section—a / ¸»ÝwÜ>—a

12
SECTION—A / » W‹ >—A 1.(a) (I) Explain D’Alembert’s principle. r D¯ÉA§mïð£À vÀvÀéªÀ£ÀÄß «ªÀj¹. (II) The crank and connecting rod of a vertical petrol engine running at 1800rpm are 60mm and 270mm respectively. The diameter of the piston is 100mm and the mass of the reciprocating parts is 1.2kg. During the expansion stroke when the crank has turned 20 0 from the top dead centre, the gas pressure is 650kN/m 2 . Determine the (i) Net force on the piston (ii) Net load on the gudgeon pin (iii) Thrust on the cylinder walls (iv) Speed at which the gudgeon pin load is reversed in direction PÁæAPï ªÀÄvÀÄÛ ®A§vÀ® ¥ÉmÉÆæïï JAf£ï£À ¸ÀA¥ÀQðvÀ ¸ÀgÀ¼ÀÄUÀ¼ÀÄ 1800rpm £À°è PÀæªÀĪÁV 60mm ªÀÄvÀÄÛ 270mm ZÀ°¸ÀÄwÛªÉ. ¦¸ÀÖ£ï£À ªÁå¸ÀªÀÅ 100mm ªÀÄvÀÄÛ »AzÉ ªÀÄÄAzÉ ZÀ°¸ÀĪÀ K¥Áðn£À JAf£ï£À ¨sÁUÀUÀ¼À gÁ²AiÀÄÄ 1.2kg. «¸ÀÛgÀuÁ ºÉÆqÉvÀzÀ CªÀ¢üAiÀÄ°è PÁæAPï ªÉÄïÁãUÀzÀ ¤±ÉÑÃvÀ£À PÉÃAzÀæ¢AzÀ 20 0 wgÀÄUÀÄvÀÛzÉ. C¤® MvÀÛqÀªÀÅ 650kN/m 2 EzÀÄÝ PɼÀV£ÀªÀÅUÀ¼À£ÀÄß ¤zsÀðj¹. (i) ¦¸ÀÖ£ï£À ªÉÄð£À ¤ªÀé¼À §® (ii) wgÀÄUÁt ¦£ï ªÉÄð£À ¤ªÀé¼À ºÉÆgÉ (iii) ¹°AqÀgï UÉÆÃqÉUÀ¼À ªÉÄð£À zÀÆrPÉ (MvÀÛqÀ) (iv) wgÀÄUÁt ¦£ï£À ºÉÆgÉAiÀÄÄ vÀ£Àß ¢QÌ£À°è »AZÁ®£ÉAiÀiÁzÀ (ªÀåwjPÀÛ ) ªÉÃUÀ [5+20 Marks] 16/I-Mechanical Engineering 1 1.(b) (I) Briefly explain shrink fit with example. ²æAPï ¦ümï£ÀÄß GzÁºÀgÀuÉAiÉÆA¢UÉ «ªÀj¹. (II) A thick walled cylindrical pressure vessel has inner radius of 150mm and outer radius of 185mm. Draw a sketch showing the radial pressure and hoop stress distribution in the section of the cylinder wall, when an internal pressure of 10MN/m 2 is applied. zÀ¥Àà£ÉAiÀÄ ©üwÛAiÀÄ ¹°AqÀgï MvÀÛqÀ ¨sÁAqÀªÀÅ DAvÀjPÀ ªÁå¸À 150mm ªÀÄvÀÄÛ ¨ÁºÀå ªÁå¸À 185mm £ÀÄß ºÉÆA¢zÉ. DAvÀjPÀ MvÀÛqÀ 10MN/m 2 £ÀÄß C£Àé¬Ä¹zÁUÀ, ¹°AqÀgï ©üwÛAiÀÄ «¨sÁUÀzÀ°è £À gÉÃrAiÀįï MvÀÛqÀ ªÀÄvÀÄÛ ¸ÀÄvÀÄÛUÀnÖ£À MvÀÛqÀzÀ «vÀgÀuÉAiÀÄ£ÀÄß vÉÆÃj¸ÀĪÀ avÀæªÀ£ÀÄß gÀa¹. [5+20 Marks] Time : 3 hours ‹ ‹Æ Æ : 3 W‹ pW‹ ‹Æ Maximum Marks : 250 W‹ƒ–‹u A P‹W‹ ‹Æ: 250

Upload: others

Post on 16-Oct-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

SECTION—A / Àª›W‹>—A

1.(a) (I) Explain D’Alembert’s principle.

r D¯ÉA§mïð£À vÀvÀéªÀ£ÀÄß «ªÀj¹.

(II) The crank and connecting rod of a vertical petrol engine running at

1800rpm are 60mm and 270mm respectively. The diameter of the

piston is 100mm and the mass of the reciprocating parts is 1.2kg.

During the expansion stroke when the crank has turned 200 from the top

dead centre, the gas pressure is 650kN/m2 . Determine the

(i) Net force on the piston

(ii) Net load on the gudgeon pin

(iii) Thrust on the cylinder walls

(iv) Speed at which the gudgeon pin load is reversed in direction

PÁæAPï ªÀÄvÀÄÛ ®A§vÀ® ¥ÉmÉÆæïï JAf£ï£À ¸ÀA¥ÀQðvÀ ¸ÀgÀ¼ÀÄUÀ¼ÀÄ 1800rpm £À°è PÀæªÀĪÁV 60mm ªÀÄvÀÄÛ 270mm ZÀ°¸ÀÄwÛªÉ. ¦¸ÀÖ£ï£À ªÁå¸ÀªÀÅ 100mm ªÀÄvÀÄÛ »AzÉ ªÀÄÄAzÉ ZÀ°¸ÀĪÀ K¥Áðn£À JAf£ï£À ¨sÁUÀUÀ¼À gÁ²AiÀÄÄ 1.2kg.

«¸ÀÛgÀuÁ ºÉÆqÉvÀzÀ CªÀ¢üAiÀÄ°è PÁæAPï ªÉÄïÁãUÀzÀ ¤±ÉÑÃvÀ£À PÉÃAzÀæ¢AzÀ 200

wgÀÄUÀÄvÀÛzÉ. C¤® MvÀÛqÀªÀÅ 650kN/m2 EzÀÄÝ PɼÀV£ÀªÀÅUÀ¼À£ÀÄß ¤zsÀðj¹.

(i) ¦¸ÀÖ£ï£À ªÉÄð£À ¤ªÀé¼À §®

(ii) wgÀÄUÁt ¦£ï ªÉÄð£À ¤ªÀé¼À ºÉÆgÉ

(iii) ¹°AqÀgï UÉÆÃqÉUÀ¼À ªÉÄð£À zÀÆrPÉ (MvÀÛqÀ)

(iv) wgÀÄUÁt ¦£ï£À ºÉÆgÉAiÀÄÄ vÀ£Àß ¢QÌ£À°è »AZÁ®£ÉAiÀiÁzÀ (ªÀåwjPÀÛ) ªÉÃUÀ

[5+20 Marks]

16/I-Mechanical Engineering 1

1.(b) (I) Briefly explain shrink fit with example.

²æAPï ¦ümï£ÀÄß GzÁºÀgÀuÉAiÉÆA¢UÉ «ªÀj¹.

(II) A thick walled cylindrical pressure vessel has inner radius of 150mm

and outer radius of 185mm. Draw a sketch showing the radial pressure

and hoop stress distribution in the section of the cylinder wall, when an

internal pressure of 10MN/m2 is applied.

zÀ¥Àà£ÉAiÀÄ ©üwÛAiÀÄ ¹°AqÀgï MvÀÛqÀ s̈ÁAqÀªÀÅ DAvÀjPÀ ªÁå¸À 150mm ªÀÄvÀÄÛ ¨ÁºÀå

ªÁå¸À 185mm £ÀÄß ºÉÆA¢zÉ. DAvÀjPÀ MvÀÛqÀ 10MN/m2 £ÀÄß C£Àé¬Ä¹zÁUÀ,

¹°AqÀgï ©üwÛAiÀÄ « s̈ÁUÀzÀ°è£À gÉÃrAiÀįï MvÀÛqÀ ªÀÄvÀÄÛ ¸ÀÄvÀÄÛUÀnÖ£À MvÀÛqÀzÀ«vÀgÀuÉAiÀÄ£ÀÄß vÉÆÃj¸ÀĪÀ avÀæªÀ£ÀÄß gÀa¹. [5+20 Marks]

Time : 3 hours ”‹ ‹·ø· : 3 W‹ÌpÊW‹Ÿ‹·

Maximum Marks : 250

W‹ƒ–‹u AÌP‹W‹Ÿ‹·: 250

2.(a) (I) Explain Gyroscopic effect on Aeroplanes.

KgÉÆÃ¥ÉèãïUÀ¼À ªÉÄð£À eÉÊgÉÆøÉÆÌæPï (¨sÀæªÀÄt zÀ±ÀðQÃAiÀÄ) ¥ÀjuÁªÀĪÀ£ÀÄß«ªÀj¹.

(II) A rail car has a total mass of 4000kg. The moment of inertia of each

wheel together with it’s gearing is 20kg.m2. The centre distance

between the two wheels on an axle is 1.5m and each wheel is of 400mm

radius, each axle is driven by a motor, the speed ratio between the two

being 1:14. Each motor with it’s gear has a moment of inertia of

15kg.m2 and runs in a direction opposite to that of its axle. The centre

of gravity of the car is 1m above the rails.

Determine the limiting speed for the car when moving on a curve of

250m radius such that no wheel leaves the rails.

MAzÀÄ gÉ樀 PÁgÀÄ MlÄÖ 4000kg AiÀÄ gÁ²AiÀÄ£ÀÄß ºÉÆA¢zÉ. ¥ÀæwAiÉÆAzÀÄ ZÀPÀæzÀ

dqÀvÁ ªÀĺÀvÀÛ÷éªÀÅ CzÀgÀ UÉÃjAUï£ÉÆA¢UÉ MlÄÖ ¸ÉÃj 20kg.m2 EzÉ. DåPÉì̄ ï£À

JgÀqÀÄ ZÀPÀæUÀ¼À PÉÃAzÀæzÀ £ÀqÀÄ«£À CAvÀgÀ 1.5m ªÀÄvÀÄÛ ¥ÀæwAiÉÆAzÀÄ ZÀPÀæªÀÇ

400 mm wædå EzÉ. ¥ÀæwAiÉÆAzÀÄ DåPÉì̄ ï MAzÀÄ ªÉÆÃmÁgï¤AzÀ ZÀ°¸À®àmÁÖUÀ,JgÀqÀgÀ £ÀqÀĪÀt ªÉÃUÀzÀ C£ÀÄ¥ÁvÀªÀÅ 1:14. ¥ÀæwAiÉÆAzÀÄ ªÉÆÃmÁgÀÄ CzÀgÀ

UÉÃgï£ÉÆA¢UÉ 15 kg.m2 £À dqÀvÁ ªÀĺÀvÀÛ÷éªÀ£ÀÄß ºÉÆA¢zÉ ªÀÄvÀÄÛ CzÀÄ CzÀgÀDåPÉì̄ ï£À «gÀÄzÀÞ ¢QÌ£À°è ZÀ°¸ÀÄwÛzÉ. PÁj£À UÀÄgÀÄvÁéPÀµÀðt PÉÃAzÀæªÀÅ gÉÊ°£ÀzÀQÌAvÀ®Æ

1 m ªÉÄð£ÀzÀÄ.

MAzÀÄ wgÀÄ«£À°è 250m wædåzÀ wgÀÄ«£À ªÉÄÃ¯É PÁgÀÄ ZÀ°¸ÀÄwÛzÀÄÝ, CzÀgÀ AiÀiÁªÀÅzÉÃ

ZÀPÀæªÀÇ gÉÊ®ÄUÀ¼À£ÀÄß ©qÀzÀAvÉ, PÁj£À «ÄwAiÀÄ ªÉÃUÀªÀ£ÀÄß ¤zsÀðj¹.[5+20 Marks]

2.(b) State the principle of virtual work? Evaluate external crank shaft torque by

considering slider crank mechanism. [25 Marks]

ªÀ¸ÀÄÛvÀB PÁAiÀÄðzÀ vÀvÀéªÀ£ÀÄß ¤gÀƦ¹. ¸ÉèöÊqÀgï PÁæAPï£À QæAiÀiÁ«£Áå¸ÀªÀ£ÀÄߥÀjUÀtÂ̧ ÀĪÀÅzÀjAzÀ ¨ÁºÀå PÁæAPï µÁ¥sïÖ£À s̈ÁæªÀÄPÀzÀ ªÀiË®åªÀiÁ¥À£À ªÀiÁr.

3.(a) [20 Marks]Describe Single block brake with neat sketch.

KPÀ ¨ÁèPï ¨ÉæÃPï£ÀÄß CAzÀªÁzÀ avÀæzÉÆA¢UÉ «ªÀj¹.

3.(b) A Bicycle and rider of mass 100kg are travelling at the rate of 16 km/hr on a

level road. A brake is applied to the rear wheel which is 0.9mt in a diameter

and this is the only resistance acting. How far will the bicycle travel and

how many turns will it make before it comes to rest? The pressure applied

on the brake is 100N and m=0.5 [30 Marks]

100 kg ®‹≈ ‹¬-√›-Œø· JÌ®‹· ∏ÊÁ‘-P‹«Ö  ‹·Ò‹·§ ”‹ ›-√‹√‹· JÌ®‹·  ‹·or-”‹ √‹”ʧø·  Ê·‡«Ê W‹ÌpÊWÊ

16Q.À·‡.  Ê‡W‹®‹ ®‹√‹-®‹»… a‹»-”‹·-£§-®›™√Ê. 0.9mt  ›¬”‹- ‹‚Ÿ‹¤ √ʇ√Ö (◊̪›-W‹-®‹) a‹P‹≈®‹  Ê·‡«Ê

∏Ê≈‡PÖÆ‹·∞ AÆ‹Ã-¿·-”‹-«›-X®Ê  ‹·Ò‹·§ C®Ê„̮ʇ √Ê„‡´‹-P‹- ›X  ‹£Ï-”‹·-£§-√‹·- ‹‚®‹·. A®‹· ØÕ‹c∆ ‘ߣWÊ

ü√‹· ‹  ‹··Æ‹∞ G–‹·r ®‹„√‹ ∏ÊÁ‘-P‹«Ö a‹»-”‹-ü-∆…®‹·?  ‹·Ò‹·§ A®‹· G–‹·r ”‹·Ò›§-W‹-Ÿ‹-Æ‹·∞Ìo·  ‹fiv‹·-Ò‹§®Ê?

∏Ê≈‡PÖÆ‹  Ê·‡«Ê AÆ‹Ã-¿·-”‹-«›®‹ JÒ‹§-v‹- ‹‚ 100N and m=0.5

4.(a) (I) Explain briefly the principal plane and principal stresses.

¥ÀæzsÁ£À ¸ÀªÀÄvÀ® ªÀÄvÀÄÛ ¥ÀæzsÁ£À MvÀÛqÀUÀ¼À£ÀÄß ¸ÀAPÉëÃ¥ÀªÁV «ªÀj¹.

(II) The stresses at point of a machine component are 150 MPa and 50MPa

both tensile. Find the intensities of normal, shear and resultant

stresses on a plane inclined at an angle of 550 with the axis of major

tensile stress. Also find the magnitude of the maximum shear stress in

the component.

MAzÀÄ AiÀÄAvÀæ WÀlPÀzÀ ©AzÀÄ«£À°è£À MvÀÛqÀUÀ¼ÀÄ 150 MPa ªÀÄvÀÄÛ 50 MPa JgÀqÀÆ

PÀµÀðPÀ§®UÀ¼ÀÄ. ¥ÀæzsÁ£À PÀµÀðPÀ MvÀÛqÀzÀ CPÀëzÀ°è£À 550 ¨ÁUÀÄ«PÉAiÀÄ PÉÆãÀzÀ

¸ÀªÀÄvÀ®zÀ ªÉÄð£À ¸ÁªÀiÁ£Àå, wjZÀÄ ªÀÄvÀÄÛ ¥ÀjuÁªÀÄPÀ MvÀÛqÀUÀ¼À wêÀævÉAiÀÄ£ÀÄßPÀAqÀÄ»r¬Äj. WÀlPÀzÀ°è£À UÀjµÀ× wjZÀÄ MvÀÛqÀzÀ ¥ÀæªÀiÁt (§ÈºÀvÀé)ªÀ£ÀÄß ¸ÀºÁPÀAqÀÄ »r¬Äj. [5+20 Marks]

4.(b) (I) Explain briefly the various theories of failure.

ªÉÊ¥sÀ®åzÀ ««zsÀ ¹zÁÞAvÀUÀ¼À£ÀÄß ¸ÀAQë¥ÀÛªÁV «ªÀj¹

(II) A beam of rectangular cross section has a span of 4.8 metres and is

simply supported at its ends. It is required to carry a total load of

4.5 KN, uniformly distributed over the whole span. Find the values of

the breadth (b) and depth (d) of the beam, if maximum bending stress is

not to exceed 7 MPa and maximum deflection is limited to 9.5 mm.

Take modulus of elasticity as 10.5 GPa.

MAzÀÄ DAiÀÄvÁPÁgÀzÀ CqÀغÁ¬ÄPÉ (PÁæ̧ ï ¸ÉPÀë£ï) « s̈ÁUÀzÀ zÀÆ®ªÀÅ 4.8«ÄÃlgïUÀ¼À GzÀݪÀ£ÀÄß ºÉÆA¢zÉ ªÀÄvÀÄÛ CzÀgÀ vÀÄ¢UÀ¼À°è ¸ÀgÀ¼ÀªÁV ¨ÉA§®ªÀ£ÀÄß

¥ÀqÉ¢zÉ. CzÀÄ 4.5 KN UÀ¼À MlÄÖ ºÉÆgÉAiÀÄ£ÀÄß ºÉÆgÀ¨ÉÃPÁVzÀÄÝ CzÀÄ ErÃGzÀÝzÀ ªÉÄÃ¯É ¸ÀªÀiÁ£ÀªÁV ºÀAaPÉAiÀiÁVgÀĪÀAvÉ s̈Àj¸À¯ÁVzÉ. D zÀAqÀzÀ CUÀ®

(b) ªÀÄvÀÄÛ D¼À (d) UÀ¼À ªÀiË®åUÀ¼À£ÀÄß PÀAqÀÄ»r¬Äj. UÀjµÀê ¨ÁUÀÄ«PÉAiÀÄ MvÀÛqÀ

7 MPa AiÀÄ£ÀÄß «ÄÃgÀ¢zÀÝ°è ªÀÄvÀÄÛ «ZÀ®£À/N®ÄªÉAiÀÄ£ÀÄß UÀjµÀÙ 9.5 mm UÉ

«ÄwUÉƽ¹zÀÝ°è, 10.5 GPa AiÀiÁV ¹Üw¸ÁÜ¥ÀPÀvÉAiÀÄ ªÀiÁqÀÄ宸ï£ÀÄß PÀAqÀÄ »r¬Äj.[10+15 Marks]

SECTION—B / Àª›W‹>—B

5.(a) Discuss the criteria used for machinability and methods of measuring tool

life.

A tool life of 100 minutes is obtained at 25 m/min and 6 minutes at

70 m/min. Calculate tool life index (n). What is the cutting speed for 1

minute life and 60 minute life? [25 Marks]

ªÉĶ£ï©°n ªÀÄvÀÄÛ ¸À®PÀgÀuÉAiÀÄ fëvÀªÀ£Àß¼ÉAiÀÄĪÀ «zsÁ£ÀUÀ½UÉ §¼À¸À¯ÁUÀĪÀªÀiÁ£ÀzÀAqÀªÀ£ÀÄß ZÀað¹. MAzÀÄ ¸À®PÀgÀuÉAiÀÄ 100 ¤«ÄµÀUÀ¼À fëvÀªÀ£ÀÄß

25 m/¤«ÄµÀUÀ¼À°è ¥ÀqÉAiÀįÁVzÉ ªÀÄvÀÄÛ 6 ¤«ÄµÀUÀ¼À fëvÀªÀ£ÀÄß 70 m/¤«ÄµÀUÀ¼À°è

¥ÀqÉAiÀįÁVzÉ. ¸À®PÀgÀuÉAiÀÄ fëvÀ ¸ÀÆZÀåAPÀªÀ£ÀÄß (n) ¯ÉQ̹. 1 ¤«ÄµÀ fëvÀ ªÀÄvÀÄÛ 60 ¤«ÄµÀ fëvÀPÁÌV PÀvÀÛj¸ÀĪÀ ªÉÃUÀªÀÅ JµÀÄÖ?

5.(b) Explain clearly the factors considered in designing a work station. Draw a

work station layout for a cylindrical grinding machine showing space

requirements. [25 Marks]

MAzÀÄ PÁAiÀÄð PÉÃAzÀæzÀ «£Áå¸ÀPÁÌV ¥ÀjUÀtÂ̧ ÀĪÀ CA±ÀUÀ¼À£ÀÄß ¸ÀàµÀÖªÁV «ªÀj¹.¹°AræPÀ¯ï UÉæöÊArAUï AiÀÄAvÀæPÁÌV ¸ÀܼÁªÀPÁ±ÀªÀ£ÀÄß vÉÆÃj¸ÀĪÀAvÉ PÁAiÀÄð PÉÃAzÀæ «£Áå¸À gÀZÀ£ÉAiÀÄ£ÀÄß awæ¹.

6. With neat setup line diagram explain the working principle of Ultrasonic

Machining and explain the different components of Ultrasonic Machining

system. With simple graphs explain the important process parameters of

Ultrasonic Machining process. [50 Marks]

CAzÀªÁzÀ ªÀåªÀ¸ÉÜAiÀÄ gÉÃR£À gÉÃSÁavÀæzÉÆA¢UÉ ±ÀæªÀuÁwÃvÀ ªÉĶ¤AUï£À PÁAiÀÄð vÀvÀéªÀÄvÀÄÛ ±ÀæªÀuÁwÃvÀ ªÉĶ¤AUï ªÀåªÀ¸ÉÜAiÀÄ «©ü£Àß WÀlPÀUÀ¼À£ÀÄß «ªÀj¹. ¸ÀgÀ¼À £ÀPÉëUÀ¼ÉÆA¢UɱÀæªÀuÁwÃvÀ ªÉĶ¤AUï ¥ÀæQæAiÉÄAiÀÄ ¥ÀæªÀÄÄR ¥ÀæQæAiÀiÁ ¥ÀæZÀÄgÀUÀ¼À£ÀÄß «ªÀj¹.

7.(a) What do you mean by Vee and conical locators in Jig design? With simple

sketches explain any two types of locators in each category. With neat

sketches explain Channel and Leaf (Lath) jigs. [25 Marks]

fUï «£Áå¸ÀzÀ°è£À «Ã ªÀÄvÀÄÛ ±ÀAPÁéPÀÈwAiÀÄ £É¯É ¤zÉÃð±ÀPÀUÀ¼ÉAzÀgÉãÀÄ? ¥ÀæwAiÉÆAzÀÄ¥ÀæªÀUÀðzÀ°è£À JgÀqÀÄ «zsÀUÀ¼À £É¯É ¤zÉÃð±ÀPÀUÀ¼À£ÀÄß ¸ÀgÀ¼À avÀæUÀ¼ÉÆA¢UÉ «ªÀj¹. ZÁ£É¯ï ªÀÄvÀÄÛ °Ã¥sï (®vï) fUïUÀ¼À£ÀÄß CAzÀªÁzÀ avÀæUÀ¼ÉÆA¢UÉ «ªÀj¹.

7.(b) (i) What are the various uses of predetermined motion time standard

(PMTS)?

¥ÀƪÀð ¤zsÁðjvÀ ZÀ®£À ¸ÀªÀÄAiÀÄ ²µÀÖ£À (PMTS) £À ««zsÀ G¥ÀAiÉÆÃUÀUÀ¼ÁªÀŪÀÅ?

(ii) List and explain four kinds of values in value engineering.

 ›¬∆„¬ GÌi-Ø-ø·-ƒÌWÖ-Æ‹»…  ›¬∆„¬-W‹-Ÿ‹-»…Æ‹ 4 Ø´‹-W‹-Ÿ‹Æ‹·∞ ±‹qr- ‹fiw  ‹·Ò‹·§ À ‹-ƒ-‘.

(iii) Design of workplace is an important aspect of man-machine system,

discuss its importance.

PÁAiÀÄð¸ÀܼÀzÀ «£Áå¸ÀªÀÅ ªÀiÁ£ÀªÀ-AiÀÄAvÀæ ªÀåªÀ¸ÉÜAiÀÄ ¥ÀæªÀÄÄR CA±ÀªÁVzÉ. CzÀgÀªÀĺÀvÀéªÀ£ÀÄß «ªÀj¹. [25 Marks]

8. Explain the importance of Transportation model and show that it can be

considered as Lpp. Solve the following transportation problem in which cell

entries represent unit costs. [50 Marks]

¸ÁUÀuÉ ªÀiÁzÀjAiÀÄ ¥ÁæªÀÄÄRåªÀ£ÀÄß «ªÀj¹ ªÀÄvÀÄÛ CzÀ£ÀÄß Lpp AiÀiÁV¥ÀjUÀtÂ̧ À§ºÀÄzÉA§ÄzÀ£ÀÄß vÉÆÃj¹. PÉÆñÀ £ÀªÀÄÆzÀÄUÀ¼ÀÄ WÀlPÀ ªÉZÀÑUÀ¼À£ÀÄß ¥Àæw¤¢ü¸ÀĪÀ°èPɼÀV£À ¸ÁUÀuÁ ¸ÀªÀĸÉåAiÀÄ£ÀÄß ©r¹.

To UÉ Available ® s̈Àå

From EAzÀ

2 7 4 5

3 3 1 8

5 4 7 7

1 6 2 14

Required

CUÀvÀå«gÀĪÀÅzÀÄ

7 9 18 34

SECTION—A / Àª›W‹>—A

1.(a) A reversible heat engine is supplied with heat from two constant

temperature sources at 900 K and 600 K and rejects heat to a constant

temperature sink at 300 K. The engine develops work equivalent to

90KJ/Sec. and rejects heat at rate of 56 KJ/Sec. Calculate heat supplied by

each source. [25 Marks]

jªÀ¹ð§¯ï («¥ÀAiÀÄðAiÀÄPÀ) GµÀÚ JAf£ïUÉ JgÀqÀÄ ¹ÜgÀ vÁ¥À DPÀgÀUÀ½AzÀ 900 K

ªÀÄvÀÄÛ 600 K UÀ¼À°è ±ÁR/vÁ¥ÀªÀ£ÀÄß ¥ÀÆgÉʸÀ¯ÁVzÉ ªÀÄvÀÄÛ MAzÀÄ ¹ÜgÀ GµÀÚvÁ ±ÁR

ZÉÆõÀuÉAiÀÄÄ 300 K AiÀÄ°è vÁ¥ÀªÀ£ÀÄß wgÀ¸ÀÌj¸ÀÄvÀÛzÉ. JAf£ï, 90 KJ/¸ÉPÉAqïUÉ

¸ÀªÀiÁ£ÀªÁUÀĪÀAvÉ PÁAiÀÄð ¨É¼ÀªÀtÂUÉAiÀÄ£ÀÄß GAlÄ ªÀiÁqÀÄvÀÛzÉ ªÀÄvÀÄÛ 56 KJ/¸ÉPÉAqïzÀgÀzÀ°è GµÀÚªÀ£ÀÄß wgÀ¸ÀÌj¸ÀÄvÀÛzÉ. ¥ÀæwAiÉÆAzÀÄ DPÀgÀ¢AzÀ ¥ÀÆgÉʸÀ¯ÁzÀ GµÀÚvÉAiÀÄ£ÀÄ߯ÉPÁÌZÁgÀ ªÀiÁr.

16/II-Mechanical Engineering 2

1.(b) Using Rayleigh’s method find an expression for the drag force on smooth

sphere of diameter ‘D’, moving with a velocity ‘V’ in a fluid of density ‘r’and

dynamic viscosity ‘m’. [25 Marks]

gÉðUïì£À «zsÁ£ÀªÀ£ÀÄߥÀAiÉÆÃV¹, ªÁå¸À ‘D’G¼Àî, ªÉÃUÀ ‘V’AiÉÆA¢UÉ ‘r’ ¸ÁAzÀævÉAiÀÄ

zÀæªÀzÀ°è ZÀ°¸ÀÄwÛgÀĪÀ ªÀÄvÀÄÛ QæAiÀiÁvÀäPÀ ¹ßUÀÞvÉ ‘m’DVgÀĪÀ £ÀAiÀÄ UÉÆüÀzÀ ªÉÄÃ¯É dUÀÄÎ

(J¼É) §®PÁÌV C©üªÀåQÛAiÀÄ£ÀÄß PÀAqÀÄ»r¬Äj.

2.(a) Show by dimensional analysis that data for forced convection may be

correlated by an equation of the form: Nu= F (Re,Pr) [25 Marks]

¤§ðA¢üvÀ ¸ÀAªÀºÀ£ÀzÀ ªÀiÁ»wAiÀÄ£ÀÄß Nu= F (Re,Pr) ¸À«ÄÃPÀgÀtzÀ gÀÆ¥ÀzÉÆA¢UɸÀA§A¢ü¹, DAiÀiÁ«Äà «±ÉèõÀuɬÄAzÀ ¸Á¢ü¹..

Time : 3 hours ”‹ ‹·ø· : 3 W‹ÌpÊW‹Ÿ‹·

Maximum Marks : 250

W‹ƒ–‹u AÌP‹W‹Ÿ‹·: 250

2.(b) A 12mm diameter mild steel sphere (k=42.5W/mK) is exposed to cooling

airflow at 270C resulting in convective coefficient h=114W/m2K. Determine.

MAzÀÄ 12mm ªÁå¸ÀzÀ ªÀÄÈzÀÄ GPÀÄÌ UÉÆüÀ (k=42.5W/mK) ªÀ£ÀÄß 270C AiÀÄ°è

vÀA¥ÀÄPÁgÀPÀ UÁ½ºÀj«UÉ MqÀدÁVzÀÄÝ EzÀÄ ¸ÀAªÁºÀPÀ ¸ÀºÀUÀÄuÁAPÀ h=114W/m2K £À

¥sÀ°vÁA±ÀªÀ£ÀÄß GAlÄ ªÀiÁqÀÄvÀÛzÉ. EªÀÅUÀ¼À£ÀÄß ¤zsÀðj¹.

(i) Time required to cool the sphere from 5400C to 950C

5400C ¤AzÀ 95

0C UÉ UÉÆüÀªÀ£ÀÄß vÀA¥ÁV¸À®Ä ¨ÉÃPÁVgÀĪÀ ¸ÀªÀÄAiÀÄ

(ii) Instantaneous heat transfer rate 2 minutes after the start of cooling

and

vÀA¥ÀÄUÉƽ¸ÀÄ«PÉAiÀÄ DgÀA s̈ÀªÁzÀ 2 ¤«ÄµÀUÀ¼À £ÀAvÀgÀ vÁvÀÌ÷ëtÂÃAiÀÄ ±ÁRªÀUÁðªÀuÉ zÀgÀ.

(iii) Total energy transferred from the sphere the first 2 minutes.

ªÉÆzÀ® 2 ¤«ÄµÀUÀ¼À°è UÉÆüÀ¢AzÀ ªÀUÁðªÀuÉAiÀiÁzÀ MlÄÖ ±ÀQÛAiÀÄ£ÀÄß ¤zsÀðj¹.

The relevant properties of mild steel are:

Density ‘r’=7850kg/m3 , specific heat c=475 J/kg K and Thermal diffusivity

a= 0.043 m2/hr.

ªÀÄÈzÀÄ GQÌ£À ¸ÀĸÀAUÀvÀ ®PÀëtUÀ¼ÉAzÀgÉ ¸ÁAzÀævÉ ‘r’=7850kg/m3, ¤¢ðµÀÖ GµÀÚvÉ

c=475 J/kg K ªÀÄvÀÄÛ xÀªÀÄð¯ï «¸ÀgÀtvÉ a= 0.043 m2/hr. [25 Marks]

3.(a) The frictional torque T of disc of diameter D rotating at a speed N in a fluid of viscosity m and density r in a turbulent flow is given by

[25 Marks]

D ªÁå¸ÀªÀ£ÀÄß¼Àî ©¯ÉèAiÀÄ (r¸ïÌ) WÀµÀðuÁ s̈ÁæªÀÄPÀ T AiÀÄÄ N ªÉÃUÀzÀ°è m ¹ßUÀÞvÁ

zÀæªÀzÀ°è wgÀÄUÀÄwÛzÉ ªÀÄvÀÄÛ ¸ÁAzÀævÉ r ¥ÀæPÀëÄ§Þ ºÀj«£À°è T = D N5 2 AiÀÄ£ÀÄß

¤ÃqÀĪÀÅzÀÄ. EzÀ£ÀÄß §QAUï ºÁåA£À p-¹zÁÞAvÀ¢AzÀ ¸Á¢ü¹.

3.(b) Derive an expression for total emissive power of a black body as stated

according to Stefan-Boltzman’s law to get value of constant being

computated. [25 Marks]

¹ÖÃ¥sÀ£ï-¨ÉÆïïÖ÷ÓªÀÄ£ï£À ¤AiÀĪÀÄzÀ ªÉÄÃgÉUÉ ¤gÀƦ¹gÀĪÀAvÉ ¯ÉQ̸À¯ÁzÀ ¹ÜgÁAPÀzÀªÀiË®åªÀ£ÀÄß ¥ÀqÉAiÀÄ®Ä MAzÀÄ PÀ¥ÀÄà PÁAiÀÄzÀ MlÄÖ GvÀìdð£Á ¸ÁªÀÄxÀåðzÀ C©üªÀåQÛAiÀÄ£ÀÄß ¤µÀàwÛ¹.

∅ .Prove this by using Buekingham’s –theorem .

4. (I) Explain the following terms as applied to heat exchangers

GµÀÚ «¤ªÀÄAiÀÄPÁjUÀ½UÉ C£Àé¬Ä¹ PɼÀV£À ¥ÀzÀUÀ¼À£ÀÄß «ªÀj¹.

¸ÁªÀÄxÀåð C£ÀÄ¥ÁvÀ(i) Capacity ratio

(ii) Heat exchanger effectiveness

(iii) Number of Transfer Units

GµÀÚ «¤ªÀÄAiÀÄ ¥ÀjuÁªÀÄPÁjvÀé

ªÀUÁðªÀuÉ WÀlPÀUÀ¼À ¸ÀASÉå

(II) Obtain an expression for effectiveness of a parallel flow and counter flow

heat exchanger in terms of NTU and Capacity ratio.

NTU ¥ÀzÀUÀ¼À°è ªÀÄvÀÄÛ zsÁgÀt±ÀQÛ (¸ÁªÀÄxÀåð) C£ÀÄ¥ÁvÀzÀ°è MAzÀÄ ¸ÀªÀiÁAvÀgÀ ºÀjªÀŪÀÄvÀÄÛ ¥Àæw ºÀjªÀÅ (PËAlgï) «¤ªÀÄAiÀÄPÁjAiÀÄ ¥ÀjuÁªÀÄPÁjvÀézÀ C©üªÀåQÛAiÀÄ£ÀÄߥÀqɬÄj. [50 Marks]

SECTION—B / Àª›W‹>—B

5.(a) What are the differences between compression ignition (CI) and spark

ignition (SI) system? [25 Marks]

¸ÀA¦ÃqÀ£À d鮣À (CI) ªÀÄvÀÄÛ Qr d鮣À (SI) ªÀåªÀ¸ÉÜUÀ¼À £ÀqÀĪÀt ªÀåvÁå¸ÀUÀ¼ÉãÀÄ?

5.(b) With a neat sketch discuss the ideal reverse Brayton cycle. Compare the

actual reverse Brayton cycle with the ideal Brayton cycle using a T-S

diagram (Temperature-Entropy diagram). Derive expressions for network

output and the turbine and compressor efficiencies. [25 Marks]

DzÀ±Àð «¥ÀAiÀÄðAiÀÄ ¨ÉæÃl£ï ZÀPÀæªÀ£ÀÄß CAzÀªÁzÀ avÀæzÉÆA¢UÉ ZÀað¹. MAzÀÄ T-S

gÉÃSÁavÀæªÀ£ÀÄß (vÁ¥À-JAmÁæ¦ (C®¨sÀå ¥ÀæªÀiÁt) gÉÃSÁavÀæ) §¼À¹ ªÁ¸ÀÛªÀ »ªÉÆäUÀ¨ÉæÃl£ï ZÀPÀæzÉÆA¢UÉ DzÀ±Àð ¨ÉæÃl£ï ZÀPÀæªÀ£ÀÄß ºÉÆð¹. eÁ®PÁAiÀÄð GvÀà£Àß ªÀÄvÀÄÛl¨ÉÊð£ï ªÀÄvÀÄÛ ¸ÀA¦ÃqÀPÀ zÀPÀëvÁ ¸ÁªÀÄxÀåðUÀ¼À C©üªÀåQÛUÀ¼À£ÀÄß ¤µÀàwÛ¹.

An air refrigerator working on the principle of reverse Brayton cycle. The

air into the compressor is at 1 atm at -100C. It is compressed to 10 atm and

cooled to 400C at the same pressure. It is then expanded to 1 atm and

discharged to take cooling load. The air circulation is 1 kg/s.

»ªÉÆäUÀ ¨ÉæÃl£ï ZÀPÀæzÀ vÀvÀézÀ ªÉÄÃ¯É MAzÀÄ ªÁAiÀÄÄ gɦüædgÉÃlgï PÁAiÀÄð

¤ªÀð»¸ÀÄwÛzÉ. ¸ÀA¦ÃqÀPÀzÀ M¼ÀUÀqÉUÉ UÁ½AiÀÄÄ 1 atm £À°è -10 0C £À°èzÉ. CzÀÄ 10

atm UÉ ¸ÀAPÉÆÃZÀ£ÀUÉƼÀÄîvÀÛzÉ ªÀÄvÀÄÛ CzÉà MvÀÛqÀzÀ°è 400C UÉ vÀA¥ÁUÀÄvÀÛzÉ. £ÀAvÀgÀ

CzÀÄ 1 atm UÉ «PÀ¹¸ÀÄvÀÛzÉ ªÀÄvÀÄÛ vÀA¦PÉ ºÉÆgÉAiÀÄ£ÀÄß vÉUÉzÀÄPÉƼÀî®Ä

©qÀÄUÀqÉAiÀiÁUÀÄvÀÛzÉ. UÁ½AiÀÄ ¥Àæ̧ ÀgÀt 1 kg/¸É.

The isentropic efficiency of the compressor = 80%

¸ÀA¦ÃqÀPÀzÀ L¸É£ïmÉÆææPï zÀPÀëvÉAiÀÄÄ = 80%

The isentropic efficiency of the expander = 90%

«PÀ¸À£ÀzÀ L¸É£ïmÉÆææPï zÀPÀëvÉAiÀÄÄ = 90%

Find the following:

PɼÀV£ÀªÀÅUÀ¼À£ÀÄß PÀAqÀÄ»r¬Äj

(i) Refrigeration capacity of the system ªÀåªÀ¸ÉÜAiÀÄ gɦüædgÉõÀ£ï ¸ÁªÀÄxÀåð.

(ii) C.O.P. of the system ªÀåªÀ¸ÉÜAiÀÄ C.O.P

Take g = 1.4, Cp= 1.00 kJ / kg0C

g = 1.4, Cp= 1.00 kJ / kg0C JAzÀÄ vÉUÉzÀÄPÉƽî.

6. (I) Compare the advantages of MHD (magneto hydrodynamic) power

generation over the other Conventional Methods of Generation.

MHD (ªÀiÁåUÉßmÉÆ ºÉÊqÉÆæqÉÊ£À«ÄPï ¥ÀªÀgï d£ÀgÉõÀ£ï) AiÀÄ C£ÀÄPÀÆ®UÀ¼À£ÀÄßGvÁàzÀ£ÉAiÀÄ EvÀgÉ ¸ÁA¥ÀæzÁ¬ÄPÀ «zsÁ£ÀUÀ¼ÉÆA¢UÉ ºÉÆð¹.

(II) Explain the utilization of Solar Energy?

¸ËgÀ±ÀQÛAiÀÄ G¥ÀAiÀÄÄPÀÛvÉAiÀÄ£ÀÄß «ªÀj¹. [50 Marks]

7.(a) Describe the features of High-pressure Boilers? and List the advantages of

High-pressure Boilers? [25 Marks]

C¢üPÀ MvÀÛqÀzÀ ¨ÁAiÀÄègïUÀ¼À ®PÀëtUÀ¼À£ÀÄß «ªÀj¹ ªÀÄvÀÄÛ C¢üPÀ MvÀÛqÀ ¨ÁAiÀÄègïUÀ¼ÀC£ÀÄPÀÆ®UÀ¼À£ÀÄß ¥ÀnÖ ªÀiÁr.

7.(b) Explain the working principal of vapour compression cycle refrigeration,

with neat sketch. List its merits and demerits over Air Refrigeration

System. [25 Marks]

s̈ÁµÀà ¸ÀA¦ÃqÀ£À ZÀPÀæ gɦüædgÉÃlgïUÀ¼À PÁAiÀÄðvÀvÀéªÀ£ÀÄß CAzÀªÁzÀ avÀæzÉÆA¢UÉ «ªÀj¹. ªÁAiÀÄÄ gɦüædgÉõÀ£ï ªÀåªÀ¸ÉÜVAvÀ®Æ EzÀÄ ºÉÆA¢gÀĪÀ C£ÀÄPÀÆ®UÀ¼ÀÄ ªÀÄvÀÄÛC£Á£ÀÄPÀÆ®UÀ¼À£ÀÄß ¥ÀnÖ ªÀiÁr.

8.(a) Classify hydraulic turbines. Name and explain the performance

characteristics of turbines. [25 Marks]

÷ÊÁv›≈-»PÖ o∏ÊÁÏ-Æ‹·-W‹-Ÿ‹Æ‹·∞  ‹X‡Ï-P‹-ƒ‘. ÷Ê”‹-ƒ‘  ‹·Ò‹·§ o∏ÊÁÏ-Æ‹·-W‹Ÿ‹ Ø ‹Ï-÷‹O› W‹·|-∆-P‹“-|-W‹-Ÿ‹Æ‹·∞

À ‹-ƒ-‘.

8.(b) List and explain the desirable properties of a Ideal Refrigerant by

considering suitable examples.. [25 Marks]

DzÀ±Àð gɦüædgÉAmï£À (±ÉÊvÀåPÁj) C¥ÉÃPÀëtÂÃAiÀÄ ®PÀëtUÀ¼À£ÀÄß ¸ÀÆPÀÛ GzÁºÀgÀuÉUÀ¼À£ÀÄߥÀjUÀt¸ÀĪÀÅzÀjAzÀ ¥ÀnÖ ªÀiÁr ªÀÄvÀÄÛ «ªÀj¹.