sections12.1-3

Upload: delu19980809809809

Post on 03-Jun-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 Sections12.1-3

    1/14

    12.1 Introduction to column buckling

    Buckling: Buckling can be defined as the

    sudden large deformation of structure due to a

    slight increase of an existing load under whichthe structure had exhibited little, if any,

    deformation before the load was increased. No

    failure implied!!!

    Reinforced concrete steel

  • 8/12/2019 Sections12.1-3

    2/14

    Stability of equilibrium condition

    Easy to visualize for a ball on a surface

    Note that we use curvature to decidestability, but the surface can curve up with

    zero curvature

  • 8/12/2019 Sections12.1-3

    3/14

    Euler formula For simply supported column

    ( )

    2 22

    22 or using ,

    /

    / : Slenderness ratio

    cr cr

    EI EAP I Ar P

    L r

    L r

    = = =

  • 8/12/2019 Sections12.1-3

    4/14

    Large displacements Slenderness ratio and yield stress govern type of

    post-buckling response

    Dashed lines represent behavior without yielding

  • 8/12/2019 Sections12.1-3

    5/14

    Governing equation for beam column

    +

    =

    =

    +=

    +=

    =+

    ==

    xEI

    PBx

    EI

    PAxy

    EI

    P

    ODE

    xBxAdx

    yd

    xBxAxyTry

    yEI

    P

    dx

    yd

    y

    EI

    P

    EI

    M

    dx

    yd

    sincos)(

    :intoSubstitute

    ))sin()cos((

    )sin()cos()(:

    0

    2

    2

    2

    2

    2

    2

    2

  • 8/12/2019 Sections12.1-3

    6/14

    Apply boundary conditions

    2

    2

    2

    2

    22

    2

    2

    2

    22

    )/(:loadbucklingcriticalatstress(normal)eCompressiv

    ratiosSlendernes:/

    )/(,usingor

    loadbucklingcriticalthedefines1npinned,endsbothhcolumn witaFor

    gyration.ofradiustheis

    mode.bucklingthedefiningintegertheis

    ,..3,2,10sin

    0)(0)0(

    rL

    E

    A

    P

    rL

    rL

    EIPArI

    L

    EIP

    AIrwhereArI

    nL

    EInP

    nnL

    EI

    PL

    EI

    PB

    yand

    cr

    cr

    crcr

    ==

    ===

    =

    ==

    =

    ===

    ==

  • 8/12/2019 Sections12.1-3

    7/14

    Example 1A 3m column with the cross section shown is constructed from two

    pieces of timber, that act as a unit. If the modulus of elasticity of timberis E=13 GPa, determine a) The slenderness ratio b) Critical bucklingload c) Axial stress in the column when the critical load is applied

    mmrr

    mmA

    Imm

    A

    I

    mmI

    mmI

    mmy

    mmA

    yx

    y

    x

    c

    3.32

    3.32rand51.59r

    inertiaofRadii

    10x625.1512

    )50(150

    12

    )150(50

    10x13.53)50)(50(15012

    )150(50)50)(50(150

    12

    )50(150

    sectioncrosstheofcentroidabout theinertiaofMoments

    bottomfrom75000,15

    )150)(50)(7550()150)(50(25

    000,15)50)(150(2sectioncrosstheofProperties

    min

    yx

    4633

    4623

    23

    2

    ==

    ====

    =+=

    =+++=

    =++

    =

    ==

    MParLE

    APc

    kNrL

    EAPb

    a

    crcr

    cr

    85.14)/(

    StressBucklingCritical)

    75.222)/(

    LoadBucklingCritical)

    933.32

    3000

    r

    LratiosSlendernes)

    2

    2

    2

    2

    ===

    ==

    ==

  • 8/12/2019 Sections12.1-3

    8/14

    Example 2

    C229 x 30 structural steel channels with E=200 GPa are used for a 12m column. Determine the total compressive load required to buckle

    the column if a) One channel is used b) Two channels are laced 150

    mm back to back as shown

    4646

    2

    10x01.110x3.25

    8.143795

    channeloneforpropertiesSection

    mmImmI

    mmxmmA

    ycxc

    c

    ==

    ==

  • 8/12/2019 Sections12.1-3

    9/14

    Solution for single channel

    .

    kNrL

    EAP

    r

    L

    mmrr

    mmA

    Irmm

    A

    Ir

    cr

    y

    yx

    x

    82.13)/(

    :loadBucklingCritical

    2.736

    3.16

    12000:ratiosSlendernes

    3.16

    3.16and1.81

    channelsingleaofinertiaofRadii

    2

    2

    min

    ==

    ==

    ==

    ====

  • 8/12/2019 Sections12.1-3

    10/14

    Two laced channels.

    [ ]

    kNrL

    EA

    P

    r

    L

    mmrrmm

    A

    Irmm

    A

    Ir

    mmAII

    mmII

    mmA

    cr

    y

    yx

    x

    ycy

    cxx

    3.694)/(:loadBucklingCritical

    9.1467.81

    12000:ratiosSlendernes

    7.813.91and7.81

    :inertiaofRadii

    10x23.63)8.1475(2

    10x6.502

    :sectioncrosstheofcentroidabout theinertiaofMoments

    7590)3975(2

    2

    2

    min

    462

    46

    3

    ==

    ==

    ======

    =++=

    ==

    ==

  • 8/12/2019 Sections12.1-3

    11/14

    Higher buckling modes

    With appropriate boundary

    conditions can get higher

    modes

    2

    2

    )2(

    2

    2

    )/(4

    44

    rL

    E

    A

    P

    PL

    EI

    P

    cr

    cr

    ==

    ==

    Buckling modes : n = 1,2,3.

  • 8/12/2019 Sections12.1-3

    12/14

    Imperfection approach

    Put in imperfection in the form of eccentricity

    Moment equation

    L

    x

    PePyxM =)(

    Eccentrically loaded pinned-end columns

  • 8/12/2019 Sections12.1-3

    13/14

    Solution of eccentric load Differential equation of equilibrium

    General solution

    With boundary conditions

    LxforyEI

    Pk

    L

    xekyk

    dx

    yd

    ,00

    , 22

    2

    2

    2

    ==

    ==+

    L

    exxkBxkAy += cossin

    = L

    x

    Lk

    xk

    ey sin

    sin

  • 8/12/2019 Sections12.1-3

    14/14

    Reading assignment

    Sections 12.3-4: Question: Why equation 12.26 does not really

    guarantee buckling? What does it guarantee?

    Source: www.library.veryhelpful.co.uk/ Page11.htm