets face laterally. This arrangement tends to lock adjacentlumbarvertebraetogether,givingthelumbarpartofthevertebralcolumnmorestrength.Thearticularfacetsinotherregionsofthevertebral columnhave amore openposition, allowing formorerotationalmovementbutlessstabilitythaninthelumbarregion. Thefivesacralvertebraearefusedintoasinglebonecalledthesacrum(figure6.20).Thespinousprocessesofthefirstfoursacralvertebraeformthemedian sacral crest.Thespinousprocessofthefifthvertebradoesnot form, leavingasacral hiatus (h--ts)attheinferiorendofthesacrum,whichisoftenthesiteofcaudalanestheticinjectionsgivenjustbeforechildbirth.Theanterioredge

    see78267-Chapter06.indd 128 11-12-01 3:25 PM

  • SkeletalSystem:BonesandJoints 129Skeletal

    6.7 aPPEnDicularSKElEtonLearning Outcomes After reading this section, you should be able to

    A. identifythebonesthatmakeupthepectoralgirdle,andrelatetheirstructureandarrangementtothefunctionofthegirdle.

    B. nameanddescribethemajorbonesoftheupperlimb.C. nameanddescribethebonesofthepelvicgirdleandexplain

    whythepelvicgirdleismorestablethanthepectoralgirdle.D. namethebonesthatmakeupthecoxalbone.Distinguish

    betweenthemaleandfemalepelvis.e. identifyanddescribethebonesofthelowerlimb.

    Theappendicular(apen-dik-lr;appendage)skeletonconsistsofthebonesoftheupperandlowerlimbs,aswellasthegirdles,whichattachthelimbstotheaxialskeleton.

    PectoralGirdleThepectoral (pekt-rl)girdle,or shoulder girdle (figure6.22),consistsoffourbones,twoscapulaeandtwoclavicles,whichattachtheupper limbtothebody.Thescapula (skap-l),orshoulder blade, is a flat, triangular bone with three large fossae wheremusclesextendingtothearmareattached(figures6.23and6.24;see figure6.10).A fourth fossa, theglenoid (glenoyd)cavity, iswheretheheadofthehumerusconnectstothescapula.Aridge,calledthespine,runsacrosstheposteriorsurfaceofthescapula.A projection, called the acromion (-krm-on; akron, tip+omos,shoulder)process,extendsfromthescapularspinetoformthe point of the shoulder.The clavicle (klavi-kl), or collarbone,articulateswiththescapulaattheacromionprocess.Theproximalendoftheclavicleisattachedtothesternum,providingtheonly

    Ribs and Costal CartilagesThe12pairsof ribs canbedivided into true ribs and false ribs.Thetrue ribs,ribs17,attachdirectlytothesternumbymeansofcostalcartilages.Thefalse ribs, ribs812,donotattachdirectlyto the sternum. Ribs 810 attach to the sternum by a commoncartilage;ribs11and12donotattachatalltothesternumandarecalledfloating ribs.

    SternumThe sternum (sternm), or breastbone (figure 6.21), is dividedinto three parts: themanubrium (m-nbr-m; handle), thebody,andthexiphoid(zifoyd,zfoyd;sword)process.Thester-numresemblesasword,withthemanubriumformingthehandle,thebodyformingtheblade,andthexiphoidprocessformingthetip. At the superior end of the sternum, a depression called thejugular notch is locatedbetweentheendsof theclavicleswherethey articulate with the sternum. A slight elevation, called thesternal angle, canbe felt at the junctionof themanubriumandthebodyofthesternum.Thisjunctionisanimportantlandmarkbecauseitidentifiesthelocationofthesecondrib.Thisidentifica-tionallowstheribstobecounted;forexample,itcanhelpahealthprofessionallocatetheapexoftheheart,whichisbetweenthefifthandsixthribs. The xiphoid process is another important landmark of thesternum.Duringcardiopulmonaryresuscitation(CPR), it isveryimportanttoplacethehandsoverthebodyofthesternumratherthan over the xiphoid process. Pressure applied to the xiphoidprocesscandriveitintoanunderlyingabdominalorgan,suchastheliver,causinginternalbleeding.

    Clavicle

    Jugular notch

    Seventh cervical vertebra

    First thoracic vertebra

    True ribs(17)

    Costal cartilage

    False ribs(812)

    Manubrium

    Body

    Xiphoid process

    Sternum

    Floating ribs

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    Anterior view

    L1

    T12

    Sternal angle

    Figure 6.21 Rib Cage

    see78267-Chapter06.indd 129 11-12-01 3:25 PM

  • 130 Chapter 6Skeletal

    neck,locatedattheproximalendofthehumeralshaft.Lateraltotheheadaretwotubercles,agreater tubercleandalesser tubercle.Musclesoriginatingonthescapulaattachtothegreaterandlessertubercles and hold the humerus to the scapula. Approximatelyone-thirdofthewaydowntheshaftofthehumerus,onthelateralsurface,isthedeltoid tuberosity,wherethedeltoidmuscleattaches.Thesizeofthedeltoidtuberositycanincreaseastheresultoffre-quentandpowerfulpullsfromthedeltoidmuscle.Forexample,inbodybuilders,thedeltoidmuscleandthedeltoidtuberosityenlargesubstantially.Anthropologists,examiningancienthumanremains,canuse thepresenceofenlargeddeltoid tuberositiesasevidencethatapersonwasengagedinliftingheavyobjectsduringlife.Ifthehumerusofapersonexhibitsanunusuallylargedeltoidtuberosityforherage,itmayindicate,insomesocieties,thatshewasaslaveandwasrequiredtoliftheavyloads.Thedistalendofthehumerusismodified into specialized condyles that connect the humerusto the forearmbones.Epicondyles (epi-kondlz; epi, upon)onthedistalendofthehumerus,justlateraltothecondyles,provideattachmentsitesforforearmmuscles.

    ForearmTheforearmhastwobones:theulna(ln)onthemedial(littlefinger)sideoftheforearmandtheradiusonthelateral(thumb)side(figure6.26).Theproximalendoftheulnaformsatrochlear notchthatfitstightlyovertheendofthehumerus,formingmostoftheelbowjoint.Justproximaltothetrochlearnotchisanextensionof theulna, called theolecranon (-lekr-non; elbow)process,whichcanbefeltasthepointoftheelbow(seefigure6.28).Justdistaltothetrochlearnotchisacoronoid(kr-noyd)process,whichhelpscompletethegripoftheulnaonthedistalendofthehumerus.Thedistalendoftheulnaformsahead,whicharticulateswiththebonesofthewrist,andastyloid processislocatedonitsmedialside.Theulnarheadcanbeseenasaprominentlumpontheposteriorulnarsideofthewrist.Theproximalendoftheradiushasaheadbywhichtheradiusarticulateswithboththehumerusandtheulna.Theradiusdoesnotattachasfirmlytothehumerusastheulnadoes.The radialhead rotates against thehumerus andulna.Just distal to the radial head is a radial tuberosity,where one ofthearmmuscles,thebicepsbrachii,attaches.Thedistalendoftheradiusarticulateswiththewristbones.Astyloidprocessislocatedonthelateralsideofthedistalendoftheradius.Theradialandulnarstyloidprocessesprovideattachmentsitesforligamentsofthewrist.

    WristThewrist is a relatively short region between the forearm andthe hand; it is composed of eight carpal (karpl; wrist) bones(figure6.27).Theseeightbonesarethescaphoid(skafoyd),lunate(lnt), triquetrum(tr-kwtrm),pisiform(pisi-frm), trape-zium(tra-pz-m),trapezoid(trap-zoyd),capitate(kapi-tt),andhamate(hamt).Thecarpalbonesarearrangedintworowsof four bones each and form a slight curvature that is concaveanteriorlyandconvexposteriorly.Anumberofmnemonicshavebeendevelopedtohelpstudentsrememberthecarpalbones.Thefollowing one allows students to remember them in order fromlateral tomedial for theproximal row (top) and frommedial tolateral(bythethumb)forthedistalrow:SoLongTopPart,HereComes The Thumbthat is, Scaphoid, Lunate, Triquetrum,Pisiform,Hamate,Capitate,Trapezoid,andTrapezium.

    bonyattachmentofthescapulatotheremainderoftheskeleton.Theclavicleisthefirstbonetobeginossificationinthefetus.Thisrelatively brittle bone may be fractured in the newborn duringdelivery.Theboneremainsslenderinchildrenandmaybebrokenasachildattemptstotaketheimpactofafallonanoutstretchedhand.Theclavicleisthickerinadultsandislessvulnerabletofrac-ture.Eventhoughitisthefirstbonetobeginossification,itisthelast to completeossification.Thecoracoid (kr-koyd)processcurvesbelowtheclavicleandprovidesfortheattachmentofarmandchestmuscles.

    upperlimbTheupper limbconsistsof thebonesof thearm, forearm,wrist,andhand(seefigure6.22).

    ArmThe arm is the region between the shoulder and the elbow; itcontains the humerus (hmer-s; shoulder) (figure 6.25). Theproximalendofthehumerushasasmooth,roundedhead,whichattachesthehumerustothescapulaattheglenoidcavity.Aroundthe edgeof thehumeralhead is the anatomicalneck.When thejointneedstobesurgicallyreplaced,thisneckisnoteasilyacces-sible.Amoreaccessiblesiteforsurgicalremovalisatthesurgical

    Upper limb

    Pectoral girdle

    Phalanges

    Anterior view

    Metacarpal bones

    Clavicle

    Scapula

    Humerus

    Radius

    Ulna

    Carpal bones

    Figure 6.22 Bones of the Pectoral Girdle and Right Upper Limb

    see78267-Chapter06.indd 130 11-12-01 3:25 PM

  • SkeletalSystem:BonesandJoints 131Skeletal

    Spine of scapulaSupraspinous fossa of scapula

    Acromion processof scapulaDistal end of clavicle

    Coracoid processof scapulaBody of clavicle

    Posterior

    AnteriorDistal end

    Proximal end

    Posterior view

    Acromion process

    Glenoid cavity

    Lateral border

    Coracoid process

    Subscapularfossa

    Medial border

    Viewin (d)

    Inferior angle

    Spine

    Supraspinousfossa

    Coracoid processAcromion process

    Glenoid cavity

    Infraspinous fossa

    Lateral border

    Anterior view

    Superior viewSuperior view

    Body of clavicle

    Figure 6.23 Right Scapula and Clavicle(a)rightscapula,anteriorview.(b)rightscapula,posteriorview.(c)rightclavicle,superiorview.(d)Photographoftherightscapulaandclaviclefromasuperiorview,showingtherelationshipbetweenthedistalendoftheclavicleandtheacromionprocessofthescapula.

    (a)

    (c) (d)

    (b)

    Skeletal

    the bones and ligaments ontheanteriorsideofthewristformacarpal tunnel, which does not havemuchgive.tendonsandnervespassfromtheforearmthroughthecarpaltunneltothehand.Fluidand connective tissue can accumulate inthe carpal tunnel as a result of inflamma-tionassociatedwithoveruseortrauma.theinflammationcanalsocausethetendonsin

    the carpal tunnel to enlarge.the accumu-latedfluidandenlargedtendonscanapplypressuretoamajornervepassingthroughthe tunnel. the pressure on this nervecausescarpal tunnel syndrome,character-izedbytingling,burning,andnumbnessinthehand. treatments for carpal tunnel syndromevary, depending on the severity of the

    syndrome.Mild cases can be treated non-surgically with either anti-inflammatorymedicationsorstretchingexercises.However,if symptoms have lasted for more than6months, surgery is recommended.Surgicaltechniques involve cutting the carpal liga-menttoenlargethecarpaltunnelandeasepressureonthenerve.

    CLINICALIMPACT Carpal Tunnel Syndrome

    see78267-Chapter06.indd 131 11-12-01 3:25 PM

  • 132 Chapter 6Skeletal

    Sternum

    Clavicle

    Distal end of clavicle

    Acromionprocess

    Jugular notch

    Head

    Anatomical neckLesser tubercle

    Surgical neck

    Olecranon fossa

    Greater tubercle

    Deltoid tuberosity

    Lateral epicondyle

    CondylesCapitulum

    Trochlea

    Medial epicondyle

    Anterior view Posterior view

    Trochlea

    Lateral epicondyle

    Greater tubercle

    Spinous process ofseventh cervical vertebra

    Lumbar spinousprocesses

    Superior borderof scapula

    Scapula

    Medial borderof scapula

    Inferior angleof scapula

    Spine of scapula

    Figure 6.24 Surface Anatomy of the Pectoral Girdle and Thoracic Cage(a)Bonesofthepectoralgirdleandtheanteriorthorax.(b)Bonesofthescapulaandtheposteriorvertebralcolumn.

    Figure 6.25 Right Humerus

    (a)

    (a)

    (b)

    (b)

    see78267-Chapter06.indd 132 11-12-01 3:25 PM

  • SkeletalSystem:BonesandJoints 133Skeletal

    Carpal bones(distalrow)

    Radius

    TrapezoidTrapezium

    Proximalphalanx of thumb

    Proximal phalanx of finger

    Middle phalanx of finger

    Distal phalanx of finger

    Posterior view

    Ulna

    CapitateHamate

    1

    2345

    Digits

    Metacarpalbones

    Distalphalanxof thumb

    Carpalbones(proximalrow)

    LunateScaphoid

    TriquetrumPisiform

    Heads ofmetacarpal

    bones(knuckles)

    Olecranonprocess

    Headof ulna

    Acromionprocess

    Medial border of scapulaOlecranonprocess

    HandFivemetacarpal(met-karpl)bonesareattachedtothecarpalbonesandformthebonyframeworkofthehand(figure6.27).Themetacarpalbonesarealignedwiththefivedigits:thethumbandfingers.They are numbered 1 to 5, from the thumb to the littlefinger.Theends,orheads,ofthefivemetacarpalbonesassociatedwiththethumbandfingersformtheknuckles(figure6.28).Eachfinger consistsof three smallbones calledphalanges (f-lanjz;sing.phalanx,flangks),namedaftertheGreekphalanx,awedgeof soldiers holding their spears, tips outward, in front of them.The phalanges of each finger are called proximal, middle, anddistal,accordingtotheirpositioninthedigit.Thethumbhastwophalanges,proximalanddistal.Thedigitsarealsonumbered1to5,startingfromthethumb.

    PelvicGirdleThepelvic girdleistheplacewherethelowerlimbsattachtothebody(figure6.29).Therightandleftcoxal(koksul)bones,orhipbones, join each other anteriorly and the sacrum posteriorly toformaringofbonecalled thepelvic girdle.Thepelvis (pelvis;

    Olecranon process

    Head

    Radial tuberosity

    Radius(shaft)

    Styloid process

    Anterior view

    Trochlear notchCoronoid process

    Ulna(shaft)

    HeadStyloid process

    Superior view

    Head of radius

    Olecranonprocess

    Coronoid process

    Trochlearnotch

    Figure 6.26 Right Ulna and Radius(a)anteriorviewoftherightulnaandradius.(b)Proximalendsoftherightulnaandradius.

    (a)

    (b)

    Figure 6.27 Bones of the Right Wrist and Hand

    Figure 6.28 Surface Anatomy Showing Bones of the Pectoral Girdle and Upper Limb

    see78267-Chapter06.indd 133 11-12-01 3:25 PM

  • 134 Chapter 6Skeletal

    crest can be seen along the superiormargin of each ilium, andananterior superior iliac spine, an important hip landmark, islocatedattheanteriorendoftheiliaccrest.Thecoxalbonesjoineachotheranteriorlyatthepubic(pbik)symphysisandjointhesacrum posteriorly at the sacroiliac (s-kr-il-ak) joints (seefigure6.30).Theacetabulum(as--tab-lm;vinegarcup)isthesocketofthehipjoint.Theobturator(obtoo-r-tr)foramenisthelargeholeineachcoxalbonethatisclosedoffbymusclesandotherstructures. Themalepelviscanbedistinguishedfromthefemalepelvisbecauseitisusuallylargerandmoremassive,butthefemalepelvistendstobebroader(figure6.32;table6.3).Boththeinletandtheoutletofthefemalepelvisarelargerthanthoseofthemalepelvis,and the subpubic angle is greater in the female (figure 6.32a,b).Theincreasedsizeoftheseopeningshelpsaccommodatethefetus

    basin)includesthepelvicgirdleandthecoccyx(figure6.30).Thesacrumandcoccyxformpartofthepelvisbutarealsopartoftheaxialskeleton.Eachcoxalboneisformedbythreebonesfusedtooneanotherto formasinglebone(figure6.31).The ilium (il-m) is themostsuperior, the ischium (isk-m) is inferiorandposterior,andthepubis(pbis)isinferiorandanterior.Aniliac

    Coxal boneSacrum

    Femur

    Patella

    Lower limb

    Pelvic girdle

    Tibia

    Fibula

    Tarsal bonesMetatarsalbonesPhalanges

    Anterior view

    Sacroiliac joint

    Anterior superioriliac spine

    Acetabulum

    Coccyx

    Iliac crest

    Obturatorforamen

    Subpubic angleAnterosuperior view

    Ischium

    Pubis

    Ilium

    Sacrum

    Coxalbone

    Pubic symphysis

    Sacral promontory

    Figure 6.29 Bones of the Pelvic Girdle and Right Lower Limb

    Figure 6.30 Pelvis

    TABle6.3 Differences Between Male and Female Pelvic GirdlesArea Description of DifferenceGeneral Femalepelvissomewhatlighterinweightand

    widerlaterallybutshortersuperiorlyto inferiorlyandlessfunnel-shaped;lessobvious muscleattachmentpointsinfemalethaninmale

    Sacrum Broaderinfemale,withtheinferiorportion directedmoreposteriorly;thesacralpromontory projectslessanteriorlyinfemale

    Pelvicinlet Heart-shapedinmale;ovalinfemale

    Pelvicoutlet Broaderandmoreshallowinfemale

    Subpubicangle lessthan90degreesinmale;90degreesormore infemale

    ilium Moreshallowandflaredlaterallyinfemale

    ischialspines Fartherapartinfemale

    ischialtuberosities turnedlaterallyinfemaleandmediallyinmale (notshowninfigure6.32)

    see78267-Chapter06.indd 134 11-12-01 3:25 PM

  • SkeletalSystem:BonesandJoints 135Skeletal

    Iliac crest

    Greatersciatic notch

    Ischial spine

    Ischial tuberosityLateral view Medial view

    Obturator foramen

    Pubic symphysis

    Acetabulum

    Ilium

    Pubis

    Pelvic brim

    Articular surface(area ofarticulationwith sacrum)

    Greater sciatic notch

    Ischium

    Ischial spine

    Ischium

    Iliac fossa

    Coccyx

    Pubicsymphysis

    Ischialspine

    Sacral promontory

    Subpubic angle

    Pelvicbrim

    Pelvicinlet(reddashedline)

    Pubicsymphysis

    Pelvicoutlet(bluedashedline)

    Male Female

    (a) Anterosuperior view (b) Anterosuperior view

    Pelvic inletPelvicbrim

    Coccyx

    Sacral promontory

    Pelvic outlet

    (c) Medial view

    Figure 6.31 Right Coxal Bone

    Figure 6.32 Comparison of the Male Pelvis to the Female Pelvis(a)inamale,thepelvicinlet(red dashed line)andoutlet(blue dashed line)aresmall,andthesubpubicangleislessthan90degrees.(b)inafemale,thepelvicinlet(red dashed line)andoutlet(blue dashed line)arelarger,andthesubpubicangleis90degreesorgreater.(c)amidsagittalsectionthroughthepelvisshowsthepelvicinlet(red arrowandred dashed line)andthepelvicoutlet(blue arrowandblue dashed line).

    (a) (b)

    see78267-Chapter06.indd 135 11-12-01 3:25 PM

  • 136 Chapter 6Skeletal

    aredamaged.Ifthisoccurs,thefemoralheadmaydegeneratefromlackofnourishment.Thetrochantersarepointsofmuscleattach-ment.Thepatella(pa-tel),orkneecap(figure6.33b), is locatedwithinthemajortendonoftheanteriorthighmusclesandenablesthetendontobendovertheknee.

    LegThelegistheregionbetweenthekneeandtheankle(figure6.34).Itcontainstwobones,calledthetibia(tib-;shinbone)andthefibula(fib-l).Thetibiaisthelargerofthetwoandisthemajorweight-bearingboneoftheleg.Theroundedcondylesofthefemurrestontheflatcondylesontheproximalendofthetibia.Justdis-taltothecondylesofthetibia,onitsanteriorsurface,isthetibial tuberosity, where themuscles of the anterior thigh attach. Thefibuladoesnotarticulatewiththefemur,butitsheadisattachedtotheproximalendofthetibia.Thedistalendsofthetibiaandfibula form a partial socket that articulates with a bone of theankle(thetalus).Aprominencecanbeseenoneachsideoftheankle(figure6.34).Thesearethemedial malleolus(mal--ls)ofthetibiaandthelateral malleolusofthefibula.

    during childbirth.Thepelvic inlet is formedby thepelvicbrimand the sacralpromontory.Thepelvic outlet isboundedby theischialspines,thepubicsymphysis,andthecoccyx(figure6.32c).

    lowerlimbThelowerlimbconsistsofthebonesofthethigh,leg,ankle,andfoot(seefigure6.29).

    ThighThethighistheregionbetweenthehipandtheknee(figure6.33a).Itcontainsasinglebonecalledthefemur.Theheadofthefemurarticulateswiththeacetabulumofthecoxalbone.Atthedistalendofthefemur,thecondylesarticulatewiththetibia.Epicondyles,locatedmedialandlateraltothecondyles,arepointsofligamentattachment. The femur can be distinguished from the humerusby its long neck, located between the head and the trochanters(trkan-terz). A broken hip is usually a break of the femoralneck.Abrokenhipisdifficulttorepairandoftenrequirespinningtoholdthefemoralheadtotheshaft.Amajorcomplicationcanoccurifthebloodvesselsbetweenthefemoralheadandtheacetabulum

    Head

    Neck

    Greater trochanter

    Lateral epicondyleLateral condyle

    Body (shaft) of femur

    Head

    Neck

    Medialepicondyle

    Greater trochanter

    Lateral epicondyle

    Medialcondyle

    Patellar groove

    Linea aspera

    Intercondylar fossa

    Lesser trochanter

    Anteriorsurface

    Anterior view

    Anterior view

    Posterior view

    Figure 6.33 Bones of the Thigh(a)rightfemur.(b)Patella.

    (a)

    (b)

    see78267-Chapter06.indd 136 11-12-01 3:25 PM

  • SkeletalSystem:BonesandJoints 137Skeletal

    AnkleThe ankle consists of seven tarsal (tarsl; the sole of the foot)bones (figure6.35).The tarsal bones are the talus (tls; anklebone), calcaneus (kal-kn-s; heel), cuboid (kboyd), andnavicular(n-viky-lr),andthemedial,intermediate,andlateralcuneiforms (kn-i-frmz). The talus articulates with the tibiaand fibula to form the ankle joint, and the calcaneus forms theheel(figure6.36).AmnemonicforthedistalrowisMILCthatis,Medial,Intermediate,andLateralcuneiformsandtheCuboid.AmnemonicfortheproximalthreebonesisNoThanksCowthatis,Navicular,Talus,andCalcaneus.

    FootThemetatarsal (met-tarsl)bones andphalanges of the footarearrangedandnumberedinamannerverysimilartothemeta-carpal bones and phalanges of the hand (see figure 6.35). Themetatarsalbonesaresomewhatlongerthanthemetacarpalbones,whereas the phalanges of the foot are considerably shorter thanthoseofthehand. There are three primary arches in the foot, formed by thepositions of the tarsal bones andmetatarsal bones, and held inplacebyligaments.Twolongitudinalarchesextendfromtheheeltotheballofthefoot,andatransversearchextendsacrossthefoot.Thearchesfunctionsimilarlytothespringsofacar,allowingthefoottogiveandspringback.

    Lateral condyle

    Head

    Medial condyleTibial tuberosity

    TibiaFibula

    Lateral malleolus

    Anterior view

    Medial malleolus

    Cuboid

    Lateral cuneiformMetatarsalbones

    Proximal phalanx

    Middle phalanxDistal phalanx

    Calcaneus

    Talus

    Navicular

    Intermediate cuneiformMedial cuneiform

    Proximal phalanxof great toe

    1234

    5

    Tarsal bones

    Digits

    Navicular

    Cuboid

    Fibula

    Talus

    Calcaneus

    Tarsal bones

    Tibia

    Metatarsal bonesDistal phalanxof great toe

    Superior view Medial view

    Phalanges

    Figure 6.34 Bones of the Legtherighttibiaandfibulaareshown.

    Figure 6.35 Bones of the Right Foot

    (a) (b)

    see78267-Chapter06.indd 137 11-12-01 3:25 PM

  • 138 Chapter 6Skeletal

    (font-nelz),orsoftspots(figure6.37).Theyallowflexibilityinthe skullduring thebirthprocess, aswell asgrowthof theheadafter birth. Syndesmoses (sindez-msz) are fibrous joints inwhichthebonesareseparatedbysomedistanceandheldtogetherby ligaments. An example is the fibrous membrane connectingmostofthedistalpartsoftheradiusandulna.Gomphoses(gom-fsz)consistofpegsfittedintosocketsandheldinplacebyliga-ments.Thejointbetweenatoothanditssocketisagomphosis.

    cartilaginousJointsCartilaginous joints unite two bones bymeans of cartilage.Onlyslightmovementcanoccuratthesejoints.Examplesarethecartilageintheepiphysealplatesofgrowinglongbonesandthecartilages

    6.8 JointSLearning Outcomes After reading this section, you should be able to

    A. Describethetwosystemsforclassifyingjoints.B. Explainthestructureofafibrousjoint,listthethreetypes,and

    giveexamplesofeachtype.C. Giveexamplesofcartilaginousjoints.D. illustratethestructureofasynovialjointandexplaintheroles

    ofthecomponentsofasynovialjoint.e. classifysynovialjointsbasedontheshapeofthebonesinthe

    jointandgiveanexampleofeachtype.F. Demonstratethedifferencebetweenthefollowingpairs

    ofmovements:flexionandextension;plantarflexionanddorsiflexion;abductionandadduction;supinationandpronation;elevationanddepression;protractionandretraction;oppositionandreposition;inversionandeversion.

    A joint, or an articulation, is a place where two bones cometogether. A joint is usually considered movable, but that is notalwaysthecase.Manyjointsexhibitlimitedmovement,andothersarecompletely,oralmostcompletely,immovable. Onemethodofclassifyingjointsisafunctionalclassification.Basedonthedegreeofmotion,ajointmaybecalledasynarthrosis(sinar-thrsis;nonmovablejoint),anamphiarthrosis(amfi-ar-thrsis; slightlymovable joint), or adiarthrosis (d-ar-thrsis;freelymovable joint).However, functionalclassificationissome-what restrictive and is not used in this text. Instead, we use astructuralclassificationwherebyjointsareclassifiedaccordingtothe type of connective tissue that binds the bones together andwhetherthereisafluid-filledjointcapsule.Thethreemajorstruc-turalclassesofjointsarefibrous,cartilaginous,andsynovial.

    FibrousJointsFibrous joints consist of two bones that are united by fibroustissueandthatexhibitlittleornomovement.Jointsinthisgroupare further subdivided on the basis of structure as sutures, syn-desmoses,orgomphoses.Sutures (soochoorz)arefibrous jointsbetween the bones of the skull (see figure 6.11). In a newborn,somepartsofthesuturesarequitewideandarecalledfontanels

    Lateralmalleolus

    PatellaTibial tuberosity

    Anterior crestof tibia

    Medial malleolus

    Head of fibula

    Calcaneus

    Medial epicondyle of femur

    Lateral epicondyleof femur

    Parietalbone

    Occipitalbone

    Mastoid (posterolateral) fontanel

    Lateral view

    Superior view

    Frontalbone

    Sphenoidal(anterolateral)fontanel

    Temporal bone

    Squamoussuture

    Lambdoidsuture

    Coronalsuture

    Frontal bones(not yet fusedinto a single bone)

    Frontal(anterior)fontanel

    Parietalbone

    Occipital(posterior)fontanelOccipital

    bone

    Sagittalsuture

    Figure 6.36 Surface Anatomy Showing Bones of the Lower Limb

    Figure 6.37 Fetal Skull Showing Fontanels and Sutures

    (a)

    (b)

    see78267-Chapter06.indd 138 11-12-01 3:25 PM

  • SkeletalSystem:BonesandJoints 139Skeletal

    (bers; pocket). Bursae are located between structures that rubtogether,suchaswhereatendoncrossesabone;theyreducefric-tion,whichcoulddamagethestructuresinvolved.Inflammationofabursa,oftenresultingfromabrasion,iscalledbursitis.Asynovialmembranemay extend as a tendon sheath along some tendonsassociatedwithjoints(figure6.38).

    Types of Synovial JointsSynovialjointsareclassifiedaccordingtotheshapeoftheadjoiningarticularsurfaces(figure6.39).Plane joints,orgliding joints,consistof twoopposed flat surfaces that glide over eachother. Examplesof these joints are the articular facets between vertebrae. Saddle joints consist of two saddle-shaped articulating surfaces orientedatrightanglestoeachother.Movementinthesejointscanoccurintwoplanes.Thejointbetweenthemetacarpalboneandthecarpalbone(trapezium)ofthethumbisasaddlejoint.Hinge jointspermitmovementinoneplaneonly.Theyconsistofaconvexcylinderofoneboneapplied toacorrespondingconcavityof theotherbone.Examples are the elbow and knee joints (figure 6.40a,b). The flatcondylarsurfaceofthekneejointismodifiedintoaconcavesurfacebyshock-absorbing fibrocartilagepadscalledmenisci (m-niss).Pivot jointsrestrictmovementtorotationaroundasingleaxis.Eachpivotjointconsistsofacylindricalbonyprocessthatrotateswithinaringcomposedpartlyofboneandpartlyofligament.Therotationthatoccursbetweentheaxisandatlaswhenshakingtheheadnoisanexample.Thearticulationbetweentheproximalendsoftheulnaandradiusisalsoapivotjoint.

    betweentheribsandthesternum.Thecartilageofsomecartilaginousjoints,wheremuchstrainisplacedonthejoint,maybereinforcedbyadditionalcollagenfibers.Thistypeofcartilage,calledfibrocartilage(seechapter4),formsjointssuchastheintervertebraldisks.

    SynovialJointsSynovial(si-nv-l)jointsarefreelymovablejointsthatcontainfluidinacavitysurroundingtheendsofarticulatingbones.Mostjointsthatunitethebonesoftheappendicularskeletonaresyno-vialjoints,whereasmanyofthejointsthatunitethebonesoftheaxialskeletonarenot.Thispatternreflectsthegreatermobilityoftheappendicularskeletoncomparedtothatoftheaxialskeleton. Severalfeaturesofsynovialjointsareimportanttotheirfunc-tion(figure6.38).Thearticularsurfacesofboneswithinsynovialjointsarecoveredwitha thin layerofarticular cartilage,whichprovidesasmoothsurfacewherethebonesmeet.Thejoint cavityisfilledwithfluid.Thecavityisenclosedbyajoint capsule,whichhelpsholdthebonestogetherandallowsformovement.Portionsofthefibrouspartofthejointcapsulemaybethickenedtoformligaments. In addition, ligaments and tendons outside the jointcapsulecontributetothestrengthofthejoint. A synovial membrane lines the joint cavity everywhereexcept over the articular cartilage. The membrane producessynovial fluid, which is a complex mixture of polysaccharides,proteins,lipids,andcells.Synovialfluidformsathin,lubricatingfilmcovering the surfaces of the joint. In certain synovial joints, thesynovialmembranemayextendasapocket,orsac,calledabursa

    Bursa

    Joint cavity (filledwith synovial fluid)

    Articularcartilage

    Tendonsheath

    Tendon

    Bone

    Bone

    Blood vesselNerve

    Synovial membraneFibrous part of joint capsule

    Jointcapsule

    Outer layer

    Inner layerPeriosteum

    Figure 6.38 Structure of a Synovial Joint

    see78267-Chapter06.indd 139 11-12-01 3:25 PM

  • 140 Chapter 6Skeletal

    Class and Example of JointPlane

    SlightAcromion process of scapula and clavicleCarpals and metacarpals 25Ribs and vertebraeBetween carpal bonesBetween metatarsal bonesBetween tarsal bonesBetween articular processes of adjacent vertebrae

    (complex joint with several planes and synchondroses)

    Acromioclavicular

    Two axes

    SlightSlight

    Carpometacarpal

    CostovertebralIntercarpalIntermetatarsalIntertarsalIntervertebral

    Sacroiliac

    Tarsometatarsal

    Multiple axes as a groupSlightSlightSlightSlightSlight

    Slight

    Slight

    SaddleCarpometacarpal pollicisIntercarpalSternoclavicular

    Carpal and metacarpal of thumbBetween carpal bonesManubrium of sternum and clavicle

    HingeCubital (elbow)KneeInterphalangealTalocrural (ankle)

    Humerus, ulna, and radiusFemur and tibiaBetween phalangesTalus, tibia, and fibula

    One axisOne axisOne axisMultiple axes; one predominates

    PivotMedial atlantoaxialProximal radioulnarDistal radioulnar

    Atlas and axisRadius and ulnaRadius and ulna

    RotationRotationRotation

    Ball-and-SocketCoxal (hip)Humeral (shoulder)

    Coxal bone and femurScapula and humerus

    Multiple axesMultiple axes

    EllipsoidAtlantooccipitalMetacarpopha- langeal (knuckles)Metatarsopha- langeal (ball of foot)Radiocarpal (wrist)Temporomandibular

    Atlas and occipital boneMetacarpal bones and phalangesMetatarsal bones and phalangesRadius and carpal bonesMandible and temporal bone

    Two axesTwo axes

    Two axes

    Multiple axesMultiple axes; one predominates

    Ball-and-socket

    Ellipsoid

    Plane

    Saddle

    Hinge

    Pivot

    Structures Joined Movement

    Between sacrum and coxal bone

    Tarsal bones and metatarsal bones

    Figure 6.39 Types of Synovial Joints

    see78267-Chapter06.indd 140 11-12-01 3:25 PM

  • SkeletalSystem:BonesandJoints 141Skeletal

    type ofmovement,whereas others permitmovement in severaldirections.All themovementsaredescribedrelative to theana-tomicalposition.Becausemostmovementsareaccompaniedbymovementsintheoppositedirection,theyareoftenillustratedinpairs(figure6.41). Flexion and extension are common opposing movementsthatmaybedefinedinanumberofways,althougheachdefinitionhasanexception.Theliteraldefinitionsaretobend(flex)andtostraighten (extend). But we have chosen to use definitions withmoreutilityandfewerexceptions.Thus,wesaythatflexionmovesapartofthebodyintheanteriordirectionfromthefrontalplane,whereas extensionmoves a part in the posterior direction fromthefrontalplane(figure6.41a,b).Anexceptionistheknee,whereflexionmovestheleginaposteriordirectionandextensionmovesitinananteriordirection.

    Ball-and-socket joints consistofaball (head)at theendofoneboneandasocket inanadjacentbone intowhichaportionof the ball fits. This type of joint allows awide range ofmove-mentinalmostanydirection.Examplesaretheshoulderandhipjoints (figure6.40c,d).Ellipsoid (-lipsoyd) joints, orcondyloid(kondi-loyd) joints, are elongated ball-and-socket joints. Theshapeofthejointlimitsitsrangeofmovementnearlytothatofahingemotion,but intwoplanes.Examplesofellipsoid jointsarethejointbetweentheoccipitalcondylesoftheskullandtheatlasofthevertebralcolumnandthejointsbetweenthemetacarpalbonesandphalanges.

    typesofMovementThetypesofmovementoccurringatagiven jointarerelated tothe structure of that joint. Some joints are limited to only one

    Elbow

    Humerus

    Fat pad

    Olecranon bursa

    Trochlea

    Articular cartilage of the trochlear notch

    Joint capsule

    Joint cavity

    Synovial membrane

    Articular cartilage

    Coronoid process

    Ulna

    Femur

    ArticularcartilageMeniscus

    Tibia

    QuadricepsfemoristendonSuprapatellarbursaSubcutaneousprepatellarbursaPatella

    Fat padPatellarligamentDeepinfrapatellarbursa

    Knee

    Pelvic boneArticular cartilage

    Joint cavityLigamentum teresHead of femur

    Neck of femur

    Joint capsule

    Greatertrochanter

    Lessertrochanter

    Femur

    Hip

    Subacromial bursaJoint cavity

    Acromion process (articular surface)

    Articular cartilage over head of humerus

    Scapula (cut surface)

    Joint capsule

    Articular cartilageover glenoid cavity

    Shoulder

    Tendon sheath on tendon of long head of biceps brachii

    Biceps brachiitendon

    Humerus

    Biceps brachiimuscle

    Sagittal sectionSagittal section

    Frontal section Frontal section

    Figure 6.40 Examples of Synovial Joints(a)Elbow.(b)Knee.(c)Shoulder.(d)Hip.

    (a)

    (c)

    (b)

    (d)

    see78267-Chapter06.indd 141 11-12-01 3:25 PM

  • 142 Chapter 6Skeletal

    Flexion

    Extension

    Pronation

    Supination

    Medial rotation Lateral rotation

    Circumduction

    Anterior tofrontal plane

    Posterior tofrontal plane

    Flexion Extension

    Frontal plane

    Abduction

    Abduction

    Adduction

    (a)

    (d)

    (e) (f)

    (b) (c)

    Figure 6.41 Types of Movement(a)Flexionandextensionoftheelbow.(b)Flexionandextensionoftheneck.(c)abductionandadductionofthefingers.(d)Pronationandsupinationofthehand.(e)Medialandlateralrotationofthearm.(f )circumductionofthearm.

    see78267-Chapter06.indd 142 11-12-01 3:25 PM

  • SkeletalSystem:BonesandJoints 143Skeletal

    Depressionismovementofastructureinaninferiordirection.Openingthemouthinvolvesdepressionofthemandible.

    Excursionismovementofastr