section 7.5 inverse trigonometric functions ii · 2014. 10. 20. · 7.5.49 cot−1− 1 3 " #...

5
Section 7.5 Inverse Trigonometric Functions II Note: A calculator is helpful on some exercises. Bring one to class for this lecture. OBJECTIVE 1: Evaluating composite Functions involving Inverse Trigonometric Funcitons of the Form f ! f 1 and f 1 ! f It is imperative that you know and understand the three inverse trigonometric functions introduced in 7.4. A. y = sin 1 x (Say: y is the angle whose sine is x”) 1. Draw the graph of the inverse sine function. 2. Domain___________________ Range _________________ 3. The range of the inverse sine function represents an angle whose terminal side lies in a. ____________________ (which quadrants) b. ___________________________________ (which axes) c. Show this with a graph. B. y = cos 1 x (Say: y is the angle whose cosine is x”) 1. Draw the graph of the inverse cosine function. 2. Domain___________________ Range _________________ 3. The range of the inverse cosine function represents an angle whose terminal side lies in a. ____________________ (which quadrants) b. ___________________________________ (which axes) c. Show this with a graph. C. y = tan 1 x (Say: y is the angle whose tangent is x”) 1. Draw the graph of the inverse tangent function. 2. Domain___________________ Range _________________ 3. The range of the inverse tangent function represents an angle whose terminal side lies in a. ____________________ (which quadrants) b. ___________________________________ (which axes) c. Show this with a graph.

Upload: others

Post on 02-Aug-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Section 7.5 Inverse Trigonometric Functions II · 2014. 10. 20. · 7.5.49 cot−1− 1 3 " # $ % & ' OBJECTIVE 4: Writing Trigonometric Expressions as Algebraic Expressions Functions

Section 7.5 Inverse Trigonometric Functions II Note: A calculator is helpful on some exercises. Bring one to class for this lecture. OBJECTIVE 1: Evaluating composite Functions involving Inverse Trigonometric Funcitons of the Form

f ! f −1 and

f −1 ! f

It is imperative that you know and understand the three inverse trigonometric functions introduced in 7.4.

A.

y = sin−1 x (Say: “y is the angle whose sine is x”)

1. Draw the graph of the inverse sine function.

2. Domain___________________ Range _________________ 3. The range of the inverse sine function represents an angle whose terminal side lies in

a. ____________________ (which quadrants) b. ___________________________________ (which axes) c. Show this with a graph.

B.

y = cos−1 x (Say: “y is the angle whose cosine is x”)

1. Draw the graph of the inverse cosine function.

2. Domain___________________ Range _________________ 3. The range of the inverse cosine function represents an angle whose terminal side lies in

a. ____________________ (which quadrants) b. ___________________________________ (which axes) c. Show this with a graph.

C.

y = tan−1 x (Say: “y is the angle whose tangent is x”)

1. Draw the graph of the inverse tangent function.

2. Domain___________________ Range _________________ 3. The range of the inverse tangent function represents an angle whose terminal side lies in

a. ____________________ (which quadrants) b. ___________________________________ (which axes) c. Show this with a graph.

Page 2: Section 7.5 Inverse Trigonometric Functions II · 2014. 10. 20. · 7.5.49 cot−1− 1 3 " # $ % & ' OBJECTIVE 4: Writing Trigonometric Expressions as Algebraic Expressions Functions

CAUTION: For trigonometric expressions of the form

( f ! f −1)(x) or

( f −1 ! f )(x) , the cancellation equations work ONLY if x is in the domain of the “inner” function.

!

Cancellation*Equations*for*Compositions*of*Inverse*Trigonometric*Functions*

Cancellation*Equations*for*the*Restricted*Sine*Function*and*its*Inverse!

( )1sin sin− =x x !for!all!x"in!the!interval![ ]1,1− !

( )1sin sin− =θ θ !for!all!θ !in!the!interval! 2 2,! "−$ %π π .!!*

Cancellation*Equations*for*the*Restricted*Cosine*Function*and*its*Inverse!

( )1cos cos− =x x !for!all!x"in!the!interval![ ]1,1− !

( )1cos cos− =θ θ !for!all!θ "in!the!interval![ ]0,π .*

Cancellation*Equations*for*the*Restricted*Tangent*Function*and*its*Inverse!

( )1tan tan− =x x !for!all!x"in!the!interval! ( ),−∞ ∞ .!

( )1tan tan− =θ θ !for!all!θ "in!the!interval! ( )2 2,− π π .*

EXAMPLES: Find the exact value of each expression or state that it does not exist.

7.5.4 sin sin−1 − 32

"

#$

%

&'

"

#$$

%

&''

7.5.8 cos cos−1 − 85

"

#$

%

&'

"

#$

%

&'

7.5.9 sin−1 sin π7

"

#$

%

&'

7.5.13 cos−1 cos 3π4

"

#$

%

&'

7.5.14 tan−1 tan 7π6

"

#$

%

&'

Shahrzad Jamshidi
Page 3: Section 7.5 Inverse Trigonometric Functions II · 2014. 10. 20. · 7.5.49 cot−1− 1 3 " # $ % & ' OBJECTIVE 4: Writing Trigonometric Expressions as Algebraic Expressions Functions

7.5.17 tan−1 tan 8π3

"

#$

%

&'

7.5.26 cos−1 cos13π10

"

#$

%

&'

OBJECTIVE 2: Evaluating composite Functions involving Inverse Trigonometric Funcitons of the Form

f ! g−1 and

f −1 ! g

Method:

1. Evaluate the “inner expression” and then evaluate the “outer expression.” 2. It may be necessary to draw a triangle (using x, y, or r) in the appropriate quadrant (depending

on if the trig value is positive or negative), determine the value of the missing side and write the trig function requested in the “outer expression.”

3. If an exact value of the “inner expressions” cannot be determined, try writing the expressions as an equivalent expression using a cofunction identity.

EXAMPLES. : Find the exact value of each expression or state that it does not exist.

7.5.32 cos tan−1 −1( )( )

7.5.34 tan sin−1 −12

"

#$

%

&'

"

#$

%

&'

7.5.37 tan sin−1 34

"

#$

%

&'

"

#$$

%

&''

7.5.43 cos−1 sin 5π4

"

#$

%

&'

"

#$

%

&'

7.5.46 cos−1 sin 19π9

"

#$

%

&'

"

#$

%

&'

Shahrzad Jamshidi
Shahrzad Jamshidi
Page 4: Section 7.5 Inverse Trigonometric Functions II · 2014. 10. 20. · 7.5.49 cot−1− 1 3 " # $ % & ' OBJECTIVE 4: Writing Trigonometric Expressions as Algebraic Expressions Functions

OBJECTIVE 3: Understanding the Inverse cosecant, Inverse Secant, and Inverse Cotangent Functions

Definition* Inverse*Cosecant*Function*

The!inverse*cosecant*function,!denoted!as! 1csc−=y x ,!is!the!inverse!

!of! ) (2 2csc , ,0 0,! "= −$ %Uy x π π .!!

The!domain!of! 1csc−=y x !is ( ] [ ), 1 1,−∞ − ∞U !

and!the!range!is! ) (2 2,0 0,! "−$ %Uπ π .!

*

Definition* Inverse*Secant*Function*

The!inverse*secant*function,!denoted!as! 1sec−=y x ,!is!the!inverse!of

) (2 2sec , 0, ,! "= # $Uy x π π π .!!!*

The!domain!of! 1sec−=y x !is ( ] [ ), 1 1,−∞ − ∞U and!the!range!is!

) (2 20, ,! "# $Uπ π π .!

!

!

!

Definition* Inverse*Cotangent*Function*

*

The!inverse*cotangent*function,!denoted!as!!1cot−=y x ,!!is!the!inverse!of! cot , 0= < <y x x π .!!!

The!domain!of! 1cot−=y x !is! ( ),−∞ ∞ and!the!range!is! ( ) (2 2,0 0,π π "− $U .!

!

!

EXAMPLES. : Find the exact value of each expression or state that it does not exist.

7.5.48 csc−1(2)

1csc−=y x

1sec−=y x

1cot−=y x

1sec−=y x

Shahrzad Jamshidi
Page 5: Section 7.5 Inverse Trigonometric Functions II · 2014. 10. 20. · 7.5.49 cot−1− 1 3 " # $ % & ' OBJECTIVE 4: Writing Trigonometric Expressions as Algebraic Expressions Functions

7.5.49 cot−1 − 13

"

#$

%

&'

OBJECTIVE 4: Writing Trigonometric Expressions as Algebraic Expressions Functions

In Calculus, it is often necessary to write trigonometric expressions algebraically. In this text u is used as the unknown variable. In calculus x is often (but not always) used.

We assume that the variable represents an angle whose terminal side is located in Quadrant I

Method:

1. Given the inverse trigonometric expression (inner expression which represents an unknown angle

θ ), draw the triangle represented with

θ in standard position and the terminal side located in QI 2. Label the given sides of the triangle. Since trigonometric expressions represent ratios of the sides

of right triangles, two sides are always given. 3. Determine algebraically the 3rd side. 4. Write the expression asked for (outside expression).

EXAMPLES. Rewrite each trigonometric expression as an algebraic expression involving the variable u. Assume that

u > 0 and that the value of the “inner” trigonometric expression represents an angle

θ such

that

0 < θ <π2

.

7.5.54 tan(cos−1 2u)

7.5.55 cos sin−1 3u

"

#$

%

&'

7.5.57 sec sin−1 uu2 +121

"

#$

%

&'

Shahrzad Jamshidi
Shahrzad Jamshidi