security sensitivity committee deliverable...

90
RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme Weather Project Reference: 608166 FP7-SEC-2013-1 Impact of extreme weather on critical infrastructure Project Duration: 1 May 2014 – 30 April 2017 This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 608166 Security Sensitivity Committee Deliverable Evaluation Deliverable Reference D 5.2 Deliverable Name Report on risk analysis framework for collateral impacts of cascading effects Contributing Partners TU Delft Date of Submission April 2017 The evaluation is: The content is not related to general project management The content is not related to general outcomes as dissemination and communication The content is not related to critical infrastructure vulnerability or sensitivity Diagram path 1-2-3. Therefore the evaluation is Public. Decision of Evaluation Public Confidential Restricted Evaluator Name P.L. Prak, MSSM Evaluator Signature Date of Evaluation 2017-05-02

Upload: others

Post on 10-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

RAIN–RiskAnalysisofInfrastructureNetworksinResponsetoExtremeWeather ProjectReference:608166 FP7-SEC-2013-1Impactofextremeweatheroncriticalinfrastructure ProjectDuration:1May2014–30April2017

ThisprojecthasreceivedfundingfromtheEuropeanUnion’sSeventhFrameworkProgrammeforresearch,technologicaldevelopmentanddemonstrationundergrantagreementno608166

SecuritySensitivityCommitteeDeliverableEvaluationDeliverableReference D5.2DeliverableName Reportonriskanalysisframeworkforcollateralimpactsof

cascadingeffectsContributingPartners TUDelftDateofSubmission April2017Theevaluationis:

• Thecontentisnotrelatedtogeneralprojectmanagement• Thecontentisnotrelatedtogeneraloutcomesasdisseminationandcommunication• Thecontentisnotrelatedtocriticalinfrastructurevulnerabilityorsensitivity

Diagrampath1-2-3.ThereforetheevaluationisPublic.DecisionofEvaluation Public Confidential Restricted EvaluatorName P.L.Prak,MSSMEvaluatorSignature DateofEvaluation 2017-05-02

Page 2: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

RAIN  –  Risk  Analysis  of  Infrastructure  Networks  in  Response  to  Extreme  Weather Project  Reference:  608166 FP7-­‐SEC-­‐2013-­‐1  Impact  of  extreme  weather  on  critical  infrastructure Project  Duration:  1  May  2014  –  30  April  2017

Date:  30/04/2017 Dissemination  level:  (PU,  PP,  RE,  CO):  PU This  project  has  received  funding  from  the  European  Union’s  Seventh  Framework  Programme  for  research,  technological  development  and  demonstration  under  grant  agreement  no  608166  

 

 

 

 

 

 

 

 

 

 

Deliverable   5.2   -­‐   Report   on   risk  analysis   framework   for   collateral  impacts  of  cascading  effects  

   

  Authors    Noel  van  Erp  (TU  Delft)  Ronald  Linger    (TU  Delft)  Nima  Khakzad    (TU  Delft)  

Pieter  van  Gelder*  (TU  Delft)      

*Corresponding  author:  [email protected]  

 

Page 3: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

2  

 

 

 

 

DOCUMENT HISTORY

Index Date Author(s) Main modifications

E01 04-30-2017 NVE, RL, NM, and PVG First Draft

05-11-2017 Reviewers: Vajda Andrea (FMI) and Timo Hellenberg (HI)

Review by FMI and HI

05-13-2017 NVE, RL, NM, and PVG Final Report

 

Document Name: Report on risk analysis framework for collateral impacts of cascading effects

Work Package: 5

Task: 5.2

Deliverable: 5.2

Deliverable scheduled date (36th Month) 30th April 2017

Responsible Partner: TU Delft

   

Page 4: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

3  

Table  of  Contents  

Executive  Summary  ................................................................................................................................  5  

1.   Introduction  ...................................................................................................................................  7  

2.   A  Comparison  Between  Markov  Chain  and  Dynamic  Bayesian  Network  .......................................  8  

2.1.   Markov  Chain  Analysis  ...........................................................................................................  8  

2.2.   Dynamic  Bayesian  Network  .................................................................................................  11  

2.3.   Application  of  DBN  to  the  Transportation  Problem  .............................................................  12  

2.4.   Results  ..................................................................................................................................  14  

2.5.   Interconnected  systems  .......................................................................................................  17  

3.   An  Alternative  Methodology  to  Model  Cascading  Effects  ...........................................................  21  

3.1.   A  System  and  Its  States  ........................................................................................................  21  

3.2.   The  Physics  of  the  Cascade  Process  .....................................................................................  21  

3.2.1.   A  Simple  Example  of  a  Probability  Map  .......................................................................  22  

3.2.2.   Probability  Maps  that  Capture  Inhomogeneous  Markov  Processes  ............................  23  

3.3.   Modelling  Cascades  Through  Time  ......................................................................................  24  

3.3.1.   Constructing  Proxy  State  Probability  Distributions  ......................................................  25  

3.3.2.   Applying  the  Product  and  the  Sum  Rules  .....................................................................  25  

4.   The  Probability  Sort  Algorithm  .....................................................................................................  28  

4.1.   How  to  Graphically  Represent  Multivariate  Pdfs  .................................................................  28  

4.2.   The  Idea  Behind  the  probability  Sort  Algorithm  ..................................................................  31  

4.3.   A  Probability  Sort  Analysis  ...................................................................................................  33  

4.4.   The  Information  Entropy  of  a  System  ..................................................................................  40  

5.   Modelling  of  Homogeneous  Markov  Processes  with  the  Probability  Sort  Algorithm  ..................  42  

5.1.   The  Physics  of  the  Probability  Map  ......................................................................................  42  

5.2.   Some  Example  Probability  Maps  ..........................................................................................  42  

5.3.   A  Probability  Sort  Analysis  of  Cascading  Effects  ...................................................................  44  

5.3.1.   Time  Evolving  Marginal  Damage  State  Probabilities  ....................................................  45  

5.3.2.   Time  Evolving  ML  Damage  States  ................................................................................  47  

6.   Modelling  of  Inhomogeneous  Markov  Processes  with  the  Probability  Sort  Algorithm  ...............  50  

6.1.   A  Topology  and  Landslide  Physics  ........................................................................................  50  

6.2.   A  First  Cascading  Effect  Analysis  ..........................................................................................  51  

6.3.   A  Second  Cascading  Effect  Analysis  .....................................................................................  54  

6.4.   Comparing  Inhomogeneous  and  Homogenous  Markov  Assumptions  .................................  56  

Page 5: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

4  

6.5.   A  Third  Cascading  Effect  Analysis  .........................................................................................  57  

7.   Concluding  remarks  .....................................................................................................................  61  

8.   References  ...................................................................................................................................  63  

9.   Appendix:  The  Probability  Sort  Algorithm  ...................................................................................  64  

9.1.   Algorithmic  Outline  ..............................................................................................................  64  

9.2.   Pseudo-­‐Code  ........................................................................................................................  64  

9.3.   Pen  and  Paper  Algorithmic  Run  ...........................................................................................  73  

 

   

Page 6: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

5  

Executive  Summary  

The  RAIN  project  is  concerned  about  the  behaviour  of  critical   infrastructures,  such  as  road,  rail  and  electricity   and   telecommunication   networks,   when   subjected   to   extreme   weather   events   such   as  heavy  rainfall,  landslides,  floods,  etc.  and  combinations  of  these.  These  extreme  weather  events,  as  well  as  the  consequent  behaviour  of  the  infrastructural  elements,  vary  both  spatially  and  temporally.    

For  example,  the  closer  an  infrastructural  object  is  to  the  centre  of  some  event,  the  greater  will  be  its  tendency   to   be   in   a   damaged   state.   Also,   if   the   damage   state   of   one   infrastructural   object   is  dependent   on   the   damage   state   of   another   (such   as   in   cascading   networks),   then   as   the   latter  infrastructural   object   is   damaged   and   time   progresses   the   greater   will   be   the   probability   of   the  former  infrastructural  object  to  be  in  a  damaged  state.  

A  risk-­‐based  decision-­‐making  framework   for   large-­‐scale   infrastructural  networks  under   influence  of  extreme  weather  hazards   has  been  developed   in  RAIN  deliverables  D5.1   and  D.5.5.   In   the   current  deliverable,   we   will   concentrate   in   particular   on   the  modelling   of   cascading   effects   in   large-­‐scale  infrastructural  networks.  Neglecting  or  underestimating  (inter)dependencies  between  the  failures  or  disruptions   of   the   critical   infrastructure   components   can   cause   designers,   experts,   managers   and  decision  makers  to  underestimate  the  overall   inter-­‐infrastructural  risks.   It   is   therefore  necessary  to  further   develop   approaches   that   consider   the   interconnected   nature   of   critical   infrastructure  components  and  –  systems,  which  will  be  the  aim  of  this  report.  

Real  life  systems  of  infrastructural  objects  will  be  conceptualized  as  an  event  tree  system,  where  all  the  specific  damage  states  of  the  infrastructural  system  are  leaves  on  the  event  tree.  If  we  have   N  infrastructural  objects  and   M  damage  states  per  object,  then  the  event  tree  system  will  consist  of  

NM  distinct  states.  Now,  as  the  number  of  infrastructural  objects   N  grows,  the  number  of  distinct  

states   ,   NM ,   of   the   corresponding   event   tree   will   grow   exponentially.   So,   for   non-­‐trivial  infrastructural  systems  the  size  of  the  corresponding  state  space  will  quickly  become  overwhelmingly  large   and,   as   a   consequence,   seemingly,   make   futile   any   attempt   to   come   at   some   sort   of  (approximately)  exact  evaluation  of  the  infrastructural  system.    

Furthermore,   damage   states   of   infrastructural   objects   are   time   dependent,   due   to   deterioration,  dissipation  effects,  but  also  due  to  human  intervention  after  mitigation  measures  have  been  applied  to  the  infrastructural  system.    

Finally,   the   damage   states   in   one   infrastructural   system   (for   instance   an   electricity   network)  may  affect   the   damage   state   in   another   infrastructural   system   (for   instance   a   rail   network).  Interconnectedness   between   infrastructures   causes   the   computational   complexity   to   grow   even  more.  

In  this  deliverable  we  have  derived  a  general   framework  based  on  Bayesian  probability   theory  and  the   Probability   Sort   algorithm   in   order   to   model   time-­‐dependent   and   cascading   effects   in  infrastructural  networks  through  space  and  time.  This  framework  also  allows  for  human  intervention  measures   to   mitigate   risks   or   reduce   failure   probabilities   of   infrastructural   components.   The  proposed   probability   sort   approach   allows   one   to   come   to   some   sort   of   exact   evaluation   of   even  

Page 7: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

6  

exponentially   large   event   trees   of   system   states,   as   long   as   the   information   entropy   in   that   event  tree  is  low  enough,  as  will  be  demonstrated  in  this  deliverable.        

Applications  are  presented  for  the  Bayesian  modelling  of  cascading  effects  in  landslides  and  for  the  cascading  effects   in   an  electricity  network.   The  outcomes  are   time-­‐dependent  probability  maps  of  failure   of   the   overall   infrastructural   systems,   which   serve   as   input   for   the   decision-­‐making   by  infrastructural  managers.  

   

Page 8: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

7  

1. Introduction  

In   this   report  we  propose   to  use  Bayesian   statistics   and   the  Probability   Sort   algorithm   in  order   to  model  cascading  effects  over  time  and  space.  The  proposed  probability  sort  approach  allows  one  to  come  to  some  sort  of  exact  evaluation  of  even  exponentially   large  event  trees  of  system  states,  as  long   as   the   information   entropy   in   that   event   tree   is   low  enough,   as  will   be   demonstrated   in   this  report.    

This   report   is   structured  as   follows.   In  Chapter  2   there  will  be  given  a  discussion  of   the   (relatively)  established  Markov  Chain   (MC)  and  Dynamic  Bayesian  Networks   (DBN)  methodologies   ,   as  we  will  give   for   a   simple   three-­‐bridge   toy-­‐problem   a   pen-­‐and-­‐paper  MC   analysis   as   well   as   a   GeNIe   DBN  analysis.  In  Chapter  3  we  then  describe  an  alternative  probability  sort  approach  that  was  specifically  developed  for  the  RAIN  project.  In  Chapter  4  we  give  the  probability  Sort  algorithm  which  lies  at  the  core   of   this   alternative   probability   sort   approach.   In   Chapter   5   the   alternative   probability   sort  approach   is   illustrated   for   a   toy-­‐problem   under   the   assumption   of   homogeneous   transition  probabilities.   In   Chapter   6   then   there   are   given   two   problems   of   infrastructural   networks   under  cascading  effects  due   to  extreme  weather   events   in  which   inhomogeneous   transition  probabilities  are  assumed  (cascading  landslides  under  extreme  rainfall  in  Sec.  6.1  –  6.4  and  cascading  effects  in  an  electricity  network  in  Sec.  6.5).  

   

Page 9: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

8  

2. A   Comparison   Between   Markov   Chain   and   Dynamic   Bayesian  Network  

In  this  chapter  we  critically  compare  the  modelling  techniques  of  Markov  Chains  and  Dynamic  Bayesian   networks   for   modelling   infrastructural   networks,   consisting   of   large   numbers   of  components.  

For  the  sake  of  illustration,  consider  a  land-­‐based  road  transportation  system  consisting  of  three  bridges,  B1-­‐B3  (Figure  2.1),  in  which  bridges  B1  and  B2  connect  the  northern  part  to  an  island,  and  bridge  B3  connects  further  to  the  southern  part.  

 

               Figure  2.1:  A  transportation  system  between  H  and  W  comprising  three  bridges  B1,  B2  and  B3  

 

The  bridges  are  assumed  to  have  constant  failure  rates;  as  such,  the  failure  probability  of  each  bridge  as  a  function  of  time  can  be  calculated  using  the  exponential  distribution  as:  

P(Bridge  fails)  =  P(t)  =  1-­‐  exp  (-­‐λt)             (2.1)  

Since   techniques   such   as   fault   tree   or   conventional  Bayesian  network   are  not   able   to   account  explicitly   for   temporal   evolution  of   failure  probabilities,   application  of  Markov   chain   (Ebeling,  1997)  and  dynamic  Bayesian  network   (Jensen  &  Nielsen,  2007)  will  be   sought   in   this   chapter  while  emphasizing  their  advantages  and  drawbacks.    

2.1. Markov  Chain  Analysis  

Markov  chains  are  mathematical  systems  that  ‘hop’  from  one  state  to  another  state.  Predictions  for  the  future  state  are  based  only  on   its  present  state,  but  not  on   its  states  before.  Hence,   the  system   is   conditional   on   the   present   state   of   the   system,   its   future   and   past   states   are  independent.  

Considering  bridges  with  binary  states,   i.e.,  Bridge  ={work,   fail},   the   total  number  of  states   for  the  transportation  system  will  be  23=8  as  listed  in  Table  2.1.    

   

Page 10: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

9  

 

Table  2.1.  State-­‐space  of  the  transportation  system  in  Figure  2.1.  

State   B1   B2   B3   System  

①   √   √   √   √  

②   √   √   ╳   ╳  

③   √   ╳   √   √  

④   ╳   √   √   √  

⑤   √   ╳   ╳   ╳  

⑥   ╳   √   ╳   ╳  

⑦   ╳   ╳   √   ╳  

⑧   ╳   ╳   ╳   ╳  

 

For  each  combination  of  the  bridges’  states,  the  state  of  the  system  can  be  identified  as  being  in  the  failure  (one  cannot  get  from  Home,  H,  to  Work,  W)  or  operation  mode.  Accordingly,  the  total  failure  probability  of  the  system  can  be  identified  as  the  complement  of  the  total  probability  of  operation  as:  

  𝑃 𝑠𝑦𝑠𝑡𝑒𝑚  𝑓𝑎𝑖𝑙𝑠 = 1 − (𝑃!(𝑡) + 𝑃!(𝑡) + 𝑃!(𝑡))           (2.2)  

where   𝑃!(𝑡)   is   the   probability   of   the   system   being   in   the   ith   state   at   time   t.   To   calculate   the  probabilities  of   the  states  reported   in  Table  2.1,   the  state-­‐transition  diagram   in  Figure  2.2  has  been  depicted.  𝜆!, 𝜆!, 𝑎𝑛𝑑  𝜆!  refer,  respectively,  to  the  failure  rates  of  the  bridges  B1,  B2,  and  B3.  It  is  worth  noting  that  the  Markov  Chain  developed  in  this  way  is  a  homogeneous  Markov  chain  in   that   the   failure   rates   (transition   rates)   are   constant  over   time   (a  property  which   limits   the  application  of  homogeneous  Markov  chain  to  time-­‐dependent  failure  rate  processes).    

1

2 3 4

765

8

λ3  λ3   λ2λ2λ1λ1

λ2λ2λ1  λ1   λ1  λ1  

λ3λ3λ3λ3

λ2λ2

λ1  λ1   λ3λ3λ2λ2

1

2 3 4

765

8

λ3   λ2λ1

λ2λ1   λ1  

λ3λ3

λ2

λ1   λ3λ2

 

Figure  2.2.  Markov  Chain  for  the  transportation  network  shown  in  Figure  2.1.  

Page 11: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

10  

 

Using  the  state  transition  diagram  in  Figure  2.2,  the  state  probabilities  can  be  derived  by  solving  a  system  of  differential  equations:  

( ) ( ) ( )11 2 3 1

dP tP t

dtλ λ λ= − + + ;    

( ) ( ) ( ) ( )23 1 1 2 2

dP tP t P t

dtλ λ λ= − +    

( ) ( ) ( ) ( )32 1 1 3 3

dP tP t P t

dtλ λ λ= − +    

( ) ( ) ( ) ( )41 1 2 3 4

dP tP t P t

dtλ λ λ= − +    

( ) ( ) ( ) ( )52 2 3 3 1 5

dP tP t P t P t

dtλ λ λ= + −    

( ) ( ) ( ) ( )61 2 3 4 2 6

dP tP t P t P t

dtλ λ λ= + −    

( ) ( ) ( ) ( )71 3 2 4 3 7

dP tP t P t P t

dtλ λ λ= + −    

( )7

81

1 ii

P P t=

= −∑    

Solving  the  equations,  we  have:  

( ) ( )1 2 31

tP t e λ λ λ− + +=    

( ) ( ) ( )1 2 32 1t tP t e eλ λ λ− + −= −    

( ) ( ) ( )1 3 23 1t tP t e eλ λ λ− + −= −    

( ) ( ) ( )2 3 14 1t tP t e eλ λ λ− + −= −    

M    

Having  the  state  probabilities,  the  failure  of  the  transportation  system  can  be  estimated  as:  

Page 12: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

11  

( ) ( ) ( ) ( ) ( )( )1 3 2 3 1 2 31 3 4system fails 1 1 t t tP P P P e e eλ λ λ λ λ λ λ− + − + − + += − + + = − + −   (2.3)  

2.2. Dynamic  Bayesian  Network  

BN  (Jensen  &  Nielsen,  2007)  is  a  probabilistic  method  for  reasoning  under  uncertainty  in  which  random  variables  are  represented  by  nodes  while  the  conditional  dependencies  or  cause-­‐effect  relationships  among  them  are  denoted  by  directed  arcs  (Figure  2.3(a)).  

 

 

                   (a)               (b)  

Figure  2.3.  Schematic  of  (a)  conventional  Bayesian  network  and  (b)  dynamic  Bayesian  network  (Jensen  and  Nielsen,  2007)  

The   type   and   strength  of   the  dependencies   can  be   encoded   in   form  of   conditional   probability  tables   assigned   to   the   nodes.   Using   the   chain   rule   and   the   concept   of   d-­‐separation,   the   joint  probability  of  a  set  of  random  variables  𝑈 = {𝑋!,𝑋!,… ,𝑋!}  can  be  factorized  as  the  product  of  marginal  and  local  conditional  probabilities:  

𝑃 𝑈 = 𝑃(𝑋!|𝜋 𝑋! )!!!!                 (2.4)  

where  𝜋 𝑋!   is   the  parent  set  of   the  node  𝑋! .  For   instance,   the   joint  probability  distribution  of  the  random  variables  𝑋!,𝑋!,𝑋!  and  𝑋!  in  the  BN  of  Figure  2.3(a)  can  exclusively  be  expanded  as  𝑃(𝑋!,𝑋!,𝑋!,𝑋!)  =  𝑃 𝑋!  𝑃 𝑋! 𝑋!  𝑃 𝑋! 𝑋!,𝑋!  𝑃(𝑋!|𝑋!).  

Dynamic  Bayesian  network  (DBN)  is  an  extension  of  ordinary  BN  that,  compared  to  its  ancestor,  facilitates   explicit   modelling   of   temporal   evolution   of   random   variables   over   a   discretized  timeline  (Figure  2.3(b)).  Dividing  the  timeline  to  a  number  of  time  slices,  DBN  allows  a  node  at  ith  time  slice  to  be  conditionally  dependent  not  only  on  its  parents  at  the  same  time  slice  but  also  on  its  parents  and  itself  at  previous  time  slices:  

𝑃 𝑈!!∆! = 𝑃(𝑋!!!∆!|𝑋!! ,𝜋(!!!! 𝑋!!),𝜋(𝑋!!!∆!))           (2.5)  

According  to  the  DBN  in  Figure  2.3(b),  the  conditional  probability  of  𝑋!,  for  example,  at  the  time  slice   𝑡 + ∆𝑡   is  𝑃(𝑋!!!∆!|𝑋!!!∆! ,𝑋!! ,𝑋!!).   For   the   sake   of   brevity,   the  DBN   in   Figure   2.3(b)   can   be  depicted   in   an   abstract   from,   as   shown   in   Figure   2.4,  where   the   numbers  within   the   squares  refer  to  the  number  of  time  slice  taken  into  account  in  temporal  dependencies.  

Page 13: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

12  

 

Figure  2.4.  Abstract  representation  of  DBN  in  Figure  2.3(b).  The  numbers  attached  to  the  temporal  arcs  indicate  the  number  of  previous  time  slices  to  be  taken  into  account  in  temporal  dependencies.    

 

2.3. Application  of  DBN  to  the  Transportation  Problem  

The   road   transportation   system   with   3   bridges   B1,   B2   and   B3   shown   in   Figure   2.1   can   be  modelled  as  a  reliability  block  diagram  as  depicted  in  Figure  2.5  (a).    

B1

B2

B3H W

Subsystem  1

     

B1 B2

Subsystem  S1 B3

System  fails

 

(a)                   (b)  

Figure  2.5.  Transportation  system  as  (a)  a  reliability  block  diagram  and  (b)  a  fault  tree.  

The  BN  presentation  of   the  transportation  system  has  also  been  given   in  Figure  2.6.  To  model  the  temporal  evolution  of  the  system  failure,  the  BN  can  be  replicated  in  sequential  time  steps  as  depicted  in  Figure  2.7.  

Page 14: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

13  

S1 B3

B1 B2

System

S1 B3

B1 B2

System

 

Figure  2.6.  Modelling  the  transportation  system  as  a  conventional  Bayesian  network.    

 

S1 B3

B1 B2

System

S1 B3

B1 B2

System

S1 B3

B1 B2

System

S1 B3

B1 B2

System

S1 B3

B1 B2

System

S1 B3

B1 B2

System

t=0 t=Δt t=2Δt

S1 B3

B1 B2

System

S1 B3

B1 B2

System

S1 B3

B1 B2

System

t=0 t=Δt t=2Δt

 

Figure  2.7.  Modelling  the  transportation  system  as  a  dynamic  Bayesian  network.  

 

In   this   regard,   the   conditional   probabilities  within   each   time   slice   can   be  modelled   as   simple  AND/OR  gates  (as  in  the  fault  tree  in  Figure  2.5(b))  while  the  conditional  probabilities  between  sequential  time  slices  (e.g.,  from  t=Δt  to  t=2Δt)  can  be  determined  as  :  

 

(I)  in  the  first  time  step  t=0  

 

B1   work   fail    

B2   work   fail    

B3   work   fail  

 1   0  

   1   0  

   1   0  

 

 

 

Page 15: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

14  

B1   Work   Fail    

B3   Work   Fail  

B2   work   fail   work   fail    

S1   work   fail   work   fail  

S1  work   1   1   1   0  

  System  work   1   0   0   0  

fail   0   0   0   1    

fail   0   1   1   1  

 

(II)  in  sequential  time  steps:  

 

1tBΔ   work   fail  

21tB Δ  

Work   1 te λ− Δ   0  

Fail   11 te λ− Δ−   1  

2tBΔ   work   fail  

22tB Δ  

Work   2 te λ− Δ   0  

Fail   21 te λ− Δ−   1  

3tBΔ   work   fail  

23tB Δ  

Work   3 te λ− Δ   0  

Fail   31 te λ− Δ−   1  

 

2.4. Results  

To  make  a  comparison  between  Markov  chain  and  DBN,  the  failure  probability  of  the  system  is  calculated  for  a  20-­‐year  period  assuming  λ1=  0.1/year,   λ2=  0.15/year,   and   λ3=  0.2/year.  As  for  Markov  chain,  the  system’s  failure  probability  can  be  calculated  using  Equation  (2.3)  while  for  the   DBN   analysis,   the   DBN   displayed   in   Figure   2.7   is   implemented   and   run   in   Bayesian  network   software   GeNIe   (Figure   2.8).   the   results   of   the   Markovian   analysis   and   the   DBN  analysis   have   been   reported   in   Table   2.2  while   the   system’s   failure   probabilities   calculated  using  the  methodologies  have  been  shown  in  Figure  2.9.  As  can  be  seen  the  results  of  the  two  methodologies  are  nearly  the  same.  

Page 16: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

15  

 

Figure  2.8.  Modelling  of  the  DBN  in  GeNIe  

   

Page 17: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

16  

 

Table  2.  The  comparison  of  results  for  a  20-­‐year  period  

                BN   MC  

t   P(B1)   P(B2)   P(B3)   P(System)   P(system)  

0   0   0   0   0   0  

1   0.0952   0.1393   0.1813   0.1922   0.1921  

2   0.1813   0.2592   0.3297   0.3612   0.3612  

3   0.2593   0.3624   0.4513   0.5028   0.5027  

4   0.3298   0.4512   0.5507   0.6176   0.6175  

5   0.3936   0.5277   0.6322   0.7086   0.7085  

6   0.4513   0.5935   0.6989   0.7795   0.7795  

7   0.5036   0.6501   0.7535   0.8342   0.8341  

8   0.5508   0.6988   0.7982   0.8759   0.8758  

9   0.5936   0.7408   0.8348   0.9074   0.9074  

10   0.6323   0.7769   0.8647   0.9312   0.9311  

11   0.6673   0.8080   0.8892   0.9490   0.9489  

12   0.6990   0.8347   0.9093   0.9622   0.9622  

13   0.7276   0.8577   0.9258   0.9721   0.9721  

14   0.7535   0.8776   0.9392   0.9794   0.9794  

15   0.7770   0.8946   0.9502   0.9848   0.9848  

16   0.7982   0.9093   0.9593   0.9888   0.9888  

17   0.8174   0.9219   0.9666   0.9918   0.9918  

18   0.8348   0.9328   0.9727   0.9940   0.9940  

19   0.8505   0.9422   0.9776   0.9956   0.9956  

20   0.8648   0.9502   0.9817   0.9967   0.9967  

 

Page 18: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

17  

 

Figure  2.9.  Predictions  for  the  system  failure  in  20  years  (blue  and  red  lines  on  top  of  each  other)  

 

2.5. Interconnected  systems  

Although  the  two  methodologies  have  resulted  in  the  same  failure  probabilities  for  the  system  of  interest,  they  have  advantages  and  drawbacks  compared  to  each  other.  First,  in  both  techniques,  it  is  supposed  that  the  failure  rates  do  not  change  with  time.  The  Markov  chain  model  which  is  developed   in   this   way   is   known   as   a   homogeneous   Markov   chain   (with   constant   transition  rates);  in  a  homogeneous  DBN,  the  temporal  probabilities  –  denoted  by  arcs  between  sequential  time   slices   –   remain   constant   from   a   time   slice   to   the   other   (Figure   2.7).   Such   a   DBN   is   also  known  as  being  based  on  Markovian  property,  where  each  node  at  time  slice  t  only  needs  to  be  conditioned   on   nodes   in   the   previous   time   slice   t-­‐1.   This   limits   the   application   of   both  techniques  when  it  comes  to  the  modelling  of  time-­‐dependent  failure  rate  models,  for  example,  where   the   failure   of   a   bridge   does   not   follow   an   exponential   distribution   but   Weibull  distribution.  In  the  latter  case,  the  failure  rate  of  the  bridge  can  increase  or  decrease  over  time.    

To   address   this   issue,   non-­‐homogeneous  Markov  models   (Huang,   1997)  have  been  developed  with   approximate   algorithms.   As   for   DBN,   such   a   time   dependency   can   be   modelled   by  conditioning  a  node  in  the  time  slice  t  to  nodes  not  only  in  the  last  time  slice  t-­‐1  but  also  to  the  time   slices   before   the   last,   i.e.,   t-­‐2,   t-­‐3,   so   on.   While   the   Markov   chain   analysis   –   whether  homogeneous  or  non-­‐homogeneous  –  can  result   in  the  notorious  state-­‐space  explosion  plight1,  the   development   and   simulation   of   a   corresponding   non-­‐homogeneous   DBN   would   easily  become  intractable  and  too  time-­‐consuming  via  available  commercial  software  such  as  GeNIe.    

In  the  context  of  constant  failure  rates,  however,  DBN  outperforms  MC.  For  make  the  discussion  more   concrete,   consider   the   transportation   system   in   Figure   2.10,   where   in   addition   to   the  bridges  there  is  a  rail  way  passing  along  B1  and  B4.  

                                                                                                                         

1  The  number  of   the  states  of   the  system  grows  exponentially  with  the  number  of  systems  components.  For  example,  if  the  system  consisted  of  five  bridges  instead  of  three,  the  number  of  states  would  increase  from  8  to  32.    

0  

0.2  

0.4  

0.6  

0.8  

1  

0   2   4   6   8   10   12   14   16   18   20  

P(system

 fails)  

Time  (year)  

DBN  MC  

Page 19: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

18  

 

 

Figure  2.10.  Transportation  system  comprising  three  bridges  B1,  B2  and  B3  for  car  passage  and  the  bridges  B1  and  B4  for  train  passage.  

The   system’s   fault   tree   and   corresponding  BN  have   been   depicted   in   Figures   2.11(a)   and   (b),  respectively.  Having  the  failure  rate  of  the  bridge  B4,  the  BN  presented  in  Figure  2.11(b)  can  be  replicated  in  sequential  time  intervals  as  a  DBN  to  calculate  the  failure  probability  of  the  system  over   time.   It   is  worth  noting   that  modelling   the   transportation  system   in  Markov  chain  would  result   in   16   states   as   reported   in  Table   2.3.   Accordingly,   the   failure   probability   of   the   system  could  be  calculated  as:  

P(System  fails)  =  1  –  {P1(t)  +  P2(t)+  P3(t)  +  P5(t)  +  P6(t)  +  P7(t)  +  P9(t)  +  P10(t)}.    

Modelling  the  transportation  shown  in  Figure  2.10  as  a  DBN  in  GeNIe  software,  as  depicted   in  Figure  2.12,   the  probability  of   the   system   failure  over  a  20-­‐year  period  has  been  displayed   in  Figure  2.13.  For  sake  of  comparison,  the  failure  probability  of  the  transportation  system  shown  in   figure  2.1   (no   rail  way)  has  also  been  presented   in   figure  2.13.  Obviously,   the  addition  of  a  parallel  transportation  system,  i.e.,  rail  way,  to  the  network  has  decreased  the  failure  probability  of  the  entire  system.    

B1 B2

Subsystem  S1 B3

No  car  passes

B4 B1

No  train  passes

System  fails

   B1 B2

S1 B3

No  car

B4

No  train

System  fails

 

(a)                   (b)  

Figure  2.11.  (a)  Fault  tree  analysis  and  (b)  Bayesian  network  analysis  of  the  transportation  system  in  Figure  2.10.    

Page 20: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

19  

 

Table  2.3.  State-­‐space  of  the  transportation  system  in  Figure  2.10.  

States   B1   B2   B3   B4   System  

1   √   √   √   √   √  

2   √   √   √   X   √  

3   √   √   X   √   √  

4   √   √   X   X   X  

5   √   X   √   √   √  

6   √   X   √   X   √  

7   √   X   X   √   √  

8   √   X   X   X   X  

9   X   √   √   √   √  

10   X   √   √   X   √  

11   X   √   X   √   X  

12   X   √   X   X   X  

13   X   X   √   √   X  

14   X   X   √   X   X  

15   X   X   X   √   X  

16   X   X   X   X   X  

 

Page 21: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

20  

 

Figure  2.12.  Modelling  the  transportation  system  shown  in  Figure  2.10  in  GeNIe  as  a  dynamic  Bayesian  network.    

 

 

Figure  2.13.  Predictions  for  the  system  failure  in  20  years  with  and  without  the  railway.  

   

0  

0.2  

0.4  

0.6  

0.8  

1  

0   5   10   15   20  

P(system

 fails)  

Time  (year)  

Rail-­‐Car  Car  

Page 22: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

21  

3. An  Alternative  Methodology  to  Model  Cascading  Effects  

In  this  chapter  we  proceed  to  give  a  general  outline  of  a  methodology  by  which  to  model  cascading  effects  which  offers  an  alternative  to  the  previously  discussed  Markov  Chain  and  Dynamic  Bayesian  Network  methodologies.  This  alternative  methodology  is  based  upon  the  Probability  Sort  algorithm  which  has  been  developed  for  both  this  RAIN  project  as  well  as  the  EU  FP7  InfraRisk  project  (van  Erp,  Linger,  van  Gelder,  2016).  This  probability  sort  approach  has   the  advantage  that   it  may  be  used  to  model  cascading  effects  for  systems  that  consist  of  a   large  number  of  elements,  providing  that  the  information   entropy   of   that   system   is   sufficiently   low,   as   for   low   entropic   systems   the   relevant  probability  components  will  be  in  a  exponentially  small  sub-­‐region  of  the  state  space.    

3.1. A  System  and  Its  States  

If  we  have   some   system   S  which   consists   of   n   components   and  where   the   ith   component  of   this  system  can  be  in  one  of   im  (damage)  states,  which  may  be  encoded  as  

ii ms ,,1…= .                   (3.1)  

Then  the  state  of  a  system   S  may  be  encoded  by  the  (system  state)  vector  

  [ ]nsss 21=s .                 (3.2)  

It  follows  from  (3.1)  and  (3.2)  that  the  total  number  of  states  the  system  may  be  in  equals  

  ∏=

=n

iimN

1

.                   (3.3)  

In   case   we   have   that   the   number   of   states   for   each   component   of   the   system   admits   the   same  number  of  states  m ,  then  it  can  be  glanced  from  (3.3)  that  the  number  of  states   N  of  the  system   S  will  grow  exponential  in  the  number  of  elements   n :  

    nmN = .                   (3.4)  

3.2. The  Physics  of  the  Cascade  Process  

In  order  to  model  patterns  of  cascade  propagations  through  the  possible  system  states,  we  need  to  know   the   probability   of   a   current   system   state   ( )nows   as   a   function   of   some  previous   system   state  ( )previouss .  For  the  modelling  of  a  first-­‐order  Markov  process   ( ) ( )( )1| −ttp ss ,  we  need  to  determine  the  

system   state   probability   distribution   by  way   of   the   vector-­‐function   f   of   ( )1−ts ,  where   ( )1−ts   is     the  system  state    (3.2)  at  time-­‐step   1−t .    

It   is   in   this   function   f ,   henceforth   called   the   probability  map,   that   the   ‘physics’   of   the   cascading  effect  mechanism  under  consideration  find  their  expression.  The  probability  map   f  is  a  collection  of  n   row-­‐vectors,   which   may   be   of   different   length,   depending   on   the   possible   states   of   the  corresponding  system  elements,  of  probabilities  which  must  sum  to  one:  

Page 23: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

22  

( )( ) ( )( )11 −− = tij

t f ssf ,    ⎩⎨⎧

=

=

.,,1,,,1

imjni

……

          (3.5)    

 

It  follows  that  the  probability   ( ) ( )( )1| −ttp ss ,  for  a  given  state  vector   ( )ts ,  may  be  written  down  as  the  

product  

  ( ) ( )( ) ( )( )∏=

−− =n

i

tsi

tti

fp1

1,

1| sss ,               (3.6)  

where   it   is   to   be  understood   that   the  possible   states   (i.e.,   labels)   of   the   elements   is   of   the   state  

vector   ( )ts  correspond  with  the  column  coordinates  of  the  ith  row-­‐vector  of  the  probability  map   f  .  

3.2.1. A  Simple  Example  of  a  Probability  Map    

We   now  will   give,   as   the   physics   for   this   example   are   quite   simple,   for   pedagogical   purposes,   an  outline  on  how  to  model  the  probability  map   f  for  a  system  of  objects  in  which  one  or  more  failures  may   set   off   a   cascade   of   failures.   After   that,   cascading   effects  will   be  modelled   for   infrastructural  networks  under  influence  of  extreme  weather  events  (cascading  landslides  under  extreme  rainfall  in  Sec.  6.1  –  6.4  and  cascading  effects  in  an  electricity  network  in  Sec.  6.5).    

Say,  we  have   2kn =    objects  arranged  in  a  k-­‐by-­‐k  grid  with,  say,  a  distance  of   50  meters  between  

horizontally  and  vertically  adjacent  objects  and  a  distance  of     22 505071.70 +=  meters  between  diagonally   adjacent   objects.   Let   at   each   time   step   the   state   of   each   object   be   dichotomous,   or,  equivalently,   2=im  (3.1),  where  the  damage  state  vector   ( )1-ts  has  the  elements  

( )

⎩⎨⎧

=−

failureafe

s ti ,2s,11               (3.7)  

Then,    if  we  assume  that  every  failed    object  will  generate  a  radiation  influence  of  Q  which  falls  off  

as  the  inverse  of  the  distance,  generating  a  location  dependent  radiation   r  of  

  ( )( ) ( )22

,ii

iyyxx

Qyxr−+−

= ,             (3.8)  

where   ( )ii yx ,   are   the   location   coordinates   of   the   ith   object,   and   if  we   assume   a   superposition   of  

radiations,  then  we  may  determine  the  total  radiation   R  at  a  given  coordinate   ( )yx,  as  the  sum  of  

overpressures  of  all  the  failed    objects,  (3.7)  and  (3.8):  

  ( ) ( ) ( ) ( )( )( ) ( )

∑∑=

= −+−−=−=

n

iii

ti

n

iii

yyxx

QsyxrsyxR1

22

1

1

1,1, .     (3.9)    

By  way  of  a  probit-­‐function  ,  we  then  may  compute  the  probability  of  a  non-­‐failed  object  failing  as  a  function  of  its  location  coordinates:    

Page 24: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

23  

  ( )( ) ( )

,2,

erf121

2exp

21, 0

2,0

⎭⎬⎫

⎩⎨⎧

⎥⎦

⎤⎢⎣

⎡ ++=⎟⎟

⎞⎜⎜⎝

⎛−= ∫

+

∞−

yxRduuyxP

yxR β

π

β

    (3.10)  

which  for  a  total   radiation  of   ( ) 0, =yxR  will  give  a  corresponding  base-­‐line  damage  probability  of  

( )[ ]2erf1 021 β+ ,   (3.10).   It   follows   that   the   probability  map   f   can   be   constructed   as,   (3.7)   and  (3.10):  

  ( )( ) ( ) ( )[ ] ( )

[ ] ( )⎪⎩

⎪⎨⎧

=

=−=

−−

,2,10,1,,,1

1

11

ti

tiiiiit

ssyxPyxP

sf           (3.11)    

where   ( )ii yx ,  are  the  location  coordinates  of  the  ith  object,   ( )ii yxP ,  is  the  (probit-­‐)probability  of  a  

failure  for  a  non-­‐failed  object  at  location   ( )ii yx , ,    and   ( )1−tis  is  the  state  of  the  ith  component  of  the  

system.    

Note  that   in   (3.11)  we  have  an  example  of  an   irreversible  Markov  process,  as  objects,  after  having  failed,  will  remain  in  the  failed  state  at  all  the  consequent  time  steps   t .  

3.2.2. Probability  Maps  that  Capture  Inhomogeneous  Markov  Processes    

The   probability   map   (3.11)   corresponds   with   a   homogenous   Markov   processes   in   which   the  transition  probabilities  remain  the  same  over  time.  Stated  differently,  in  the  above  system  of  objects  example  possible  ‘burn-­‐out  effects’  (i.e.,  the  drop  in  radiation  of  failed  objects  due  to  the  decrease  in  the  amount  of  capacity  that  is  contained  in  the  object)  are  not  taken  into  account.  In  order  to  model  inhomogeneous  Markov  processes  by  way  of   the  probability   sort   algorithm,  we  need   to   introduce  the  concept  of  counters.    

For   example,   if   we   want   to   incorporate   burn-­‐out   (3.7)   through   (3.11),   then   we   may   postulate  radiation  of  the  ith  object     iQ  as  some  monotonic  decreasing  function   g of  the  number  of  time  steps    

ik  that  this  object  is  already  ‘burning’:  

( )ii kgQ = .                   (3.12)  

Substituting  (3.12)  into  (3.8),  we  obtain  

  ( ) ( )( ) ( )22

|,ii

iii

yyxx

kgkyxr

−+−= ,             (3.13)  

which  gives  a  total  radiation  (3.9),    

  ( ) ( )( ) ( )( ) ( )

∑=

−+−−=

n

iii

iti

yyxx

kgsyxR

122

1 1|, k ,         (3.14)  

that   is   also   a   function  of   the   counter   vector   k ,  where   the  elements     ik     are   the  number  of   time  

steps  that  an  object  is  in  a  failed  state.      

Page 25: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

24  

Substituting  (3.14)  into  (3.10),  we  obtain  the  probit-­‐function  of  the  probability  of  a  non-­‐failed  object  failing  as  a  function  of  its  location  coordinates  and  the  counter  vector  k :    

  ( ) ( ).

2|,

erf121|, 0

⎭⎬⎫

⎩⎨⎧

⎥⎦

⎤⎢⎣

⎡ ++=

kk

yxRyxP

β           (3.15)  

It   follows   that   the  probability  map   f  which   is  both  dependent  on   the  actual  damage   state  vector    ( )1−ts   (i.e.,   the   specific   constellation  of   failed  objects)   as  well   as   the   counter   vector     ( )1−tk   (i.e.,   the  

specific  time  a  given  burning  object  is  already  burning)  can  be  constructed  as,  (3.7)  and  (3.15):  

  ( ) ( )( ) ( ) ( )[ ] ( )

[ ] ( )⎪⎩

⎪⎨⎧

=

=−=

−−−

,2,10,1,|,|,1

,1

111

ti

tiiiiitt

ssyxPyxP kk

ksf      (3.16)    

It  is  stated  in  (Khakzad,  2015)  that  inhomogeneous  Markov  processes  are  intractable,  because  of  the  conditional  (transition)  probability  tables  that  fail  exponentially  in  size  as  time  effects  are  taken  into  account.  It  will  be  shown  in  this  Chapter  6  that  the  proposed  probability  sort    approach  is  particularly  amenable  to  the  modelling  of  inhomogeneous  Markov  processes.    

3.3. Modelling  Cascades  Through  Time  

The   conditional   state  probability   distributions   (3.6)  may  be   combined,   in   principle,   by   the  product  rule  of  (Bayesian)  probability  theory:    

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )1111 |||, −+−+ = ttttttt ppp sssssss  .           (3.17)  

By  way  of   the  sum  rule  of   (Bayesian)  probability   theory,   the  bivariate   (3.17)  may  be  summated,   in  principle,  over  the  states  at  time  step   t :  

( ) ( )( ) ( ) ( ) ( )( )( )∑ −+−+ =t

ttttt pps

sssss 1111 |,|  .             (3.18)  

By   repeated   applications   of   (3.17)   and   (3.18),   one   may   obtain   the   probability   distribution   of   the  system  at  time  step   Tt + ,  given  the  initial  state  of  the  system  at  time  step   1−t .    

It  is  stated  that  (3.17)  and  (3.18)  may  be  used  in  principle  as  it  follows  from  both  (3.3)  and  (3.4)  that  the  number  of  probabilities  in  the  conditional  probability  distribution  (3.6)  will  grow  exponentially  as  the  number  of   components   n   in   the   system   S   increases.   In   order   to   circumvent   this   exponential  failure   for   systems   that   have   a   low   information   entropy   it   is   proposed   that   the   Probability   Sort  algorithm  be  used.    

By  way  of  this  Probability  Sort  algorithm  there  may  be  found  for  each  consecutive  time  step  all  the  

states   ( )tis  for  which  we  have  that    

( ) ( )( ) >0| ss tip      cut-­‐off.                 (3.19)  

The  way  the  Probability  Sort  algorithm  accomplishes  this  is  explained  in  the  following  paragraphs.  

Page 26: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

25  

3.3.1. Constructing  Proxy  State  Probability  Distributions  

At  time  step   t  the  Probability  Sort  algorithm  identifies  the  state  that  has  the  highest  probability,  or,  equivalently,  that  corresponds  with  the  Maximum  Likelihood  (ML),  and  then  working  its  way  down  to  

the  next   highest   probability,   and   the  next   highest,   and   so  on.   This  will   give   tN~   probability   sorted  

states   ( )tis  for  which  we  have  that  

  ( ) ( )( ) >−1| ttip ss      cut-­‐off.                 (3.20)    

Stated  differently,  the  Probability  Sort  algorithm  gives,    for  a  given  probability  map   f ,  a  proxy  state  probability  distribution   p~  as  a  collection  of  state  probabilities  for  a  collection  of  state  vectors  (3.6):  

  ( ) ( )( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )⎪⎪

⎪⎪

=

=

=

=

,,|

,,|,,|

|~

~1

~~

21

22

11

11

1

tN

ttN

tN

tttt

tttt

tti

tttpP

pPpP

p

sss

ssssss

ss

        (3.21)  

where   ( ) ( )tj

ti PP ≥   for   ji < ,  and  where  the  probability  coverage  of   the  proxy   p~   is  equal  or  smaller  

than  1:  

  probability  coverage   ( ) ( )( ) ( ) 1|~~

12

~

1

1 ≤== ∑∑==

−tt N

i

tN

i

tti Pp ss .         (3.22)  

Note  that  for  a  cut-­‐off  of  zero  the  probability  coverage  (3.22)  will  be  one,  that  is,  if  the  corresponding  state  space  probability  distribution  admits  an  exact  evaluation.    

3.3.2. Applying  the  Product  and  the  Sum  Rules  

In  order  to  come  to  (3.19),  we  start  with  some  initial  state  of  the  system   ( )0s ,  for  which  we  compute  the  probability  sorted  proxy  

( ) ( )( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )⎪⎪

⎪⎪

=

=

=

=

.,|

,,|,,|

|~

1~

01~

1~

12

012

12

11

011

11

01

11 tNNN

i

pP

pPpP

p

sss

ssssss

ss

        (3.23)    

We  then  determine   for  each  of   the  probability  sorted  states   ( )1is   in   (3.23)   the  corresponding  proxy  

distributions:  

( ) ( )( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )⎪⎪

⎪⎪

=

=

=

=

,,|

,,|

,,|

|~

2~

12~

2|~

22

122

2|2

21

121

2|1

12

222 NiNiN

ii

ii

ij

pP

pP

pP

p

sss

sss

sss

ss

        (3.24)    

Page 27: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

26  

for   1~,,1 Ni …= ,  and  where,  in  order  to  enforce  (3.19),  

  ( ) ( ) ( ) ( ) ( )( )>=⋅ 01212| |, sss ijiij pPP  cut-­‐off.             (3.25)  

 Then  by  way  of  the  product  rule  (3.17)  we  have,  (Jaynes,  2003):  

  ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )( )

( )

( ) ( ) ( ) ( ) ( )( )( )

( )

( ) ( ) ( ) ( ) ( )( )( )

( )⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪

⎪⎩

⎪⎨⎧

=⋅

⎪⎩

⎪⎨⎧

=⋅

⎪⎩

⎪⎨⎧

=⋅

=

,,

,|,

,,

,|,

,,

,|,

|,~

2~

1012

~12

|~

22

1012

212

|2

21

1012

112

|1

012

2

22

N

iiNiiN

iiii

iiii

ij

pPP

pPP

pPP

p

ss

sss

ss

sss

ss

sss

sss

   

  (3.26)  

for   1~,,1 Ni …= .     Then  by  way  of   the   sum  rule   (3.18)   ,   (Jaynes,  2003),  we  may  obtain   the  marginal  

state  probability  distribution  

( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( )⎪⎪⎪⎪

⎪⎪⎪⎪

=⋅=

=⋅=

=⋅=

==

∑∑

∑∑

∑∑

==

==

==

=

,,|,

,,|,

,,|,

|,~|~

2~

~

1

012~

~

1

12|~

2~

22

~

1

0122

~

1

12|2

22

21

~

1

0121

~

1

12|1

21

~

1

01202

2

1

2

1

22

11

11

1

N

N

iiN

N

iiiNN

N

ii

N

iii

N

ii

N

iii

N

iijj

pPPP

pPPP

pPPP

pp

ssss

ssss

ssss

sssss                       (3.27)  

where   for   2~,,1 Nj …=   the   ( )2

js   for   the   initial   state   conditions   ( )1is   are   collected   and   the  

corresponding  probabilities   ( ) ( ) ( )( )122| | ijij pP ss=   are  summated  over   1

~,,1 Ni …= ,  as  only   the    vectors  ( )2js  are  retained.  

If   repeat   this  process  of   applying   the  product   and   sum   rules   for   another   2−t   times,   then  we  will  obtain  the  proxy  state  probability  distribution  of  interest:  

  ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )⎪⎪⎪⎪

⎪⎪⎪⎪

⋅=

⋅=

⋅=

==

=

=

=

=

,,

,,

,,

|,~|~

~

~

1

1|~~

2

~

1

1|22

1

~

1

1|11

~

1

010

1

1

1

1

tN

N

i

ti

tiN

tN

tN

i

ti

ti

t

tN

i

ti

ti

t

N

i

ti

tj

tj

t

t

tt

t

t

t

PPP

PPP

PPP

pp

s

s

s

sssss

    (3.28)  

Page 28: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

27  

where,  because  of  (3.25),  we  have  that,  for   tNj ~,,1…= ,  all   ( ) ( )( )0| ss tjp  are  greater  than  the  cut-­‐off    

(3.19).  

Page 29: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

28  

4. The  Probability  Sort  Algorithm  

4.1. How  to  Graphically  Represent  Multivariate  Pdfs  

We   now   discuss   how   to   represent   highly   multivariate   probability   distribution   functions   on   a   two  dimensional   plane   (Skilling,   2004),   as   this  will   the   groundwork   for   the   upcoming   discussion   of   the  Probability  Sort  analysis.    

Say   we   wish   to   numerically   evaluate   the   integral   of   the   bivariate   normal   distribution   ( )Σ,µMN  

where  

  ⎟⎟⎠

⎞⎜⎜⎝

⎛=00

µ ,     and     ⎟⎟⎠

⎞⎜⎜⎝

⎛=Σ

17.07.01

,       (4.1a)  

or,  equivalently,  

  ( ) ( ) ( )⎥⎦⎤

⎢⎣

⎡++−

−= 22

2

4.121exp

27.01

, yxyxyxpπ

,         (4.1b)  

where   5,5 ≤≤− yx .    

         

Figure  4.1:  Function  p  

Then  the  total  volume  under  the  curve   ( )yxp ,  in  Figure  4.1  is  given  by  the  integral    

 ( ) ( ) 9993.04.1

21exp

27.015

5

5

5

222

=⎥⎦

⎤⎢⎣

⎡++−

−∫ ∫− −

dydxyxyxπ

.       (4.2)  

We  may  evaluate  the  integral  (4.2)  through  brute  force.  We  partition  the   yx, -­‐plane  in  little  squares  

with  area   kj dydx ,   20,,1…=j ,   20,,1…=k ,   then  define  the  centre  of  these  areas  as   ( )kj yx ~,~ ,  and  

compute  the  strips  of  volume   jkV  as  

  ( ) kjkjjk dydxyxpV ~,~= .                 (4.3)  

Page 30: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

29  

In  Figure  4.2  we  give  all  the  volume  elements   jkV  together:  

 

       Figure  4.2:  Volume  elements  of  function  p  

The  total  volume  under  the  curve   ( )yxp ,  may  be  approximated  as  

  9994.020

1

20

1

==∑∑= =j k

jkVvolume .               (4.4)  

Now,  we  may  map  these  3-­‐dimensional  volume  elements   jkV  to  corresponding  2-­‐dimensional  area  

elements   iA .  This  is  easily  done  by  introducing  the  following  notation  

kji dydxdw = ,       ( )[ ] ( )kji yxpyxp ~,~~,~ = ,         (4.5)  

where  index   i  is  a  function  of  the  indices   j  and   k :  

( ) kji +−≡ 201                   (4.6)  

and   400,,1…=i .  Using  (4.5),  we  may  rewrite  (4.3)  as  

  ( )[ ] iii dwyxpA ~,~= .                   (4.7)  

In  Figure  4.3  we  give  all  the  400  are  elements   iA  together:  

 

                         Figure  4.3:  Area  elements  of  function  p  

Page 31: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

30  

Since  (4.7)   is  equivalent  to  (4.3),  we  have  that  the  mapping  of  the  3-­‐dimensional  volume  elements  

jkV   to  their  corresponding  2-­‐dimensional  area  elements   iA  has  not   led  to  any  loss  of   information;  

that  is,  

  volumeVAareaj k

jki

i === ∑∑∑= ==

20

1

20

1

400

1

.             (4.9)    

We   now  may,   trivially,   rearrange   the   elements   iA   in   Figure   3   in   descending   order,   so   we   obtain  

Figure  4.4.  

 

Figure  4.4:  Ordered  area  elements  of  function  f  

Note  that  the  horizontal  axis  of  Figure  4.4   is  non-­‐dimensional.  This   is  because  we  are  looking  at  an  collection  of  rectangular  area  elements  ordered  in  one  of  many  possible  configurations.    

Now  all  these  rectangular  elements  have  a  base  of   25.0== dydxdw ,  being  that  there  are  400  area  

elements   we   might   view   Figure   4.4   as   a   representation   of   some   monotonic   descending   function  ( )wg ,  where   1000 ≤≤ w .  

 

 

Figure  4.5:  Plot  function  g  

Page 32: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

31  

What  we  have  accomplished  is  that  we  have  mapped  3-­‐dimensional  volume  elements,  (Figure  4.2),  of  the  bivariate  probability  distribution   p ,  (Figure  4.1),    to  2-­‐dimensional  area  elements,  (Figure  4.3),  

after  which  we  have  rearranged  these  area  elements  in  descending  order,  (Figure  4.4),    so  as  to  get  a  monotonic  descending  ‘function’   g ,  (Figure  4.5).    

We  now  may  integrate  the  univariate  function   g  and,  again,  get  the  volume  (4.2)  we  are  looking  for.  

Moreover,  in  going  from  Figure  4.1  to  Figure  4.5,  all  the  pertinent  probability  density  information  is  retained,  as  every  point  on  Figure  4.5’s  w-­‐axis  corresponds  with  a   ( )yx, -­‐coordinate.  Note  that  any  k-­‐

variate   function   probability   distribution   p   may   be   thus   reduced   to   its   corresponding   monotonic  

descending  univariate  representation   g ,  where   it   is  understood  that  every  point  on  the  univariate  

w-­‐axis  corresponds  with  some   1×N  coordinate   x ,    (Skilling,  2004).    

4.2. The  Idea  Behind  the  probability  Sort  Algorithm  

We  now  discuss  the  basic  idea  behind  the  Probability  Sort  algorithm  for  the  case  where  we  have  only  two  damage  states   2=M ;  that  is,  the  states  damaged  and  not-­‐damaged.  The  pseudo-­‐code  for  the  general  case  of  arbitrary  M  is  given  in  Appendix  A.    

For  the  case  where   2=M ,   the  number  of  possible  damage  states  will  be   N2 .  The  Probability  Sort  algorithm  goes  from  the  most   likely  state   1s ,   to  the  next   likely  state   2s ,   to  the  next   likely  damage  

state   3s ,  and  so  on,  such  that    

  ( ) ( )ji pp ss ≥ ,     for     ji <  .             (4.10)  

The   selection   of   the   is   is   done   such   that   there   are   no   rejections   in   the   damage   state   proposals.  

Moreover,  the  selection  itself  only  takes   ( )NO  time.    

For   the  specific  case   2=M ,   the  state  vectors   is ,   for     ni 2,,2,1 …= ,  may  be  constructed  as  vector  

consisting  of  0  and  1’s.  The  probabilities  of  an  element   ks  in   is  being  either  0  or  1  is    

  ( )ksp ,       for   .2,1=k             (4.11)  

So,  the  probability  which  is  associated  with  a  given   is  may  be  computed  as    

    ( ) ( )∏=

=N

kki spp

1

s .                 (4.12)  

Now,  let    

( ) ( )[ ]1,0maxmax === kkk spspp             (4.13)  

be  the  maximum  possible  damage  state  probability  for  component   k ,  and  let  

  { }1,0max ∈ks                   (4.14)  

Page 33: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

32  

be   the   damage   state   which   corresponds   with   this   maximum   probability.   Then   the   damage   state  vector  with  maximum  probability,      

  ∏=

=N

kkpP

1

maxmax ,                 (4.15)  

is  given  as  

  { }maxmax2

max1

max ,,, nsss …=s .               (4.16)  

Now,  it  stands  to  reason  that  this  ‘Most  Likelihood’  damage  state  vector   maxs  should  be  the  first  and  foremost  of  all  the  possible  damage  state  scenarios  of  which  the  consequences  should  be  evaluated;  that  is,    

  max1 ss = ,                   (4.17)  

where,  by  construction,          

( ) ( ) maxmax1 Ppp == ss .                 (4.18)  

If   we   follow   this   line   of   reasoning,   then   the   second   best   damage   state   proposal   would   be   that  damage  state  vector  which  has  the  second  highest  probability.    

Now,  the  minimum  possible  probability  for  a  damage  state  for  component   k  is  given  as  (4.13):  

  ( ) ( )[ ]1,0min1 maxmin ===−= kkkk spsppp ,           (4.19)  

with  corresponding  damage  state  (4.14):  

  { }1,01 maxmin ∈−= kk ss .                 (4.20)  

Let    

  { }minmin2

min1

min ,,, Nppp …=p               (4.21)  

be  the  vector  with  the  minimum  probabilities  for  the   n  components.  Then  the  damage  state   minqs  

which  corresponds  with  the  maximum  of  the  minimum  vector  (4.21)  

  ( )minmin max p=qp                 (4.22)  

is  the  only  possible  candidate  for  as  state  switch  (4.20):  

  { }maxmax1

minmax1

max2

max12 ,,,,,,, Nqqq ssssss …… +−=s           (4.23)  

So,  the  probability  which  corresponds  with  this  second  best  proposal  is  (4.13),  (4.15)  and  (4.22):  

  ( ) maxmax

min

2 Ppp

pq

q=s .                 (4.24)      

Page 34: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

33  

 

as  the  qth  state  probability  has  switched  from  its  maximum  probability  state  to  its  minimum.    

Now,  the  third  most  probable  damage  state  vector  necessarily  will  also  be  of   the   form  where  only  one  damage   state,   say   us ,   is   being   switched,   as  we   reset   qs   to   its   original   damage   state   value   in  

(4.16):  

  { }maxmax1

maxmax1

max1

minmax1

max2

max13 ,,,,,,,,,,, Nqqquuu sssssssss ……… +−+−=s .       (4.25)  

But  as  we  come  to   the   fourth  most  probable  damage  state  vector,   then  we   find   that  we  bifurcate  into  the  possibility  of    either  both   us  and   qs  being  switched,    

  { }maxmax1

minmax1

max1

minmax1

max2

max14 ,,,,,,,,,,, Nuuuqqqa sssssssss ……… +−+−=s ,       (4.26)  

or   us  being  reset  to  its  original  damage  state  value  in  (4.16),  as  we  switch  some  other  element,  say  

ws :  

  { }maxmax1

minmax1

maxmaxmax2

max14 ,,,,,,,,,,, Nwwwuqb ssssssss ………… +−=s .       (4.27)  

In  Appendix  A   the  Probability   Sort   switching  algorithm   is   given  which  produces   scenario  proposals  ordered  by  their  probabilities.    

4.3. A  Probability  Sort  Analysis  

Say,  we  have   121=N   objects   arranged   in  a  11-­‐by-­‐11  grid  with  a  distance  of   50  meters  between  

horizontally  and  vertically  adjacent  objects  and  a  distance  of     22 505071.70 +=  meters  between  diagonally   adjacent   objects.  We   then   let   the   centre   object  with   coordinates,   say,   ( )300,300   be   in  

flames,   which   generates   a   radiation   of,   say,   500   which   falls   of   as   the   inverse   of   the   distance,  generating  a  location  dependent  overpressure   R  of  

  ( )( ) ( )22 300300

500,−+−

=yx

yxR ,             (4.28)  

and  a  corresponding  (probit)  probability  of  being  damaged  (i.e.   2=M )  of  

  ( )( ) ( ) ,

2,7534.41

21

2exp

21,

2,7534.4

⎟⎟⎠

⎞⎜⎜⎝

⎛⎥⎦

⎤⎢⎣

⎡ +−+=⎟⎟

⎞⎜⎜⎝

⎛−= ∫

+−

∞−

yxRerfduuyxPyxO

π   (4.29)  

which   for   a   radiation   of   ( ) 0, 00 =yxR   will   give   a   corresponding   base-­‐line   damage   probability   of  

( ) 600 10, −=yxP .   Then   we   may   obtain   the   following   damage   probability   map   for   our   121=N  

objects.    

 

   

Page 35: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

34  

Table  4.1:  Damage  probability  map  

0.0004   0.0007          0.0012          0.0019          0.0026   0.0029          0.0026   0.0019          0.0012          0.0007          0.0004  0.0007          0.0014          0.0029          0.0059          0.0100          0.0121          0.0100          0.0059          0.0029          0.0014          0.0007          0.0012          0.0029          0.0083          0.0239          0.0558          0.0778          0.0558          0.0239          0.0083          0.0029          0.0012          0.0019          0.0059          0.0239          0.1116          0.3892          0.5974          0.3892          0.1116          0.0239          0.0059          0.0019          0.0026          0.0100          0.0558          0.3892          0.9898   1.0000   0.9898   0.3892          0.0558          0.0100          0.0026          0.0029          0.0121          0.0778          0.5974          1.0000   1   1.0000   0.5974          0.0778          0.0121          0.0029          0.0026          0.0100          0.0558          0.3892          0.9898   1.0000   0.9898   0.3892          0.0558          0.0100          0.0026          0.0019          0.0059          0.0239          0.1116          0.3892          0.5974          0.3892          0.1116          0.0239          0.0059          0.0019          0.0012          0.0029          0.0083   0.0239          0.0558          0.0778          0.0558          0.0239          0.0083   0.0029          0.0012          0.0007          0.0014          0.0029          0.0059          0.0100          0.0121          0.0100          0.0059          0.0029          0.0014          0.0007          0.0004          0.0007          0.0012          0.0019          0.0026   0.0029          0.0026   0.0019          0.0012          0.0007          0.0004            

The  state  space  which  corresponds  with  this  damage  probability  map  is    

361201121 1033.122 ×==− ,                 (4.30)  

as  the  number  of  states   is   2=M ,   the  number  of  objects   is   121=N ,  and  as  the  centre  element   is  known  to  be  in  a  damaged  (i.e.  failed)  state.  We  now  proceed  to  do  a  Probability  Sort  analysis  for  the  raw  damage  probability  map  in  Table  4.1.    

The  Probability  Sort  algorithm  gives  a  list  with  the  most  probable  damage  states,  starting  with  most  probable  damage  state.  The  maximum  probability  of  any  of  these  damage  state  vectors  is    

max1 00041.0 PP == .                 (4.31)  

From   all   the   361033.1 ×   possible   damage   states,   (4.30),   we   take   the   6102×   most   likely   damage  states,  sorted  from  high  to  low  probabilities.  This  probability  sort  has  a  probability  coverage  of    

  ( ) 6997.06102

1

=∑×

=iip s ,                 (4.32)  

which  for  a  univariate  Normal  distribution    

  ( ) ( ) ⎥⎦⎤

⎢⎣

⎡−−= 2

221exp

21,| µ

σσπσµ xxp  

would  roughly  correspond  with  the  total  ‘state  space’  enclosed  in  the  1-­‐sigma  interval   ( )σµσµ +− ,,  as  shown  Figure  4.6  

Page 36: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

35  

 

Figure  4.6:  Normal  distribution  together  with  1-­‐sigma  probability  coverage  region  

since  

        ( ) 6827.0,| =∫−

dxxpσµ

σµ

σµ .               (4.33)  

The  probability  sort  of  the  damage  states  allows  us    to  graphically  represent  the  120-­‐variate  damage  state  probability  distribution  on  a  two  dimensional  plane  (see  also  Figure  4.5),  Figure  4.7.  

 

Figure  4.7:  Probability  sorted  damage  states  

Note  that  in  Figure  4.7  the  probabilities  as  a  function  of  the  probability  sort  order   i number  fall  off  so  quickly  that  its  graph  is  basically  a  composition  of  a  vertical  and  a  horizontal  line  which,  respectively,  hug  the  y-­‐  and  x-­‐axis.  In  order  to  obtain  to  get  a  better  sense  of  the  probability  contours  we  may  take  

-6 -4 -2 2 4 6

0.1

0.2

0.3

0.4

Page 37: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

36  

the  base  10  log  of  the  probabilities,  where  (per  MATLAB’s  scientific  notation)   =× ba 10  ae+b,  Figure  4.8.    

 

Figure  4.8:  Base  10  log-­‐probability  sorted  damage  states  (raw  probability  map)  

 

Because  of  the  monotonic  descending  character  of  the  probability  sorted  damage  state  proposals   is ,  

we  have  that  for  general   c  and  C  

  ( ) cp i <s ,       as     Ci ≥ .           (4.34)    

So  from  Figure  4.8  we  may  get  a  sense  for  the  probability  contours,  or,  equivalently,  the  associated  c  and  C  in  (4.34):  

    Table  4.2:  Probability  contours  

( ) cp i <s     Ci ≥  410−=c   244=C  510−=c   5874=C  610−=c   92691=C  710−=c   855808=C  

 

We  also  may  plot  the  probability  coverage  (4.32)  as  a  function  of  the  probability  sort  order   i ,  Figure  4.9.      

Page 38: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

37  

 

Figure  4.9:  Probability  coverage  as  function  of  damage  state  order  i  

Moreover,  this  figure  gives  us  a  sense  of  the  probability  coverage  contours:  

  ( ) PpN

ii =∑

=1

s .                   (4.35)  

In   Table   4.3  we   give   the   probability   coverage   P   which   is   associated  with   the   first   N~   probability  sorted  damage  state  vectors.    

Table  4.3:  Probability  coverage  contours  

                                        ( ) PpN

ii =∑

=

~

1

s    

1.0=P   1290~=N  

2.0=P   6333~=N  

3.0=P   23623~=N  

4.0=P   68597~=N  

5.0=P   206435~=N  

6.0=P   611092~=N  

7.0=P   610002.~×≈N  

       …          …  0.1→P   361033.1~

×→N    

Page 39: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

38  

It   may   be   seen   from   Table   4.3   that   the   active   probability   components   of   the   damage   state  probability  distribution   ( )ip s  which  corresponds  with  the  probability  map  in  Table  4.1  are  located  in  

an  exponential  small  region  of  the  total  state  space  of   361033.1 ×=N ;  that  is,  by  a  margin  of  a  one  followed  by  30  zeros.  

The  first  seven  most  likely  damage  states  are  given  below.  The  most  probable  damage  state  is  where  all  probabilities   in  Table  4.1  greater   than  0.5  are  set   to  1  and  all  probabilities   smaller  are  set   to  0,  Table  4.4.  

     Table  4.4:  Most  Likelihood  (ML)  damage  state  (P  =  0.00041)  

0   0   0   0   0   0   0   0   0   0   0  0   0   0   0   0   0   0   0   0   0   0  0   0   0   0   0   0   0   0   0   0   0  0   0   0   0   0   1   0   0   0   0   0  0   0   0   0   1   1   1   0   0   0   0  0   0   0   1   1   1   1   1   0   0   0  0   0   0   0   1   1   1   0   0   0   0  0   0   0   0   0   1   0   0   0   0   0  0   0   0   0   0   0   0   0   0   0   0  0   0   0   0   0   0   0   0   0   0   0  0   0   0   0   0   0   0   0   0   0   0  

 

The  four  next  most  probable  states  (because  of  the  probability  symmetry  present  in  Table  1),  are  the  ones  where  the  probability  which  is  closest  to  0.5  is  switched  from  either  0  to  1  or,  as  is  actually  the  case,  from  1  to  0  (boldface  underlined),  Tables  4.5  through  4.8.  

     Table  4.5:  Second  through  fifth  best  ML  damage  state  (P  =  0.00028)  

0   0   0   0   0   0   0   0   0   0   0  0   0   0   0   0   0   0   0   0   0   0  0   0   0   0   0   0   0   0   0   0   0  0   0   0   0   0   0   0   0   0   0   0  0   0   0   0   1   1   1   0   0   0   0  0   0   0   1   1   1   1   1   0   0   0  0   0   0   0   1   1   1   0   0   0   0  0   0   0   0   0   1   0   0   0   0   0  0   0   0   0   0   0   0   0   0   0   0  0   0   0   0   0   0   0   0   0   0   0  0   0   0   0   0   0   0   0   0   0   0  

 

   

Page 40: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

39  

   Table  4.6:  Second  through  fifth  best  ML  damage  state  (P  =  0.00028)  

0   0   0   0   0   0   0   0   0   0   0  0   0   0   0   0   0   0   0   0   0   0  0   0   0   0   0   0   0   0   0   0   0  0   0   0   0   0   1   0   0   0   0   0  0   0   0   0   1   1   1   0   0   0   0  0   0   0   1   1   1   1   0   0   0   0  0   0   0   0   1   1   1   0   0   0   0  0   0   0   0   0   1   0   0   0   0   0  0   0   0   0   0   0   0   0   0   0   0  0   0   0   0   0   0   0   0   0   0   0  0   0   0   0   0   0   0   0   0   0   0  

 

     Table  4.7:  Second  through  fifth  best  ML  damage  state  (P  =  0.00028)  

0   0   0   0   0   0   0   0   0   0   0  0   0   0   0   0   0   0   0   0   0   0  0   0   0   0   0   0   0   0   0   0   0  0   0   0   0   0   1   0   0   0   0   0  0   0   0   0   1   1   1   0   0   0   0  0   0   0   1   1   1   1   1   0   0   0  0   0   0   0   1   1   1   0   0   0   0  0   0   0   0   0   0   0   0   0   0   0  0   0   0   0   0   0   0   0   0   0   0  0   0   0   0   0   0   0   0   0   0   0  0   0   0   0   0   0   0   0   0   0   0  

 

     Table  4.8:  Second  through  fifth  best  ML  damage  state  (P  =  0.00028)  

0   0   0   0   0   0   0   0   0   0   0  0   0   0   0   0   0   0   0   0   0   0  0   0   0   0   0   0   0   0   0   0   0  0   0   0   0   0   1   0   0   0   0   0  0   0   0   0   1   1   1   0   0   0   0  0   0   0   0   1   1   1   1   0   0   0  0   0   0   0   1   1   1   0   0   0   0  0   0   0   0   0   1   0   0   0   0   0  0   0   0   0   0   0   0   0   0   0   0  0   0   0   0   0   0   0   0   0   0   0  0   0   0   0   0   0   0   0   0   0   0  

 

Page 41: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

40  

The   four   then   next   most   probable   states   (again,   because   of   the   probability   symmetry   present   in  Table  4.1),  are  the  ones  where  the  probability  which  are  then  closest  to  0.5  is  switched  from  either,  as   is   actually   the   case,   0   to   1   or   from   1   to   0.   In   Table   4.9   we   give   underlined   and   boldface   the  switched   state,   whereas   the   underlining   without   a   boldface   signifies   the   symmetrical   switching  locations.  

Table  4.9:  Sixth  through  ninth  best  ML  damage  state  (P  =  0.00026)  

0   0   0   0   0   0   0   0   0   0   0  0   0   0   0   0   0   0   0   0   0   0  0   0   0   0   0   0   0   0   0   0   0  0   0   0   0   0   1   0   0   0   0   0  0   0   0   0   1   1   1   1   0   0   0  0   0   0   1   1   1   1   1   0   0   0  0   0   0   0   1   1   1   0   0   0   0  0   0   0   0   0   1   0   0   0   0   0  0   0   0   0   0   0   0   0   0   0   0  0   0   0   0   0   0   0   0   0   0   0  0   0   0   0   0   0   0   0   0   0   0    

4.4. The  Information  Entropy  of  a  System  

Real  life  systems  of  infrastructural  objects  which  are  under  influence  of  extreme  weather  events  can  be   conceptualized   as   an   event   tree   system,   where   all   the   specific   damage   states   of   the  infrastructural   system   are   leaves   on   the   event   tree.   If   we   have   n   infrastructural   objects   and   M  

damage  states  per  object,  then  the  event  tree  system  will  consist  of   nMN =  distinct  states  (3.4).    

Now,   as   the   number   of   infrastructural   objects   n   grows,   the   number   of   distinct   states     N   of   the  corresponding  event  tree  will  grow  exponentially.  So,  for  non-­‐trivial  infrastructural  systems  the  size  of  the  corresponding  state  space  will  quickly  become  overwhelmingly   large  and,  as  a  consequence,  seemingly,   make   futile   any   attempt   to   come   at   some   sort   of   evaluation   of   the   system.   The  Probability   Sort   algorithm,   however,   allows   one   to   come   to   an   approximate   evaluation   of   even  exponentially  large  event  tree  systems,  as  long  as  that  systems  entropy  is  low  enough.  

For   example,   an   entropy   of   zero   is   achieved   when   it   is   known   with   certainty   for   each   of   the   n  components   in  which  state  they  will  be   in.   In  this  case  there  will  be  only  one  possible  state,  which  gives  a  Shannon  information  entropy  H  of  (Shannon,  1946)  

  01log0log01loglog1

=−=⋅−−=−= ∑∑≠= ki

N

iii ppH ,         (4.36)  

as  we  have  1  damage  state  with  a  probability  of  one  and   ( )1−N  damage  states  with  a  probability  of  

zero.  In  contrast,  a  maximum  information  entropy  is  achieved  when  for  each  of  the   n  components  the  probability  of  being  in  one  of  the  damage  states  is   M1 .  For  the  maximum  information  entropy  

case  all  damage  states  are  equally  probable,  all  of  those  damage  states  having  a  probability  of  

Page 42: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

41  

 

  ( ) nMNp 11state damage == ,  

which  gives  a  Shannon  information  entropy  of  

  MnMMNN

HnM

inn

N

i

log1log11log111

=−=−= ∑∑==

.         (4.37)  

Now,   the   closer   the   information   entropy   of   the   system  under   consideration   is   to   zero,   (4.36),   the  more  comprehensive  will  be  the  probability  coverage  of  the  Probability  Sort  analysis.  Also,  the  larger  

the  number  of  distinct  states     nM ,  the  closer  one  will  need  the  system  to  be  to  (4.36),   in  order  to  obtain  the  same  probability  coverage  with  the  same  amount  of  evaluations.    

The  take  home  point  here  is  that  when  assessing  the  computational  feasibility  of  an  exact  evaluation  of  some  event  tree  system,  one  need  not  only  take    into  account  the  number  of  components   n  and  the   number   of   damage   states     M ,   but   also   the   information   entropy   H   which   is   present   in   the  system.    

There  were  the  information  entropy  H  is  too  great  the  Probability  Sort  algorithm  will  tend  to  a  Most  Likelihood   (ML)   algorithm,   where   a   pre-­‐specified   number   of   most   probable   damage   states   is  identified   and   produced,   together  with   corresponding   probability   coverage.   So   instead   of   just   the  one   modus,   or,   equivalently,   the   most   probable   damage   state,   as   is   customary   produced   in   ML  algorithms,   the   Probability   Sort   algorithm   gives   the   probability   ridge   surrounding   the   solitary  ML  probability  peak.  

   

     

Page 43: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

42  

5. Modelling   of   Homogeneous   Markov   Processes   with   the  Probability  Sort  Algorithm  

In   this   chapter   we   will   discuss   the   modelling   of   homogeneous   Markov   process   by   way   of   the  probability   sort   algorithm,   using   an   infrastructural   system   of   objects   example   in   which   an   initial  failure  cascades  through  the  spatial  field  at  consecutive  time  steps.  In  the  modelling  of  homogenous  Markov   processes   the   transition   probabilities   remain   the   same.   Stated   differently,   in   the   here  discussed   infrastructural   system   of   objects   example,   we   will   not   take   into   account   possible   time-­‐dependent   burn-­‐out   effects;   i.e.,   the   drop   in   radiation   of   burning   objects   due   to   the   decrease   in  capacity   per   object   over   time,   or   human   intervention  measures   to   reduce   failure   probabilities   of  infrastructural  components.  The  modelling  of  inhomogeneous  time-­‐dependent  Markov  processes  by  way  of  the  probability  sort  algorithm,  will  be  discussed  in  the  following  chapter.  

5.1. The  Physics  of  the  Probability  Map  

For  our  system  of  objects  it  is  assumed  that  the  failure  of  a  given  object  generates  a  radiation  of,  say  200 ,   which   falls   of,   say,   as   the   inverse   of   the   distance.   Moreover,   it   is   assumed   that   the   total  radiation  for  multiple  failures  is  a  superposition  of  the  radiation  of  the  separate  failures.  

For  example,  if  we  have   n  failed  objects,  having  coordinates   ( )ii yx , ,  for   ni ,,1…= .  Then  the  total  

radiation   R  which  is  experienced  by  an  intact  object  having  coordinates   ( )yx,  is  given  as  

  ( )( ) ( )

∑= −+−

=n

iii yyxx

yxR1

22

200, .             (5.1)  

The  corresponding  (probit)  probability  of  being  damaged  is  given  as  

  ( ) ( ) ,2

,7534.4121, ⎟

⎟⎠

⎞⎜⎜⎝

⎛⎥⎦

⎤⎢⎣

⎡ +−+=

yxRerfyxP           (5.2)  

which   for   a   radiation   of   ( ) 0, 00 =yxR   will   give   a   corresponding   base-­‐line   damage   probability   of  

( ) 600 10, −=yxP .    

5.2. Some  Example  Probability  Maps  

With  the  probability  map  (3.2),  the  probability  sort  algorithm  can  be  invoked,  as  explained  in  (3.23)  through   (3.28),   in   order   to   model   the   cascade   of   failure   through   the   system   of   objects   as   time  progresses.      

Say  we  have   25=N  objects  arranged  in  a  5-­‐by-­‐5  grid  with,  say,  a  distance  of   50  meters  between  horizontally  and  vertically  adjacent  objects  and  a  distance  of    

22 505071.70 +=    

Page 44: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

43  

meters  between  diagonally  adjacent  objects.   If  we   let   the  objects  with  coordinates   ( )150,150  and  

( )100,150  fail,  then  we  obtain  the  state  matrix  in  Table  5.1.  

   Table  5.1:  State  matrix  1  

0   0   0   0   0  0   0   0   0   0  0   0   1   0   0  0   0   1   0   0  0   0   0   0   0  

 

The  corresponding  probability  map  may  be  constructed  by  way  of  (7.1)  and  (7.2),  Table  5.2.  

Table  5.2:  Failure  probability  map  corresponding  with  state  matrix  2  

0.0129   0.0446   0.0778   0.0446   0.0129  0.0605   0.4459   0.8937   0.4459   0.0605  0.1674   0.9810   1   0.9810   0.1674  0.1674   0.9810   1   0.9810   0.1674  0.0605   0.4459   0.8937   0.4459   0.0605  

 Alternatively,   if  we  let  the  objects  with  coordinates   ( )150,150 ,   ( )200,150 ,   ( )150,100   fail,  then  we  

obtain  the  state  matrix  in  Table  5.3.  

Table  5.3:  State  matrix  3  

0   0   0   0   0  0   0   1   0   0  0   1   1   0   0  0   0   0   0   0  0   0   0   0   0  

 The  corresponding  probability  map  may  be  constructed  by  way  of  (5.1)  and  (5.2),  Table  5.4.  

Table  5.4:  Failure  probability  map  corresponding  with  state  matrix  1  

0.5943   0.9688   0.9988   0.8994   0.3296  0.9688   1.0000   1   0.9999   0.6180  0.9988   1   1   1.0000   0.6438  0.8994   0.9999   1.000   0.9508   0.3877  0.3296   0.6180   0.6438   0.3877   0.1313  

 It  may  be  glanced  from  Tables  11  and  13  that  the  superposition  of  radiation  in  (5.1)  in  all  likelihood  will  lead  to  a  cascade  of  failures.      

Page 45: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

44  

5.3. A  Probability  Sort  Analysis  of  Cascading  Effects  

Say  we  have   25=N  objects  arranged  in  a  5-­‐by-­‐5  grid  with,  say,  a  distance  of   50  meters  between  horizontally   and   vertically   adjacent  objects.   The  primary   initiating   event,   at   time   step   0=t ,   is   the  event  where  the  centre  object  with  coordinates   ( )150,150  has  failed,  Table  5.5.  

 Table  5.5:  State  matrix  corresponding  with  the  primary  event  at  t  =  1  

0   0   0   0   0  0   0   0   0   0  0   0   1   0   0  0   0   0   0   0  0   0   0   0   0  

 The  corresponding  probability  map  may  be  constructed  by  way  of  (5.1)  and  (5.2),  Table  5.6.  

Table  5.6:  Failure  probability  map  for  the  primary  event  at  t  =  1  

0.0004   0.0015   0.0029   0.0015   0.0004  0.0015   0.0271   0.2256   0.0271   0.0015  0.0029   0.2256   1   0.2256   0.0029  0.0015   0.0271   0.2256   0.0271   0.0015  0.0004   0.0015   0.0029   0.0015   0.0004  

 The   number   of   damage   states   is   2=M ,   the   number   of   objects   is   25=N ,   and   the   number   of  elements   in  a  damaged  (i.e.   failed)  state   is   1=K .  So  the  total  state  space  which  corresponds  with  the  failure  probability  map  in  Table  5.6  is      

  724125 1068.122 ×=== −−KNM .               (5.3)  

It  follows  that  following  the  primary  event  in  Table  5.5,  we  will  have   242  possible  event  scenarios  at  each  time  step.  Among  these  higher  order  event  scenarios  are  the  scenarios  in  Tables  5.1,  5.3,  and  5.5,  with  corresponding  probability  maps  Tables  5.2,  5.4,  and  5.6.    

As  we  have  an  irreversible  process  (i.e.,  failed  objects  cannot  ‘unfail’),  the  total  number  of  scenario  

routes  at   a   given   time   step  may  be  modelled  by  way  of   a   242 -­‐by-­‐ 242  Markovian   transition  matrix,  having  

  142424 1081.222 ×=×                 (5.4)  

elements.   Now,   a   state   matrix   with   K   failures   will   map   to   possible   K−252   end   points.   So,   our  

hypothetical   242 -­‐by-­‐ 242  Markovian  transition  matrix  has  

 ( )

1124

1

2424 1082.22!24!

!242 ×=−

+∑=

i

i

ii             (5.5)  

 

Page 46: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

45  

non-­‐zero   probability   elements.   In   other   words,   at   a   given   time   step   0>t   there   are   111082.2 ×  

admissible   routes   in   which   we   go   from   one   of   the   71068.1 ×   possible   starting   scenarios   to   some  

admissible   subset   of   the   total   scenario   space,  with   subsets   ranging   from   71068.1 ×   scenarios   to   1  scenario.  

This   overwhelming   number   of   admissible   routes   (5.5)   notwithstanding,   it   is   found   that   the  Probability  Sort  algorithm  will  give  very  decent  probability  coverages  over   the  time  steps   for  given  probability  cut-­‐offs  for  the  primary  event   in  Table  5.5,  with  a  probability  map  ‘physics’  of  (5.1)  and  (5.2),   Table   5.6.   In   Table   5.7   these   probability   coverages   are   given   together   with   the   number   of  active  probability  components  at  each  time  step.    

Table  5.7:  Probability  coverages  and  number  of  active  probability  components  for  model  (5.1)  and  (5.2)  

Time  Step   Cut-­‐off  =  10-­‐6   Cut-­‐off  =  10-­‐7  coverage   #  components   coverage   #  components  

1   0.9995   1094   0.9999   2459  2   0.9177   33100   0.9754   111430  3   0.8745   16104   0.9608   61476  4   0.8529   7069   0.9527   32864  5   0.8426   2417   0.9484   15976  6   0.8382   651   0.9463   7045  7   0.8365   126   0.9452   2373  

 

The  probability  cut-­‐offs  in  Table  5.7  are  enforced  such  that  the  probability  for  a  given  scenario,  (4.3),  at  a  given  time  step  is  not  smaller  than  that  cut-­‐off.    

It   may   be   glanced   from   the   time   progression   of   the   number   of   active   probability   components   in  Table  5.7  that  the  primary  event  in  Table  5.5,  together  with  (5.1)  and  (5.2),  will  lead  us  from  an  initial  low-­‐entropic  state,  to  an  intermediate  higher-­‐entropic  state,  back  to  a  final  low  entropic  state.  This  may  be  explained  as  follows.  Initially,  we  only  expect  the  objects  which  are  horizontally  and  vertically  adjacent   to   the   failed   object   to   reach   a   failed   state,   Table   5.6.   Because   of   the   superposition   of  radiation  we  expect   (see  Tables  5.2  and  5.4)     the  objects   to   cascade  as   time  progresses   to  a   total  conflagration   state.   But   we   are   uncertain   as   to   the   route   that   will   take   us   from   the   initial   low  entropic  state  to  this  final   low  entropic  state.  This  uncertainty  translates  to  an   intermediate  higher  entropic   state   where   the   probabilities   are   more   spread   out   over   the   total   state   space   and,  consequently,  more  active  probability  components  are  in  play.    

5.3.1. Time  Evolving  Marginal  Damage  State  Probabilities  

If,  for  the  cut-­‐off  of  10-­‐7,  we  weigh  the  damage  state  ‘matrices’   is by  the  normalized  probabilities    

∑ =

=N

i i

ii

P

PP ~

1

~  ,                   (5.6)  

Page 47: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

46  

where   iP   is   the  probability  of   is  and   N~   is   the  total  number  of  active  probability  components,  or,  

equivalently,   probability   sort   scenario   proposals,   then  we   obtain   the   following   expected  marginal  probabilities,  say,   ( )θE ,  where  

  ( ) ∑=

=N

iiiPE

~

1

~ sθ ,                 (5.7)  

which  corresponds  with  marginal  probability  of  being   in  a  failed  state,  Tables  5.8-­‐5.14,  as  we  have  chosen  our  event  labels  (i.e.,  Tables  5.1,  5.3,  and  5.5)  such  that  being  in  a  damage  state  corresponds  with  a  Bernoulli  event.  

Table  5.8:  Estimated  probability  map  for  the  primary  event  at  t  =  1  (compare  with  analytical  Table  5.6)  

0.0004   0.0015   0.0029   0.0015   0.0004  0.0015   0.0271   0.2256   0.0271   0.0015  0.0029   0.2256   1.000   0.2256   0.0029  0.0015   0.0271   0.2256   0.0271   0.0015  0.0004   0.0015   0.0029   0.0015   0.0004  

 

Table  5.9:  Estimated  probability  map  for  the  primary  event  at  t  =  2  

0.1426   0.2902   0.3703   0.2902   0.1426  0.2902   0.5637   0.7353   0.5637   0.2902  0.3703   0.7353   1.000   0.7353   0.3703  0.2902   0.5637   0.7353   0.5637   0.2902  0.1426   0.2902   0.3703   0.2902   0.1426  

 

Table  5.10:  Estimated  probability  map  for  the  primary  event  at  t  =  3  

0.7318   0.7776   0.8024   0.7776   0.7318  0.7776   0.8624   0.9161   0.8624   0.7776  0.8024   0.9161   1.000   0.9161   0.8024  0.7776   0.8624   0.9161   0.8624   0.7776  0.7318   0.7776   0.8024   0.7776   0.7318  

 

Table  5.11:  Estimated  probability  map  for  the  primary  event  at  t  =  4  

0.9178   0.9315   0.9390   0.9315   0.9178  0.9315   0.9571   0.9736   0.9571   0.9315  0.9390   0.9736   1.000   0.9736   0.9390  0.9315   0.9571   0.9736   0.9571   0.9315  0.9178   0.9315   0.9390   0.9315   0.9178  

   

Page 48: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

47  

Table  5.12:  Estimated  probability  map  for  the  primary  event  at  t  =  5  

0.9754   0.9794   0.9815   0.9794   0.9754  0.9794   0.9868   0.9918   0.9868   0.9794  0.9815   0.9918   1.000   0.9918   0.9815  0.9794   0.9868   0.9918   0.9868   0.9794  0.9754   0.9794   0.9815   0.9794   0.9754  

 Table  5.13:  Estimated  probability  map  for  the  primary  event  at  t  =  6  

0.9929   0.9939   0.9945   0.9939   0.9929  0.9939   0.9960   0.9974   0.9960   0.9939  0.9945   0.9974   1.000   0.9974   0.9945  0.9939   0.9960   0.9974   0.9960   0.9939  0.9929   0.9939   0.9945   0.9939   0.9929  

 

Table  5.14:  Estimated  probability  map  for  the  primary  event  at  t  =  7  

0.9981   0.9983   0.9984   0.9983   0.9981  0.9983   0.9988   0.9992   0.9988   0.9983  0.9984   0.9992   1.000   0.9992   0.9984  0.9983   0.9988   0.9992   0.9988   0.9983  0.9981   0.9983   0.9984   0.9983   0.9981  

 It  may  be  glanced  from  Tables  5.8  through  5.14,  that  the  marginal  probabilities  of  being   in  a  failed  state   will   increase   in   magnitude   as   time   progresses.   Also   note   that   the   estimated   marginal  probabilities   of   being   in   a   failed   stated   at   time   step   1,   Table   5.8,   are   the   same   as   the   analytical  probability  map  in  Table  5.6,  which  was  obtained  by  way  of  the  primary  event  in  Table  5.5  and  the  probability  map  model  (5.1)  and  (5.2).    

5.3.2. Time  Evolving  ML  Damage  States  

We  now  will  focus  on  the  change  in  probabilities  of  four  representative  fixed  damage  state  scenarios,  Tables  5.15  through  5.18.    

Table  5.15:  State  matrix  1  

0   0   0   0   0  0   0   0   0   0  0   0   1   0   0  0   0   0   0   0  0   0   0   0   0  

 In  Table  5.15  we  have  the  total  containment  scenario,  where  no  additional  objects  fail.      

Page 49: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

48  

Table  5.16:  State  matrix  2  

0   0   0   0   0  0   0   0   0   0  0   0   1   0   0  0   0   1   0   0  0   0   0   0   0  

 

Table  5.17:  State  matrix  3  

0   0   0   0   0  0   0   1   0   0  0   1   1   0   0  0   0   0   0   0  0   0   0   0   0  

 In   Tables   5.16   and   5.17   we   have   limited   spill-­‐off   scenarios,   where,   respectively,   one   and   two  additional  objects  have  failed.  

Table  5.18:  State  matrix  4  

1   1   1   1   1  1   1   1   1   1  1   1   1   1   1  1   1   1   1   1  1   1   1   1   1  

 In  Table  5.18  we  have  the  total  destruction  scenario,  where  all  the  objects  have  failed.  We  now  take  a  look  at  the  progression  of  the  probabilities  of  these  damage  states  as  time  progresses,  where  we  put  the  Most  Likelihood  (ML)  probabilities  in  boldface,  Table  5.18.    

Table  5.19:  Probabilities  of  the  state  matrices  in  Tables  5.15-­‐5.18  

Time  Step   P(State  matrix  1)   P(State  matrix  2)   P(State  matrix  3)   P(State  matrix  4)  1   0.3140   0.0915   0.0267   9.17   5610−×  2   0.0986   0.0287   0.0084   0.0282  3   0.0310   0.0090   0.0026   0.6703  4   0.0097   0.0028   0.0008   0.8650  5   0.0031   0.0009   0.0003   0.9226  6   0.0010   0.0003   8.14   510−×   0.9390  

7   0.0003   8.78   510−×   2.56   510−×   0.9433  

 At   both   time   steps   1   and   2   the   total   containment   scenario   is   the  ML   scenario.   From   time   step   3  onwards,   the   total   destruction   scenario   becomes   the  ML   scenario.   At   time   step   1   there   is   still   a  considerable  likelihood  that  there  is  either  full  containment  or  limited  spill-­‐off:    

Page 50: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

49  

  ( ) ( ) 8402.00267.024

0915.014

3140.0 =⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+ .           (5.8)  

At  time  step  2  this  likelihood  has  dropped  off  dramatically:  

  ( ) ( ) 2638.00084.024

0287.014

0986.0 =⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+ .           (5.9)  

At  time  step  3  the  likelihood  of  either  full  containment  or  limited  spill-­‐off  has  dwindled  to  a  mere    

  ( ) ( ) 0826.00026.024

0090.014

0310.0 =⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+ ,           (5.10)  

while  the  probability  of  the  total  destruction  scenario  is  a  hefty  0.6703,    and  as  time  progresses  this  probability  approaches  certainty.  Especially  so,  if  we  take  into  account  that  total  probability  coverage  has  not  been  achieved;  compare  the  right  hand  probability  coverages  in  Table  5.7  with  the  of  State  Matrix  4  probabilities  in  Table  5.19.    

   

Page 51: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

50  

6. Modelling   of   Inhomogeneous   Markov   Processes   with   the  Probability  Sort  Algorithm  

In   this   chapter   we   will   discuss   the   modelling   of   inhomogeneous   Markov   process   by   way   of   the  probability   sort   algorithm,   using   a   landslide   example   in  which   an   initial   landslide   (triggered   by   an  extreme  weather   event)   cascades   downstream  at   consecutive   time   steps.   In   the  modelling   of   this  inhomogeneous  Markov  process,  the  transition  probabilities  change  as  a  function  of  time.  So,  when  a  landslide  occurs  somewhere,  then  there  will  be  an  initial  increase  in  the  probability  of  a  knock-­‐on  landslide  occurring  in  the  areas  below  this  area.  But  is  assumed  that  this  danger  will  quickly  dissipate  over  time,  if  the  knock-­‐on  effect  fails  to  materialize,  as  it  is  assumed  that  landslides  do  not  keep  on  gushing.   The   time   dependency   being   caused   by   physical   processes   and/or   by   human   intervention  measures  in  the  system.    

6.1. A  Topology  and  Landslide  Physics  

It  is  assumed  that  the  landslide  area  consists  of  several  connected  sub-­‐areas.  Landslides  are  assumed  to  cascade  in  the  direction  of  the  arrows,  from  upstream  to  downstream,  Figure  6.1.      

 

                     Figure  6.1:  Topology  of  landslide  area  

It   is  assumed  that  there  is  a  general  landslide  probability  of   01.0=P ,  due  to  exposure  to  intensive  rainfall.  Also,  vertical  connections  represent  an  initial  probability  of  a  knock-­‐on  landslide  of   9.0=P ,  as  the  counter  for  the  initiating  landslide  area  is  initially  set  to   1=k .  Diagonal  connections  represent  an   initial   probability   of   a   knock-­‐on   landslide  of   7.0=P ,   as   the   counter   for   the   initiating   landslide  area   is   initially   set   to   1=k .   Sideways   connections   represent   an   initial   probability   of   a   knock-­‐on  landslide  of   7.0=P ,  as  the  counter  for  the  initiating  landslide  area  is  initially  set  to   1=k .  In  order  to  compute  the  probability  of  a  landslide  event,  the  probability  of  no  event  is  first  computed  of  which  

Page 52: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

51  

the  complement  is  then  computed,  and  as  the  initiating  landslides  remain  in  their  landslide  statuses,  the  corresponding  counters   ik   in  the  corresponding  inhomogeneous  probability  map   ( ) ( )( )11 , −− tt ksf ,  

see  Section  3.2.2,  are  incremented  over  each  time  step.  The  corresponding  probabilities   P  will  drop  off  as  a  power   ik  of  the  ‘”half-­‐life”  parameters  of   1.0  in  Figure  6.2.  

 

 

                                       Figure  6.2:  Landslide  physics  of  the  probability  map  

 

6.2. A  First  Cascading  Effect  Analysis  

In  Figure  6.3,  we  give  an  initiating  landslide  event.  In  Figures  6.4  through  6.8  we  give  for  subsequent  time  steps   the  available  cascade  pattern,  and   in  Tables  6.1   through  6.5  we  give   the  corresponding  marginal  probabilities  of  a  landslide  occurring  for  a  cut-­‐off  criterion  of    10-­‐7,  (3.19).    

     

Page 53: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

52  

 

                             Figure  6.3:  Initiating  landslide  event  

 

   

     Figure  6.4:  Time  step  t  =  1  

 

 

                   Table  6.1:  Estimated  probability  map  for  the  primary  event  at  t  =  1  

1.000   0.0100   0.0100   0.0100  0.9001   0.0100   0.0100   0.0100  0.0100   0.0100   0.0100   0.0100  0.0100   0.0100   0.0100   0.0100  0.0100   0.0100   0.0100   0.0100  

 

   

     Figure  6.5:  Time  step  t  =  2  

 

                   Table  6.2:  Estimated  probability  map  for  the  primary  event  at  t  =  2  

1.000   0.0196   0.0196   0.0196  0.9102   0.0284   0.0331   0.0283  0.8134   0.6407   0.0284   0.0283  0.0284   0.0350   0.0331   0.0351  0.0284   0.0283   0.0351   0.0284  

 

Page 54: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

53  

   

   

     Figure  6.6:  Time  step  t  =  3  

 

 

                   Table  6.3:  Estimated  probability  map  for  the  primary  event  at  t  =  3  

1.000   0.0284   0.0284   0.0284  0.9122   0.0455   0.0585   0.0451  0.8323   0.6802   0.0567   0.0526  0.7403   0.7902   0.0691   0.0712  0.0529   0.0586   0.0763   0.0585  

 

 

   

     Figure  6.7:  Time  step  t  =  4  

 

 

                   Table  6.4:  Estimated  probability  map  for  the  primary  event  at  t  =  4  

1.000   0.0362   0.0360   0.0356  0.9135   0.0607   0.0804   0.0589  0.8368   0.6970   0.0852   0.0734  0.7666   0.8224   0.4434   0.1141  0.6807   0.7239   0.1306   0.0965  

 

 

   

     Figure  6.8:  Time  step  t  =  5  

 

 

                   Table  6.5:  Estimated  probability  map  for  the  primary  event  at  t  =  5  

1.000   0.0430   0.0426   0.0419  0.9150   0.0743   0.0998   0.0713  0.8403   0.7105   0.1111   0.0922  0.7741   0.8336   0.4928   0.1535  0.7128   0.7609   0.4617   0.1412  

 

In  Table  6.6  we  give  the  probability  coverages  over  the  time  steps  for  cut-­‐off  criteria  of    10-­‐7  and    10-­‐8  

for   the  primary  event   in  Figure  6.3,  with  a  probability  map   ‘physics’  as  shown   in  Figure  6.2,  where  the  probability   coverages  are  given   together  with   the  number  of  active  probability   components  at  each  time  step.  

Page 55: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

54  

                 Table  6.6:  Probability  coverages  and  number  of  active  probability  components  for  Figures  6.2  and  6.3    

Time  Step   Cut-­‐off  =  10-­‐7   Cut-­‐off  =  10-­‐8  coverage   #  components   coverage   #  components  

1   0.9999   1160   1.0000   1976  2   0.9984   16590   0.9996   48175  3   0.9920   62208   0.9973   246954  4   0.9780   158551   0.9913   727034  5   0.9591   256441   0.9820   1309611  

                 

6.3. A  Second  Cascading  Effect  Analysis  

In   Figure   6.9,   we   give   two   simultaneously   occurring   initiating   landslide   events.   In   Figures   6.10  through   6.14   we   give   for   subsequent   time   steps   the   available   cascade   pattern,   and   in   Tables   6.7  through  6.11  we  give  the  corresponding  marginal  probabilities  of  a   landslide  occurring  for  a  cut-­‐off  criterion  of    10-­‐7,  (3.19).      

 

                                     Figure  6.9:  Initiating  landslide  events  

In  the  Figures  6.10  through  6.14,  we  let  the  overlap  between  the  cascade  patterns  between  the  two  respective   initiating   events   be   coloured   purple.   If   we   compare   the  marginal   probabilities   in   these  regions  of  overlap   in   the  Tables  6.7   through  6.11  with   the  corresponding   regions   in   the  Tables  6.1  through  6.5,   then   it  may  be  seen  that   landslides  may  “conspire”  together   in  their  “attacks”,  as   the  probabilities  of  a  landslide  occurrence  for  these  regions  are  significantly  larger  under  the  scenario  in  Figure  6.9  than  under  the  scenario  in  Figure  6.1.    

Page 56: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

55  

   

     Figure  6.10:  Time  step  t  =  1  

 

 

                   Table  6.7:  Estimated  probability  map  for  the  primary  event  at  t  =  1  

1.000   0.0100   0.0100   0.0100  0.9000   0.0100   0.5000   1.000  0.0100   0.0100   0.0100   0.9000  0.0100   0.0100   0.0100   0.0100  0.0100   0.0100   0.0100   0.0100  

 

   

     Figure  6.11:  Time  step  t  =  2  

 

 

                   Table  6.8:  Estimated  probability  map  for  the  primary  event  at  t  =  2  

1.000   0.0195   0.0196   0.0196  0.9101   0.0283   0.5336   1.000  0.8133   0.7647   0.4605   0.9102  0.0282   0.0349   0.0330   0.8146  0.0283   0.0282   0.0349   0.0282  

 

   

     Figure  6.12:  Time  step  t  =  3  

 

 

                   Table  6.9:  Estimated  probability  map  for  the  primary  event  at  t  =  3  

1.000   0.0279   0.0280   0.0280  0.9124   0.0448   0.5437   1.000  0.8326   0.7985   0.4990   0.9125  0.7407   0.8488   0.4409   0.8866  0.0521   0.0577   0.5930   0.7418  

 

   

     Figure  6.13:  Time  step  t  =  4  

 

 

                   Table  6.10:  Estimated  probability  map  for  the  primary  event  at  t  =  4  

1.000   0.0350   0.0351   0.0353  0.9139   0.0591   0.5510   1.000  0.8374   0.8087   0.5132   0.9147  0.7672   0.8757   0.6855   0.8962  0.6816   0.7754   0.7749   0.8149  

 

Page 57: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

56  

   

     Figure  6.14:  Time  step  t  =  5  

 

                   Table  6.11:  Estimated  probability  map  for  the  primary  event  at  t  =  5  

1.000   0.0422   0.0422   0.0427  0.9156   0.0732   0.5586   1.000  0.8410   0.8165   0.5249   0.9166  0.7748   0.8834   0.7133   0.9007  0.7135   0.8079   0.8642   0.8266  

 

In   Table  6.12  we  give   the  probability   coverages   for   cut-­‐off   criteria  of     10-­‐7   and     10-­‐8   over   the   time  steps   for   the  primary  event   in  Figure  6.3,  where   the  probability  coverages  are  given   together  with  the  number  of  active  probability  components  at  each  time  step.  

                 Table  6.12:  Probability  coverages  and  number  of  active  probability  components  for  Figures  6.2  and  6.3    

Time  Step   Cut-­‐off  =  10-­‐7   Cut-­‐off  =  10-­‐8  coverage   #  components   coverage   #  components  

1   0.9999   1878   1.0000   3698  2   0.9980   24816   0.9995   74844  3   0.9898   97527   0.9967   359967  4   0.9747   199711   0.9905   837620  5   0.9602   274479   0.9834   1264532  

 

6.4. Comparing  Inhomogeneous  and  Homogenous  Markov  Assumptions  

If  we  assume  homogeneous  probabilities  that  do  not  change  over  the  time  steps,  Figure  6.15,  then  it  is   found   that   there  will   be   a   severe   overestimation   of   the   landslide   probabilities,   Tables   6.13   and  6.14,  relative  to  the  Tables  6.5  and  6.7.    

 

      Figure  6.15:  Homogenous,  time-­‐independent  landslide  physics  of  the  probability  map  

Page 58: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

57  

 

   

 

 

                   Table  6.13:  Estimated  probability  map  at  t  =  5,  physics  as  in  Figure  6.15  

1.000   0.0423   0.0421   0.0405  1.0000   0.0753   0.1127   0.0708  0.9997   0.9917   0.1215   0.0934  0.9934   0.9967   0.7229   0.1669  0.9317   0.9500   0.4794   0.1504  

 

   

 

 

                   Table  6.14:  Estimated  probability  map  at  t  =  5,  physics  as  in  Figure  6.15  

1.000   0.0408   0.0418   0.0411  1.0000   0.0729   0.9713   1.000  0.9998   0.9994   0.9390   1.0000  0.9941   0.9994   0.9584   1.0000  0.9332   0.9702   0.9926   0.9963  

 

Note   that   the   Tables   6.13   and   6.14   correspond   with   probability   cut-­‐offs   of   10-­‐7   and,   respective,  probability  coverages  of  0.9521  and  0.9506.  

6.5. A  Third  Cascading  Effect  Analysis  

We   now  will   do   a   cascading   effect   analysis   on   the  Malborghetto   electricity   network   (provided   by  RAIN  partner  AIA  and  reported  in  WP4),  in  case  of  voltage  instabilities  in  the  (grey)  units  X3  and  X4,  Figure  6.16.  It  is  assumed  that  there  is  a  general  probability  of  voltage  instability  of  

  ( ) 510−=yinstabilitp ,                 (6.1)    

a  probability  of  voltage  instability  conditional  on  there  being  instability  in  a  neighbouring  blue  node  of    

  ( ) 73.0| =blueyinstabilitp ,               (6.2)  

and  a  probability  of  voltage  instability  conditional  on  there  being  instability  in  a  neighbouring  orange  node  of    

  ( ) 89.0| =orangeyinstabilitp ,               (6.3)  

where  it  is  assumed  that  these  voltage  instabilities  peak  and  are  only  relevant  for  the  time  period  in  which  they  occur;  i.e.,  there  is  assumed  to  be  an  extreme  dissipation  effect:  

  610−=halflifeP .                   (6.4)  

Page 59: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

58  

 

 

                                                                     Figure  6.16:  Malborghetto  electricity  network  

By   way   of   the   modelling   assumptions   (6.1)   through   (6.4)   and   the   topology   in   Figure   6.16,   the  probability  of  X6  failing  at  the  first  time  step  when  X3  and  X4  have  failed  at  time  step  zero,  is  given  as  

  ( )( ) ( ) ( )[ ]21175351t 73.0101011011X5X4,X3,,X2,X1|X6 −−−−= −−−−=p  ,     (6.5)  

whereas  at   the  second  time  step  this  probability,  as   the  voltage   instabilities   in  both  X3  and  X4  are  assumed  to  have  dissipated,  is  given  as  

 

( )( ) ( ) ( )[ ]

( ) .1011

73.0101011011X5X4,X3,,X2,X1|X6

55

21275352t

−−−−=

−−≈

−−−−=p     (6.6)  

In   Table   6.15  we   give   the   estimated  marginal   probabilities   of   shut   down   due   to   a   cascade   of   the  voltage  instabilities  for  a  cut-­‐off  criterion  of  10-­‐7.    

Note  that  for  element  X15  we  have  a  jump  in  the  probability  of  a  shut  down  as  we  go  from  time  step  5  to  time  step  6.  And  it  can  be  seen  in  Figure  6.16  that  element  X15  can  be  reached  by  the  indirect  voltage   instability   route  X14-­‐X19-­‐X18,   even   if   element   X15   initially   escapes   in   time   step  4   a   direct  voltage   instability   knock-­‐on   by   element   X14.   Likewise,   element   X20   may   be   approached   by   the  indirect  route  X14-­‐X15-­‐X18-­‐X19,  rather  than  the  direct  route  X14-­‐X19,  which  explains  the  slight  jump  in  shut  down  probability  at  time  step  7  for  this  element.    

Page 60: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

59  

Table  6.15:  Marginal  probabilities  of  shutdown  due  to  voltage  instability    

  t  =  1   t  =  2   t  =  3   t  =  4   t  =  5   t  =  6   t  =  7  

X1   0.0000   0.8251   0.8252   0.8252   0.8252   0.8252   0.8252  

X2   0.0000   0.8251   0.8252   0.8252   0.8252   0.8252   0.8252  

X3   1.000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000  

X4   1.000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000  

X5   0.0000   0.8251   0.8252   0.8252   0.8252   0.8252   0.8252  

X6   0.9271   0.9271   0.9271   0.9271   0.9271   0.9271   0.9271  X7   0.0000   0.8252   0.8252   0.8252   0.8251   0.8251   0.8251  

X8   0.0000   0.0001   0.7344   0.7345   0.7344   0.7344   0.7344  

X9   0.0000   0.0001   0.0002   0.5362   0.5362   0.5361   0.5361  

X10   0.0000   0.0001   0.0001   0.0002   0.3915   0.3914   0.3914  

X11   0.0000   0.0001   0.0001   0.0001   0.0002   0.2858   0.2858  

X12   0.0000   0.0001   0.0001   0.0001   0.0002   0.2858   0.2858  

X13   0.0000   0.0001   0.0001   0.0002   0.3915   0.3914   0.3914  

X14   0.0000   0.0001   0.7345   0.7345   0.7344   0.7344   0.7344  X15   0.0000   0.0001   0.0002   0.6538   0.6537   0.7003   0.7003  

X16   0.0000   0.0001   0.0001   0.0002   0.4773   0.4772   0.5113  

X17   0.0000   0.0001   0.0001   0.0002   0.0002   0.4972   0.4972  

X18   0.0000   0.0001   0.0002   0.0003   0.6810   0.6809   0.6809  

X19   0.0000   0.0001   0.0002   0.6538   0.6537   0.6919   0.6919  

X20   0.0000   0.0001   0.0002   0.0003   0.5819   0.5818   0.6159  

X21   0.0000   0.0001   0.0001   0.0002   0.0002   0.5179   0.5685  

X22   0.0000   0.0001   0.0002   0.0003   0.0003   0.5179   0.5594  X23   0.0000   0.0001   0.0002   0.0003   0.0003   0.0002   0.4610  

X24   0.0000   0.0001   0.0002   0.0002   0.0002   0.0002   0.0002  

X25   0.0000   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001  X26   0.0000   0.0001   0.0001   0.0002   0.0001   0.0001   0.0001  

X27   0.0000   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001  X28   0.0000   0.0001   0.0001   0.0001   0.0001   0.0001   0.0001  

X29   0.0000   0.0001   0.0002   0.0003   0.0002   0.0002   0.0002  

X30   0.0000   0.0001   0.0001   0.0002   0.0001   0.0001   0.0001  

X31   0.0000   0.0001   0.0001   0.0002   0.0001   0.0001   0.0001  

X32   0.0000   0.0001   0.0002   0.0002   0.0002   0.0001   0.0002  

X33   0.0000   0.0001   0.0002   0.0002   0.0002   0.0001   0.0001  

X34   0.0000   0.0001   0.0001   0.0002   0.0001   0.0001   0.0001  

Page 61: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

60  

In   Table  6.16  we  give   the  probability   coverages   for   cut-­‐off   criteria  of     10-­‐7   and     10-­‐8   over   the   time  steps  for  the  primary  event  in  Figure  6.16,  where  the  probability  coverages  are  given  together  with  the  number  of  active  probability  components  at  each  time  step.  

                               Table  6.16:  Probability  coverages  and  number  of  active  probability  components  for  Figure  6.16    

Time  Step   Cut-­‐off  =  10-­‐7   Cut-­‐off  =  10-­‐8  coverage   #  components   coverage   #  components  

1   1.0000   64   1.0000   64  2   1.0000   1061   1.0000   1919  3   0.9998   2577   1.0000   7500  4   0.9995   4858   0.9999   20186  5   0.9987   7691   0.9995   43001  6   0.9980   13929   0.9989   70372  7   0.9975   19855   0.9985   89521  

       

Page 62: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

61  

7. Concluding  remarks  

Work  package  5  of  the  RAIN  project  has  developed  a  risk-­‐based  decision  framework  for   large-­‐scale  infrastructural   networks   under   influence   of   extreme   weather   hazards   which   is   able   to   take   into  account  the  (collateral)  impacts  of  cascading  effects.    In   deliverables   5.1   and   5.5   it   had   been   shown   that  WP5’s   framework   can   serve   as   a   template   to  integrate   and   harmonize   all   content-­‐owning  WPs  within   the   project   (as  well   as   other   large  multi-­‐disciplinary  EU  projects),  as  WPs  will  be  forced  to  produce  (conditional)  probability  distributions  that  connect  in  a  meaningful  way,  based  on  the  Bayesian  paradigm.  For  example,  severe  rainfall  impacts  the   structural   integrity   of   pylons.   So,   structural   engineer   specifies   to   rainfall   expert   which   rainfall  levels   are   relevant   for   pylons.   Rainfall   expert   then   produces   a   tailor   made   rainfall   probability  distribution   for   the   structural   engineer,   which   the   structural   engineer   can   connect   with   his   pylon  structural   integrity   probability   distribution   in   a   meaningful   manner.   Stated   differently,   the  (conditional)   probability   distributions   are   the   inference  modules   that   capture   the   expertise   of   the  content-­‐owning  WPs.  The  same  is  true  for  mitigating  measures  and  crisis  response  mechanisms,  such  as   ICPR   arrangements   (Hellenberg   et   al,   2017).   Crisis   response   experts   specify   the   effectivity   of  response   measures,   in   terms   of   a   reduction   in   negative   consequences.   The   capturing   of   such  expertise  is  subsequently  fed  into  the  Bayesian  framework.    Due  to  their  high  impact  low  probability  nature,  cascading/domino  effect  hazards  have  started  to  be  recognized   as   a   priority   issue   in   technical   standards   and   legislation   concerned  with   the   control   of  major  accident  hazards,   such  as   in   the  Council  Directive  96/82/EC   (EU  Seveso-­‐II  Directive)   and   the  European  Parliament  and  Council  Directive  2012/18/EU.    In  D5.2  a  Bayesian  methodology  by  which  system  state  probabilities  may  be  estimated  for  systems  that   are   subjected   to   cascading/domino   effect   hazards,   has   been   developed.   This   methodology  makes  use  of  a  newly  developed  Probability  Sort  algorithm  in  order  to  estimate  Markov  Chains  for  what   otherwise   would   have   been   intractable   (in)homogeneous   transition   matrices.   Neglecting   or  underestimating  (inter)dependencies  between  the  failures  or  disruptions  of  the  critical  infrastructure  components   can   cause   designers,   experts,   managers   and   decision   makers   to   underestimate   the  overall   inter-­‐infrastructural   risks.   It   is   therefore   necessary   to   further   develop   approaches   that  consider  the  interconnected  nature  of  critical   infrastructure  components  and  –  systems,  which  was  the  aim  of  this  report.    The  generic  mathematical  framework  developed  in  D5.2  is  based  on  Bayesian  probability  theory  and  the   Probability   Sort   algorithm   in   order   to   model   time-­‐dependent,   inhomogeneous   and   cascading  effects   in   infrastructural   networks   through   space  and   time.   This   framework  also   allows   for  human  intervention  measures  to  mitigate  risks  or  reduce  failure  probabilities  of  infrastructural  components.  The  proposed  Probability  Sort  approach  allows  one  to  come  to  some  sort  of  exact  evaluation  of  even  exponentially   large   event   trees   of   system   states,   as   long   as   the   information   entropy   in   that   event  tree  is  low  enough.          

Page 63: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

62  

Applications  are  presented  for  the  Bayesian  modelling  of  cascading  effects  of  landslides  and  for  the  cascading  effects   in   an  electricity  network.   The  outcomes  are   time-­‐dependent  probability  maps  of  failure   of   the   overall   infrastructural   systems,   which   serve   as   input   for   the   decision-­‐making   by  infrastructural  managers.  

   

 

Page 64: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

63  

8. References  

Ebeling,   C.E.   (1997).   An   Introduction   to   Reliability   and   Maintainability   Engineering.   2nd   ed.   New  Delhi:  McGrawHill.    Hellenberg,  T.  (2017).  RAIN  Deliverable  7.4.  Techniques  for  Mitigation  of,  Adaptation  to,  and  Coping  with  the  potential  impacts  of  extreme  weather  on  critical  infrastructures,  with  reference  to  the  EU  integrated  political  crisis  response  -­‐  IPCR  –  arrangements.    Huang,  C.C.  (1977).  Non-­‐homogeneous  Markov  chains  and  their  applications.  Iowa  State  University,  PhD  thesis.    Jaynes,  E.T.  (2003).  “Probability  Theory;  the  Logic  of  Science”,  Cambridge  University  Press.    Jensen,  F.V,  Nielsen,  T.D.  (2007).  Bayesian  networks  and  decision  graphs.  2nd  ed.  New  York:  Springer.      Khakzad,  N.  (2015).  Application  of  dynamic  Bayesian  network  to  risk  analysis  of  domino  effects  in  chemical  infrastructures.  Reliability  Engineering  &  System  Safety  138:  263-­‐272.    Shannon,  C.E.  (1948).  A  Mathematical  Theory  of  Communication,  Bell  Sys.  Tech.  J.,  27,  379-­‐423.              Skilling,  J.  (2004).  Nested  Sampling,  In  Bayesian  Inference  and  Maximum  Entropy  Methods  in  Science  and  Engineering,  (eds.  Erickson  G.,  Rychert  J.T.,  and  Smith  C.R.)  AIP  Conference  Proceedings,  American  Institute  of  Physics,  New-­‐York.  395-­‐405.    Van  Erp,  H.R.N.,  Linger,  R.O.  ,  van  Gelder,  P.H.A.J.M.  (2016).  Stress  Test  Framework  for  Systems,  Nov.  2016,  https://www.infrarisk-­‐fp7.eu,  Deliverable  6.2.            

Page 65: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

64  

9. Appendix:  The  Probability  Sort  Algorithm  

9.1. Algorithmic  Outline  

Step 1: Permutate the stateMatrix and the probMatrix into their desired base-line states. Step 2: Define the function undoPermutate(.) which undoes these base-line permutations in the final probability sorted damage state vectors. Step 3: Set up the output list probabilitySort and the intermediate Proposals list. Step 4: enter a While-loop, until the desired cut-off log-probability value crit, has been obtained, or until all possible damage state vectors have been passed through, whichever comes first. Step 5: take that damage state vector entry from the Proposals list which has the

maximum probability, make the components of that entry available within the While-loop, clean up the Proposals list, update the probabilitySort list by way of these components, and update the total probability coverage variable sumProb.

Step 6: replenish the Proposals list which with a maximum of three new proposals. These new proposals guarantee that all the remaining leaves of the event tree of the damage state space may still be explored, and that the next best probability is always in the updated Proposals list.

Step 7: Print the sumProb probability coverage value and terminate the algorithm. The probabilitySort list consisting of the probability sorted damage state vectors and their corresponding probabilities is now available for the user.

9.2. Pseudo-­‐Code  

INPUT stateMatrix: State matrix/list of the N components under consideration. probMatrix: State probability matrix/list of the N components under consideration. crit: log-probability cut-off criterium OUTPUT

Page 66: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

65  

probabilitySort: list consisting of damage state proposals ( )sx with corresponding probabilities ( )sP , ordered in descending order by way of the probabilities ( )sP ;

sumProb: the total probability density covered by the probabilities of the damage state vectors in the list probabilitySort ALGORITHM Step 1.a If we have M possible damage states for each of the N possible infrastructural elements, then we may define the N-by-M matrix

stateMatrix =

⎥⎥⎥⎥

⎢⎢⎢⎢

M

MM

21

2121

(1)

the corresponding probability matrix which has its rows the damage state pdf of the corresponding infrastructural element may be given as the N-by-M matrix ,

probMatrix =

⎥⎥⎥⎥

⎢⎢⎢⎢

NMNN

M

M

θθθ

θθθ

θθθ

21

22221

11211

(2)

We then do a Sort over the rows of probMatrix so that per rows the probabilities are in descending order, from large to small: permutatedProbMatrix =

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )⎥⎥⎥⎥

⎢⎢⎢⎢

NMNNNMNNNMNN

MMM

MMM

θθθθθθθθθ

θθθθθθθθθ

θθθθθθθθθ

,,,min,,,nextMax,,,max

,,,min,,,nextMax,,,max,,,min,,,nextMax,,,max

212121

222212222122221

112111121111211

………………………

.

(3) where we track the permutations of each of the rows that take us from probMatrix to permutatedProbMatrix. These permutations are then applied to the corresponding rows in stateMatrix. A possible realization of the resulting permutatedStateMatrix may be, say

Page 67: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

66  

permutatedStateMatrix =

⎥⎥⎥⎥

⎢⎢⎢⎢

21

1212

M

MMM

. (4)

The permutatedStateMatrix allows us to keep track of which probabilities in the rows of permutatedProbMatrix point to which damage state. The first column of the permutatedStateMatrix then gives the damage state vector that has the highest probability of occurring, with a probability of

P = 1; For[ i =1, i ≤ N,

P = P × permutatedProbMatrix(i, 1); i++] N.B.: Instead of the specific case of a N-by-M matrix, we alternatively, and more generally, may have a list of length N , say, probList, with in each row of that list a discrete probability distribution over iM damage states, where Ni ≤≤1 , which are given in the corresponding rows of the list, say, stateList. For this more general case we may compute a permutatedProbList and a permutatedStateList. The first column of the permutatedStateList then also will give the damage state vector that has the highest probability of occurring, with a probability of P. Step 1.b then do a row Sort over the entire permutatedProbMatrix such that in its second column the probabilities are arranged in descending order from large to small. This results in, say, for short, the doublePermutatedProbMatrix, where second column of doublePermutatedProbMatrix =

( ) ( ) ( )[ ]

( ) ( ) ( )[ ]

( ) ( ) ( )[ ] ⎟⎟⎟⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜⎜⎜⎜

NMNNMM

NMNNMM

NMNNMM

θθθθθθθθθ

θθθθθθθθθ

θθθθθθθθθ

,,,nextMax,,,,,nextMax,,,,nextMaxmin

,,,nextMax,,,,,nextMax,,,,nextMaxnextMax

,,,nextMax,,,,,nextMax,,,,nextMaxmax

212222111211

212222111211

212222111211

…………

…………

…………

(5)

Page 68: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

67  

Step 2 Keeping track of the permutations that take us from the permutatedProbMatrix to the doublePermutatedProbMatrix, we may construct the corresponding doublePermutatedStateMatrix. For example, if we have the index vector

[ ]10987654321 (6) of the original row ordering in permutatedProbMatrix, then the corresponding row ordering in both the doublePermutatedProbMatrix and doublePermutatedStateMatrix may be, say, [ ]97310682514 (7) Now let undoPermutate be that function that rearranges the index vector (7) back the original index vector, or, equivalently, (3) and (4) undoPermutate[ doublePermutatedProbMatrix ] = permutatedProbMatrix (8) undoPermutate[ doublePermutatedStateMatrix ] = permutatedStateMatrix. Step 3.a Set the vector stateVector as the first column of the doublePermutatedStateMatrix: stateVector = doublePermutatedStateMatrix(1, :); (9) or, equivalently, depending on the programming language used, stateVector = doublePermutatedStateMatrix(1, All); Likewise, set

P = 1; For[ i =1, i ≤ N,

P = P × doublePermutatedProbMatrix(i,1); (10) i++] Store both the probability ( )1P = P (11) and the unsorted stateVector, see (8),

( )1x  =  undoPermutate[  stateVector ] (12)

Page 69: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

68  

in a list ( ) ( ){ }11 , xP and insert that list entry into the list probabilitySort

probabilitySort = ( ) ( ){ }{ }11 , xP . (13) Step 3.b Now the stateVector in (9) gives the damage state vector that has the highest probability of occurring, while being arranged such that that the switching of the first damage state to the damage state of the second entry in the first row of the doublePermutatedStateMatrix will have the next highest probability; that is, stateVector(1) = doublePermutatedStateMatrix(1, 2); (14) has a corresponding next best probability of (10) P = [ P/ doublePermutatedProbMatrix(1,1) ] × doublePermutatedProbMatrix(1,2);

(15) In order to reflect the switch operation (14) we initialize the switchVector as the base-line vector switchVector = zeros(N, 1) ; (16a) which gives

switchVector = [ ]000 … ; (16b)

after which we switch the first entry of this vector from 0 to 1, so as to reflect the switch operation in (14): switchVector(1) = 1 ; (17a) which gives switchVector = [ ]001 … ; . (17b) Also, we set the active switch location as

activeSwitch = 1. (18) Store the adjusted probability (15), the adjusted state vector (14), the switch vector (17b), and the active switch location (18) in a list

Page 70: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

69  

{ P , stateVector, switchVector, activeSwitch } (19) and insert that list entry into the list Proposals Proposals = { { P , stateVector, switchVector, activeSwitch } }. (20) N.B.: Instead of performing multiplications and divisions on the probabilities in (10) and (15), we also may perform summations and subtractions from the corresponding log-probabilities; this will guard against the potential underflow of the product of N probabilities for large N . Step 4 We now have come to the core of the Probability Sort algorithm. This core consists of a While-loop which runs until the desired cut-off crit of probability sorted damage state vectors has been obtained or until the Proposals list is empty, signifying that the total state space has been explored. count = 1; While[ (Length[Proposals] > 0) OR (log(prob) < crit) Repeat Steps 5 and 6; (21)

count++ ] Step 5.a In each iteration of this While-loop the current Proposals list is updated by taking the list entry which has the greatest path probability P ; that is, take that list { P, stateVector, switchVector, activeSwitch }. (22) in Proposals where P is maximal. Step 5.b We then make available the entities in the list (18) for the algorithmic steps that will follow, by setting

workP = P ; workStateVector = stateVector ; workSwitchVector = switchVector ; (23) workActiveSwitch = activeSwitch ;

Page 71: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

70  

Step 5.c After which we remove the list entry (18) from the Proposals list. Step 5.d We then set ( )1count+P = P (24) and the unsorted stateVector, see (8),

( )1count+x = undoPermutate[ stateVector ] (25)

in a list ( ) ( ){ }1count1count , ++ xP and insert that list entry at the back of the list probabilitySort, so we obtain the updated list:

probabilitySort = ( ) ( ){ } ( ) ( ){ } ( ) ( ){ }{ }1count1count2211 ,,,,,, ++ xxx PPP … . (26) Step 5.e Finally, we update the total probability coverage variable:

sumProb = sumProb + ( )1count+P ; (26) Step 6 Now, the candidate with the greatest path probability P , that is, (18), is allowed to generate offspring before it gets moved to the probSort list. Each candidate can get a maximum of three ‘children’. As these children take the place of their progenitor in the Proposals list, they guarantee that

a) all the remaining leaves of the event tree of the damage state space may still be explored, and

b) that the next best probability is always in the updated Proposals list,

Offspring may be produced as follows:  Step 6.a

Page 72: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

71  

Flip active switch one layer deeper, to a more improbable state, if permissible given maximum layer depth, and set that switch as the active switch and update the corresponding probability P and stateVector; that is, % first determine the number of possible damage states % for the infrastructural element under consideration:

 q = workActiveSwitch ; M = length(doublePermutatedProbMatrix(q, :) ;

 %  elements  in  the  switchVector  take  on  values    %  from  0  (base-­‐line  damage    state  with  the  highest  probability)      %  to  M  –  1  (damage  state  the  lowest  probability)      %  So  we  have  below  that    0  ≤  r  ≤  M  –  1.  

r = workSwitchVector(q) ; If[ r < M – 1,

 % Set

    P = workP ; stateVector = workStateVector ;

switchVector = workSwitchVector  activeSwitch = workActiveSwitch ;

%Then update     P = [ P/ doublePermutatedProbMatrix(q, r) ] × doublePermutatedProbMatrix(q, r + 1); stateVector(q) = doublePermutatedStateMatrix(q, r + 1) ; switchVector(q) = r + 1;  

%Store the list offSpring1 = { P, stateVector, switchVector, workActiveSwitch } ;

% anywhere in the Proposals list, Proposals = Insert [Proposals, offSpring1] ;

%and close the If-statement. ];

 Step 6.b If active switch is a first layer switch, then de-activate switch and position switch one step forward if permissible given (a) row length or (b) a zero spot being available at that position, and activate that switch for that forward position.  

 q = workActiveSwitch ; If[ (workSwitchVector(q) == 1) AND (q + 1 ≤ N ) AND (workSwitchVector(q + 1) == 0),

Page 73: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

72  

% Set     P = workP ; stateVector = workStateVector ;

switchVector = workSwitchVector  activeSwitch = workActiveSwitch ;

 %Then update

       P =  [ P/ doublePermutatedProbMatrix(q, 2) ] × doublePermutatedProbMatrix(q, 1); P = [P / doublePermutatedProbMatrix(q + 1, 1) ] × doublePermutatedProbMatrix(q + 1, 2);                                              

                stateVector(q) = doublePermutatedStateMatrix(q, 1) ;               stateVector(q + 1) = doublePermutatedStateMatrix(q + 1, 2) ;  

                                            switchVector(q) = 0;                                             switchVector(q + 1) = 1;

activeSwitch = q + 1;  

%Store the list offSpring2 = { P, stateVector, switchVector, activeSwitch } ;

% anywhere in the Proposals list, Proposals = Insert [Proposals, offSpring2] ;

%and close the If-statement. ];

 Step 6.c If the first entry in the switchVector is an available zero spot, then set that zero spot to a first level active switch, and update the corresponding probability P and stateVector; that is,

If[ switchVector(1) == 0,

% Set     P = workP ; stateVector = workStateVector ;

switchVector = workSwitchVector  activeSwitch = workActiveSwitch ;

 %Then update

    P = [ P/ doublePermutatedProbMatrix(1,1) ] × doublePermutatedProbMatrix(1,2); stateVector(1) = doublePermutatedStateMatrix(1, 2) ; switchVector(1) = 1;

activeSwitch = 1;  

%Store the list offSpring3 = { P, stateVector, switchVector, activeSwitch } ;

Page 74: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

73  

% anywhere in the Proposals list, Proposals = Insert [Proposals, offSpring3] ;

%and close the If-statement. ];

Step 7: Print the probability coverage value sumProb and STOP. The list probabilitySort is now available to the user. N.B.: The probability criterion crit may prohibit the elements of the switch vector from the (N – m)th element onwards to leave their optimal base-line states of 0, as the probabilities of switch state 1 from the (N – m)th element onwards puts the probability of the probability P of the adjusted base-line state vector

P = 1; For[ i =1, i ≤ N,

P = P × permutatedProbMatrix(i, 1); i++] below the admissible threshold; that is, Pm < … < P2 < P1 < crit where P1 = [ P/ doublePermutatedProbMatrix(N – m + 1,1) ] × doublePermutatedProbMatrix(N – m + 1, 2); P2 = [ P/ doublePermutatedProbMatrix(N – m + 2,1) ] × doublePermutatedProbMatrix(N – m + 1, 2);

Pm = [ P/ doublePermutatedProbMatrix(N,1) ] × doublePermutatedProbMatrix(N, 2); So, under a probability criterion crit we may set the length of the switch vector in (16) to be of the reduced length (N – m), rather than the full length N.

9.3. Pen  and  Paper  Algorithmic  Run  

We now give a pen and paper algorithmic run of the proposed Probability Sort algorithm for state vectors having probabilities greater or equal to crit = 610− , for the most simple non-trivial case where we have 3=N  elements each having 3=M  possible damage states. This in order to give the reader/programmer a concrete sense of the here proposed algorithm.

Page 75: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

74  

Let

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

=

10000001

1000000999

1000000999000

100001

1000099

100009900

1001

1009

10090

probMatrix (1)

and let the state matrix be such that its column is equivalent to the switch vector and its subsequent switching layers:

⎥⎥⎥

⎢⎢⎢

=

210210210

xstateMatri (2)

Then ML proposal [ ]( )1000 has a probability of (1) and (2)

( )12

61

1010890109

1000000999000

100009900

10090 ×

=××=P

So, we set the ProbabilitySort list as

ProbabilitySort = [ ]( )⎭⎬⎫

⎩⎨⎧

⎭⎬⎫

⎩⎨⎧ × 1

12

6

000,10

10890109

The next best state vector in terms of being the next most probable state vector then is given as:  

[ ]( ) [ ]( )12

521

1010890109,00000 ×

→ 1 ,

as (1) and (2)

( )12

52

1010890109

1000000999000

100009900

1009 ×

=××=P ,

And where the bold face underlined switch state points to the active switch position. So, we set the Proposals list as

Page 76: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

75  

Proposals = [ ]( )

⎭⎬⎫

⎩⎨⎧

⎭⎬⎫

⎩⎨⎧ × 2

12

5

00,10

10890109 1

In the first iteration of the While-loop we then insert the most probable of the proposals in the probability sort list

ProbabilitySort = [ ]( ) [ ]( )

⎭⎬⎫

⎩⎨⎧

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ × 2

12

51

12

6

001,10

10890109,000,10

10890109

After we clean up the Proposals list as Proposals = { } We then go through the three offspring checkpoints:

 

[ ]( )

[ ]( )

[ ]( )

( )[ ]( ) n.a.,001,110

10890109,00

101098901,00

00 12

44

12

53

2

reject

×

×

→ 1

2

1  

 

So as we store the proposals [ ]( )3002 and [ ]( )400 1 into the Proposals list with the corresponding probabilities

Proposals = [ ]( ) [ ]( )⎭⎬⎫

⎩⎨⎧

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ × 4

12

43

12

5

00,10

10890109,00,10

1098901 12

In the next While-iteration we then have the most probable state vector [ ]( )3002  and add it together with its probability to the probability sort list, as we remove that entry from the proposals list:

ProbabilitySort =

[ ]( )

[ ]( )

[ ]( )⎭⎬⎫

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎩⎨⎧

⎭⎬⎫

⎩⎨⎧ ×

312

5

212

5

112

6

002,10

1098901

,001,10

10890109

,000,10

10890109

 

Page 77: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

76  

Proposals = [ ]( )

⎭⎬⎫

⎩⎨⎧

⎭⎬⎫

⎩⎨⎧ × 4

12

4

00,10

10890109 1

We have in this While-iteration

 

[ ]( )[ ]( )

[ ]( )[ ]( )reject

reject

reject

001,20000

00 3 13

2 →  

 So, we have at the end of the While-iteration proposals list is not replenished.

Proposals = [ ]( )

⎭⎬⎫

⎩⎨⎧

⎭⎬⎫

⎩⎨⎧ × 4

12

4

00,10

10890109 1

In the next While-iteration we then have the most probable state vector [ ]( )400 1  and add it together with its probability to the probability sort list, as we remove that entry from the proposals list:

ProbabilitySort =

[ ]( )

[ ]( )

[ ]( )

[ ]( )

⎭⎬⎫

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎩⎨⎧

⎭⎬⎫

⎩⎨⎧ ×

412

4

312

5

212

5

112

6

010,10

10890109

,002,10

1098901

,001,10

10890109

,000,10

10890109

 

Proposals = { } We have in this While-iteration the parent [ ]( )400 1 , which begets the offspring  

[ ]( )

[ ]( )

[ ]( )

[ ]( )12

37

12

36

12

45

4

1010890109,01

1010890109,00

10108991,00

00

×

×

×

1

1

2

1    

Page 78: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

77  

So, we have at the end of the While-iteration the replenished proposals list

Proposals =

[ ]( )

[ ]( )

[ ]( )

⎭⎬⎫

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎩⎨⎧

⎭⎬⎫

⎩⎨⎧ ×

712

3

612

3

512

4

01,10

10890109

,00,10

10890109

,00,10108991

1

1

2

In the next While-iteration we then have as the most probable state vector a choice between [ ]( )600 1  and [ ]( )7011   .  We may choose either of these proposals and add it together with its probability to the probability sort list, as we remove that entry from the proposals list, say  

  ProbabilitySort =

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

⎭⎬⎫

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎩⎨⎧

⎭⎬⎫

⎩⎨⎧ ×

612

3

412

4

312

5

212

5

112

6

100,10

10890109

,010,10

10890109

,002,10

1098901

,001,10

10890109

,000,10

10890109

 

Proposals =

[ ]( )

[ ]( )

⎭⎬⎫

⎭⎬⎫

⎩⎨⎧ ×

⎩⎨⎧

⎭⎬⎫

⎩⎨⎧ ×

712

3

512

4

01,10

10890109

,00,10108991

1

2

We have in this While-iteration the parent [ ]( )600 1 , which begets the offspring  

Page 79: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

78  

  [ ]( )

[ ]( )

[ ]( )

[ ]( ) 12

29

12

38

6

1010890109,10

n.a.,0001010891,00

00×

×

1

1

2

1 reject  

 So, we have at the end of the While-iteration the replenished proposals list

Proposals =

[ ]( )

[ ]( )

[ ]( )

[ ]( )

⎭⎬⎫

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎩⎨⎧

⎭⎬⎫

⎩⎨⎧ ×

912

2

812

3

712

3

512

4

10,10

10890109

00,1010891

01,10

10890109

,00,10108991

1

2

1

2

 

In the next While-iteration we then have as the most probable state vector [ ]( )7011   .  We add it together with its probability to the probability sort list, as we remove that entry from the proposals list:  

  ProbabilitySort =

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

⎭⎬⎫

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎩⎨⎧

⎭⎬⎫

⎩⎨⎧ ×

712

3

612

3

412

4

312

5

212

5

112

6

011,10

10890109

,100,10

10890109

,010,10

10890109

,002,10

1098901

,001,10

10890109

,000,10

10890109

 

   

Page 80: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

79  

Proposals =

[ ]( )

[ ]( )

[ ]( )⎭⎬⎫

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎩⎨⎧

⎭⎬⎫

⎩⎨⎧ ×

912

2

812

3

512

4

10,10

10890109

,00,1010891

,00,10108991

1

2

2

 

 

We have in the next While-iteration the parent [ ]( )7011 , which begets the offspring

  [ ]( )

[ ]( )

( )[ ]( )

( )[ ] n.a.,011,1n.a.,01,10

101098901,01

0112

310

7

reject

reject

×

2

1  

 So, we have at the end of the While-iteration the replenished proposals list  

Proposals =

[ ]( )

[ ]( )

[ ]( )

[ ]( )

⎭⎬⎫

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎩⎨⎧

⎭⎬⎫

⎩⎨⎧ ×

1012

3

912

2

812

3

512

4

01,10

1098901

,10,10

10890109

,00,1010891

,00,10108991

2

1

2

2

 

In the next While-iteration we then have as the most probable state vector [ ]( )10012   .  We add it together with its probability to the probability sort list,     ProbabilitySort =

Page 81: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

80  

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

⎭⎬⎫

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎩⎨⎧

⎭⎬⎫

⎩⎨⎧ ×

1012

3

712

3

612

3

412

4

312

5

212

5

112

6

012,10

1098901

,011,10

10890109

,100,10

10890109

,010,10

10890109

,002,10

1098901

,001,10

10890109

,000,10

10890109

 

 as we remove that entry from the proposals list. We have in this While-iteration the parent [ ]( )10012 , which begets no offspring  

  [ ]( )[ ]( )

( )[ ]( )

( )[ ]rejectreject

reject

011,201,1001

01 10

32 →  

 So, we have at the end of the While-iteration the updated proposals list  

  Proposals =

[ ]( )

[ ]( )

[ ]( )⎭⎬⎫

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎩⎨⎧

⎭⎬⎫

⎩⎨⎧ ×

912

2

812

3

512

4

10,10

10890109

,00,1010891

,00,10108991

1

2

2

 

 

In the next While-iteration we then have as the most probable state vector [ ]( )500 2   .  We add it together with its probability to the probability sort list,     ProbabilitySort =

Page 82: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

81  

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )⎭⎬⎫

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎩⎨⎧

⎭⎬⎫

⎩⎨⎧ ×

512

4

1012

3

712

3

612

3

412

4

312

5

212

5

112

6

020,10108991

,012,10

1098901

,011,10

10890109

,100,10

10890109

,010,10

10890109

,002,10

1098901

,001,10

10890109

,000,10

10890109

 

 as we remove that entry from the proposals list. We have in this While-iteration the parent [ ]( )500 2 , which begets the offspring

[ ]( )[ ]( )

[ ]( )

[ ]( )12

311

5

10108991,02

n.a.,00n.a.,00

00×

1

13

2 reject

reject

 

 So, we have at the end of the While-iteration the updated and replenished proposals list

Proposals =

[ ]( )

[ ]( )

[ ]( )

⎭⎬⎫

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎩⎨⎧

⎭⎬⎫

⎩⎨⎧ ×

1112

3

912

2

812

3

02,10108991

,10,10

10890109

,00,1010891

1

1

2

In the next While-iteration we then have as the most probable state vector [ ]( )9101   .  We add it together with its probability to the probability sort list, as we remove that entry from the proposals list:

Page 83: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

82  

    ProbabilitySort =

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

⎭⎬⎫

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎩⎨⎧

⎭⎬⎫

⎩⎨⎧ ×

912

2

512

4

1012

3

712

3

612

3

412

4

312

5

212

5

112

6

101,10

10890109

,020,10108991

,012,10

1098901

,011,10

10890109

,100,10

10890109

,010,10

10890109

,002,10

1098901

,001,10

10890109

,000,10

10890109

 

We have in this While-iteration the parent [ ]( )9101 , which begets the offspring  

  [ ]( )[ ]( )

[ ]( )

( )[ ]( ) n.a.,101,110

10890109,1010

1098901,10

10 1213

12

212

9

reject

×

×

→ 1

2

1  

 So, we have at the end of the While-iteration the updated and replenished proposals list

Page 84: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

83  

Proposals =

[ ]( )

[ ]( )

[ ]( )

[ ]( )

⎭⎬⎫

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎩⎨⎧

⎭⎬⎫

⎩⎨⎧ ×

1312

1

1212

2

1112

3

812

3

10,10

10890109

,10,10

1098901

,02,10108991

,00,1010891

1

2

1

2

In the next While-iteration we then have as the most probable state vector [ ]( )12102 . We add it together with its probability to the probability sort list, ProbabilitySort =

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

⎭⎬⎫

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎩⎨⎧

⎭⎬⎫

⎩⎨⎧ ×

1212

2

912

2

512

4

1012

3

712

3

612

3

412

4

312

5

212

5

112

6

102,10

1098901

,101,10

10890109

,020,10108991

,012,10

1098901

,011,10

10890109

,100,10

10890109

,010,10

10890109

,002,10

1098901

,001,10

10890109

,000,10

10890109

Page 85: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

84  

as we remove that entry from the proposals list. We have in this While-iteration the parent [ ]( )12102 , which begets no offspring

[ ]( )[ ]( )

[ ]( )

( )[ ]( )reject

reject

reject

101,21010

10 12 13

2 →    

So the updated proposals list at the end of the While-iterations is

Proposals =

[ ]( )

[ ]( )

[ ]( )

⎭⎬⎫

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎩⎨⎧

⎭⎬⎫

⎩⎨⎧ ×

1312

1

1112

3

812

3

10,10

10890109

,02,10108991

,00,1010891

1

1

2

In the next While-iteration we then have as the most probable state vector [ ]( )11021 . We add it together with its probability to the probability sort list,

Page 86: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

85  

ProbabilitySort =

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

⎭⎬⎫

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎩⎨⎧

⎭⎬⎫

⎩⎨⎧ ×

1112

3

1212

2

912

2

512

4

1012

3

712

3

612

3

412

4

312

5

212

5

112

6

021,10108991

,102,10

1098901

,101,10

10890109

,020,10108991

,012,10

1098901

,011,10

10890109

,100,10

10890109

,010,10

10890109

,002,10

1098901

,001,10

10890109

,000,10

10890109

as we remove that entry from the proposals list. We have in this While-iteration the parent [ ]( )11021 , which begets the offspring

[ ]( )

[ ]( )

( )[ ]( )

( )[ ]( ) n.a.,021,1n.a.,01,20

1010999,02

0212

314

11

reject

reject

×

2

1    

So the updated proposals list at the end of the While-iterations is

Page 87: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

86  

Proposals =

[ ]( )

[ ]( )

[ ]( )

⎭⎬⎫

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎩⎨⎧

⎭⎬⎫

⎩⎨⎧ ×

1412

3

1312

1

812

3

02,1010999

,10,10

10890109

,00,1010891

2

1

2

In the next While-iteration we then have as the most probable state vector [ ]( )1210 1 . We add it together with its probability to the probability sort list,

  ProbabilitySort =

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

⎭⎬⎫

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎩⎨⎧

⎭⎬⎫

⎩⎨⎧ ×

1312

1

1112

3

1212

2

912

2

512

4

1012

3

712

3

612

3

412

4

312

5

212

5

112

6

110,10

10890109

,021,10108991

,102,10

1098901

,101,10

10890109

,020,10108991

,012,10

1098901

,011,10

10890109

,100,10

10890109

,010,10

10890109

,002,10

1098901

,001,10

10890109

,000,10

10890109

 

Page 88: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

87  

as we remove that entry from the proposals list. We have in the next While-iteration the parent [ ]( )1310 1 , which begets the offspring  

  [ ]( )

[ ]( )

( )[ ]( )

[ ]( )12

16

1215

13

10890109,11

n.a.,1,10010

108991,10

10

1

2

1 reject

×

→  

 So, we have at the end of the While-iteration the updated and replenished proposals list

Proposals =

[ ]( )

[ ]( )

[ ]( )

[ ]( )

⎭⎬⎫

⎭⎬⎫

⎩⎨⎧

⎭⎬⎫

⎩⎨⎧ ×

⎭⎬⎫

⎩⎨⎧ ×

⎩⎨⎧

⎭⎬⎫

⎩⎨⎧ ×

1612

1512

1412

3

812

3

11,10890109

,10,10

108991

,02,1010999

,00,1010891

1

2

2

2

 

All the remaining proposals have probabilities smaller than 610− , which is why we (arbitrarily) terminate this pend-and-paper run. Note that we build in the (arbitrary) If-statement for crit = 610− into the algorithmic Step 6.a, 6.b, and 6.c, then the above Proposals list would have been empty and the algorithm would have terminated automatically at this point. We give below the rest of the event-tree coverage without the corresponding probabilities.  

[ ]( )[ ]( )

[ ]( )

[ ]( )17

8

2000000

001

13

2 reject

reject

→    

 

[ ]( )[ ]( )

( )[ ]( )

( )[ ]( )reject

reject

reject

021,201,2002

02 14

32 →  

 

Page 89: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

88  

[ ]( )[ ]( )

( )[ ]( )

[ ]( )18

15

121,10010

101

32 reject

reject

→    

 

[ ]( )[ ]( )

( )[ ]( )

( )[ ]( )reject

reject

111,111,1011

11

19

16

21 →    

 

[ ]( )[ ]( )

[ ]( )

( )[ ]( )reject201,12020

20 21

20

17 12

1 →    

 

[ ]( )[ ]( )

( )[ ]( )

( )[ ]( )reject

reject

121,111,2012

12

22

18

21 →  

 

[ ]( )[ ]( )

( )[ ]( )

( )[ ]( )reject

reject

reject

111,211,1011

11 19

32 →  

 

[ ]( )[ ]( )

[ ]( )

( )[ ]( )reject

reject

reject

201,22020

20 20 13

2 →  

   

[ ]( )[ ]( )

( )[ ]( )

[ ]( )24

23

21

211,20020

201

21 reject→    

 

[ ]( )[ ]( )

( )[ ]( )

( )[ ]( )reject

reject

reject

121,211,2012

12 22

32 →    

 

[ ]( )[ ]( )

( )[ ]( )

[ ]( )25

23

221,20020

201

32 reject

reject

→    

 

Page 90: Security Sensitivity Committee Deliverable Evaluationrain-project.eu/wp-content/uploads/2017/08/D5_2_Final...RAIN – Risk Analysis of Infrastructure Networks in Response to Extreme

        D5.2- Report on risk analysis framework for impacts of cascading effects

89  

[ ]( )[ ]( )

( )[ ]( )

( )[ ]( )reject

reject

211,121,1021

21

26

24

21 →  

 

[ ]( )[ ]( )

( )[ ]( )

( )[ ]( )reject

reject

221,121,2022

22

27

25

21 →  

 

[ ]( )[ ]( )

( )[ ]( )

( )[ ]( )reject

reject

reject

211,221,1021

21 26

32 →  

 

  [ ]( )[ ]( )

( )[ ]( )

( )[ ]( )reject

reject

reject

221,221,2022

22 27

32 →

 

And we see that the algorithm covers all of the 2733 ==NM leaves in our event tree.