section 4.5 summary of curve sketchingms.mcmaster.ca/~rpshen/1za3/pptc4s5.pdfguidelines f. local...

21
Section 4.5 Summary of Curve Sketching Ruipeng Shen October 9-10th Ruipeng Shen MATH 1ZA3 October 9-10th 1 / 21

Upload: dotu

Post on 05-May-2018

216 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Section 4.5 Summary of Curve Sketchingms.mcmaster.ca/~rpshen/1ZA3/pptc4s5.pdfGuidelines F. Local Maximum and Minimum Values Find critical numbers and apply the rst derivative test

Section 4.5 Summary of Curve Sketching

Ruipeng Shen

October 9-10th

Ruipeng Shen MATH 1ZA3 October 9-10th 1 / 21

Page 2: Section 4.5 Summary of Curve Sketchingms.mcmaster.ca/~rpshen/1ZA3/pptc4s5.pdfGuidelines F. Local Maximum and Minimum Values Find critical numbers and apply the rst derivative test

Guidelines

The sketching should display the following aspects of the functions whenapplicable.

A. Domian

B. Intercepts Find the y -intercept by calculating f (0). Find the x-intercepts bysolving the equation f (x) = 0 when possible.

C. Symmetry Is the function odd, even or periodic?

D. Asymptotes The line y = L is a horizontal asymptote if

limx→+∞

f (x) = L or limx→−∞

f (x) = L.

The line x = a is a vertical asymptote if

limx→a−

f (x) = ±∞ or limx→a+

f (x) = ±∞.

E. Intervals of Increase or Decrease Calculate the first derivative f ′(x) anduse the I/D test.

Ruipeng Shen MATH 1ZA3 October 9-10th 2 / 21

Page 3: Section 4.5 Summary of Curve Sketchingms.mcmaster.ca/~rpshen/1ZA3/pptc4s5.pdfGuidelines F. Local Maximum and Minimum Values Find critical numbers and apply the rst derivative test

Guidelines

F. Local Maximum and Minimum Values Find critical numbers and applythe first derivative test.

G. Concavity and Points of inflection Calculate f ′′(x) and use the concavitytest. (Optional) The derivatives at the inflection points are helpful.

Example

Sketch the curve y =2x2

x2 − 1.

Solution A. Domain = {x ∈ R|x 6= ±1}.B. The y -intercept is f (0) = 0. The x intercept is the solution to f (x) = 0,namely, x = 0.C. This function is even.

D. By the limit limx→±∞

2x2

x2 − 1= lim

x→±∞

2

1− 1/x2= 2+, We have a horizontal

asymptote y = 2 (↙↘).

Ruipeng Shen MATH 1ZA3 October 9-10th 3 / 21

Page 4: Section 4.5 Summary of Curve Sketchingms.mcmaster.ca/~rpshen/1ZA3/pptc4s5.pdfGuidelines F. Local Maximum and Minimum Values Find critical numbers and apply the rst derivative test

Example 2x2

x2−1 (Continued)D (Continued). We consider the limits

limx→−1−

2x2

x2 − 1= +∞ 2

1+ − 1lim

x→−1+2x2

x2 − 1= −∞ 2

1− − 1

limx→1−

2x2

x2 − 1= −∞ 2

1− − 1lim

x→1+

2x2

x2 − 1= +∞ 2

1+ − 1

These give two vertical asymptotes x = −1 (↗↙) and x = 1 (↘↖).E-G. We can first calculate the derivatives

f (x) = 2 +2

x2 − 1= 2 + 2(x2 − 1)−1;

f ′(x) = 2 · [−(x2 − 1)−2] · 2x = −4x(x2 − 1)−2;

f ′′(x) = (−4x)′(x2 − 1)−2 + (−4x)[(x2 − 1)−2]′

= −4(x2 − 1)−2 + (−4x) · [−2(x2 − 1)−3] · 2x= (4− 4x2)(x2 − 1)−3 + 16x2(x2 − 1)−3

= (4 + 12x2)(x2 − 1)−3.

Ruipeng Shen MATH 1ZA3 October 9-10th 4 / 21

Page 5: Section 4.5 Summary of Curve Sketchingms.mcmaster.ca/~rpshen/1ZA3/pptc4s5.pdfGuidelines F. Local Maximum and Minimum Values Find critical numbers and apply the rst derivative test

Example 2x2

x2−1 (Continued)

E-G (Continued). Now we can apply I/D Test and Concavity Test using

f ′(x) = −4x(x2 − 1)−2 f ′′(x) = (4 + 12x2)(x2 − 1)−3

Interval f ′(x) Monotonicity f ′′(x) Concavity

(−∞,−1) + Increasing + Upward

(−1, 0) + Increasing − Downward

(0, 1) − Decreasing − Downward

(1,∞) − Decreasing + Upward

The first derivative f ′(x) changes sign at x = 0, f (0) = 0 is a local maximumvalue.The second derivative f ′′(x) changes sign at x = ±1, but these are not in thedomain. Thus there are no point of inflection.

Ruipeng Shen MATH 1ZA3 October 9-10th 5 / 21

Page 6: Section 4.5 Summary of Curve Sketchingms.mcmaster.ca/~rpshen/1ZA3/pptc4s5.pdfGuidelines F. Local Maximum and Minimum Values Find critical numbers and apply the rst derivative test

Sketching of y = 2x2

x2−1

Asymptotes: x=-1(↗↙) x=+1 (↘↖) y=2 (↙↘) -1 0 1

1

f(0)=0

Even

Ruipeng Shen MATH 1ZA3 October 9-10th 6 / 21

Page 7: Section 4.5 Summary of Curve Sketchingms.mcmaster.ca/~rpshen/1ZA3/pptc4s5.pdfGuidelines F. Local Maximum and Minimum Values Find critical numbers and apply the rst derivative test

Example

Example

Sketch the curve y =x2√x + 1

.

Solution A. Domain = (−1,+∞).B. The y -intercept is f (0) = 0. The x intercept is the solution to f (x) = 0,namely, x = 0.C. This function is not odd, even or periodic.

D. By the limit limx→+∞

x2√x + 1

= +∞, there is no horizontal asymptote.

limx→−1+

x2√x + 1

= +∞ 1√0+

So we have a vertical asymptote x = −1 (↖).

Ruipeng Shen MATH 1ZA3 October 9-10th 7 / 21

Page 8: Section 4.5 Summary of Curve Sketchingms.mcmaster.ca/~rpshen/1ZA3/pptc4s5.pdfGuidelines F. Local Maximum and Minimum Values Find critical numbers and apply the rst derivative test

Example f (x) = x2√x+1

(Continued)

E-G. We can first calculate the derivatives

f ′(x) =(x2)′

√x + 1− x2

(√x + 1

)′x + 1

=2x√x + 1− x2 · 1/(2

√x + 1)

x + 1

=4x(x + 1)− x2

2(x + 1)3/2=

3x2 + 4x

2(x + 1)3/23x2 + 4x = (3x + 4)x

f ′′(x) =(3x2 + 4x)′ · 2(x + 1)3/2 − (3x2 + 4x) · [2(x + 1)3/2]′

4(x + 1)3

=(6x + 4) · 2(x + 1)3/2 − (3x2 + 4x) · 2 · (3/2)(x + 1)1/2

4(x + 1)3

=(12x + 8)(x + 1)− 3 · (3x2 + 4x)

4(x + 1)5/2

=3x2 + 8x + 8

4(x + 1)5/2> 0 always concave upward

The function is decreasing in (−1, 0) and increasing in (0,∞). This is a singlelocal minimum f (0) = 0, no point of inflection.

Ruipeng Shen MATH 1ZA3 October 9-10th 8 / 21

Page 9: Section 4.5 Summary of Curve Sketchingms.mcmaster.ca/~rpshen/1ZA3/pptc4s5.pdfGuidelines F. Local Maximum and Minimum Values Find critical numbers and apply the rst derivative test

Sketching of y = x2√x+1

Asymptotes: x=-1 (↖) -1 0

1

f(0)=0, f(3) = 9/2y

x

Ruipeng Shen MATH 1ZA3 October 9-10th 9 / 21

Page 10: Section 4.5 Summary of Curve Sketchingms.mcmaster.ca/~rpshen/1ZA3/pptc4s5.pdfGuidelines F. Local Maximum and Minimum Values Find critical numbers and apply the rst derivative test

Example

Example

Sketch the curve y = xex .

Solution A. Domain = R.B. The y -intercept is f (0) = 0. The x intercept is the solution to f (x) = 0,namely, x = 0.C. This function is not odd, even or periodic.D. By the limit lim

x→+∞xex = +∞ and

limx→−∞

xex = limx→−∞

x

e−x= lim

x→−∞

1

−e−x= lim

x→−∞(−ex) = 0−

there is a horizontal asymptote y = 0 (↖).Since lim

x→axex = aea 6= ±∞, there is no vertical asymptote.

E-G. We can first calculate the derivatives

f ′(x) = (x)′ex + x(ex)′ = ex + xex = (x + 1)ex ;

f ′′(x) = (x + 1)′ex + (x + 1)(ex)′ = ex + (x + 1)ex = (x + 2)ex .

Ruipeng Shen MATH 1ZA3 October 9-10th 10 / 21

Page 11: Section 4.5 Summary of Curve Sketchingms.mcmaster.ca/~rpshen/1ZA3/pptc4s5.pdfGuidelines F. Local Maximum and Minimum Values Find critical numbers and apply the rst derivative test

Example f (x) = xex (Continued)

We cut the domain into three intervals at x = −2,−1 (The roots of f ′(x) andf ′′(x))

Interval f ′(x) Monotonicity f ′′(x) Concavity

(−∞,−2) − Decreasing − Downward

(−2,−1) − Decreasing + Upward

(−1,∞) + Increasing + Upward

The second derivative changes sign at x = −2 thus(−2, f (−2)) = (−2,−2e−2) is an inflection point.

The first derivative changes from negative to positive at x = −1. Thus thepoint (−1, f (−1)) = (−1,−1/e) is a local minimum.

Ruipeng Shen MATH 1ZA3 October 9-10th 11 / 21

Page 12: Section 4.5 Summary of Curve Sketchingms.mcmaster.ca/~rpshen/1ZA3/pptc4s5.pdfGuidelines F. Local Maximum and Minimum Values Find critical numbers and apply the rst derivative test

Sketching of y = xex

-1f(-2)=-2e-2, f'(-2) = -e-2, f(-1) = -e-1, f(0)=0, f(1) = e

-2

1x

y

Ruipeng Shen MATH 1ZA3 October 9-10th 12 / 21

Page 13: Section 4.5 Summary of Curve Sketchingms.mcmaster.ca/~rpshen/1ZA3/pptc4s5.pdfGuidelines F. Local Maximum and Minimum Values Find critical numbers and apply the rst derivative test

Example

Example

Sketch the curve y =cos x

2 + sin x.

Solution A. Domain = R.B. The y -intercept is f (0) = 1/2. The x intercept is the solution to f (x) = 0,namely, x = (k + 1/2)π for any integer k .C. This function is periodic f (x + 2π) = f (x).

D. The limits limx→±∞

cos x

2 + sin xdoes not exist. Thus there is no horizontal

asymptote.Since lim

x→af (x) = f (a) 6= ±∞, there is no vertical asymptote.

E-G. We can first calculate the derivatives

f ′(x) =(cos x)′(2 + sin x)− cos x(2 + sin x)′

(2 + sin x)2

=(− sin x)(2 + sin x) − cos x · cos x

(2 + sin x)2=−1− 2 sin x

(2 + sin x)2.

Ruipeng Shen MATH 1ZA3 October 9-10th 13 / 21

Page 14: Section 4.5 Summary of Curve Sketchingms.mcmaster.ca/~rpshen/1ZA3/pptc4s5.pdfGuidelines F. Local Maximum and Minimum Values Find critical numbers and apply the rst derivative test

Example f (x) = cos x2+sin x (Continued)

We can continue to calculate the second derivative.

f ′(x) = −(1 + 2 sin x)(2 + sin x)−2

f ′′(x) = − d

dx

[(1 + 2 sin x)(2 + sin x)−2

]= −

{(1 + 2 sin x)′(2 + sin x)−2 + (1 + 2 sin x)

[(2 + sin x)−2

]′}= −

{2 cos x · (2 + sin x)−3+1 + (1 + 2 sin x)

[−2 · (2 + sin x)−3 · cos x

]′}= −(2 + sin x)−3 [2 cos x · (2 + sin x)− 2 cos x · (1 + 2 sin x)]

= −(2 + sin x)−3 · 2 cos x · (2 + sin x − 1− 2 sin x)

= −(2 + sin x)−3 · 2 cos x · (1− sin x)

=−2 cos x(1− sin x)

(2 + sin x)3.

Let us consider a few intervals cut from R: (−π/6, π/2), (π/2, 7π/6),(7π/6, 3π/2) and (3π/2, 11π/6).

Ruipeng Shen MATH 1ZA3 October 9-10th 14 / 21

Page 15: Section 4.5 Summary of Curve Sketchingms.mcmaster.ca/~rpshen/1ZA3/pptc4s5.pdfGuidelines F. Local Maximum and Minimum Values Find critical numbers and apply the rst derivative test

Example f (x) = cos x2+sin x (Continued)

We have

f ′(x) =−(1 + 2 sin x)

(2 + sin x)2; f ′′(x) =

−2 cos x(1− sin x)

(2 + sin x)3.

Interval sin x f ′(x) Monotonicity f ′′(x) Concavity

(−π/6, π/2) > −1/2 − Decreasing − Downward

(π/2, 7π/6) > −1/2 − Decreasing + Upward

(7π/6, 3π/2) < −1/2 + Increasing + Upward

(3π/2, 11π/6) < −1/2 + Increasing − Downward

By the first derivative test, the point (7π/6, f (7π/6)) = (7π/6,−1/√

3) is alocal minimum; the point (−π/6, f (−π/6)) = (−π/6, 1/

√3) is a local

maximum.

The points (π/2, f (π/2)) = (π/2, 0) and (3π/2, f (3π/2)) = (3π/2, 0) arepoints of inflection, since f ′′(x) changes sign at these points;

Ruipeng Shen MATH 1ZA3 October 9-10th 15 / 21

Page 16: Section 4.5 Summary of Curve Sketchingms.mcmaster.ca/~rpshen/1ZA3/pptc4s5.pdfGuidelines F. Local Maximum and Minimum Values Find critical numbers and apply the rst derivative test

Sketching of y = cos x2+sin x

-𝛑 𝛑 7𝛑 3𝛑 11𝛑 6 2 6 2 6

𝛑 2𝛑-2𝛑 -𝛑

f(-𝛑/6)=1/√3 f(𝛑/2)=0 f(7𝛑/6)=-1/√3 f(3𝛑/2)=0f(11𝛑/6)=1/√3 f(0)=1/2

y

x

1

2𝛑-periodic

Ruipeng Shen MATH 1ZA3 October 9-10th 16 / 21

Page 17: Section 4.5 Summary of Curve Sketchingms.mcmaster.ca/~rpshen/1ZA3/pptc4s5.pdfGuidelines F. Local Maximum and Minimum Values Find critical numbers and apply the rst derivative test

Slant Asymptote

DefinitionThe line y = mx + b is called a slant asymptote if

limx→∞

[f (x)− (mx + b)] = 0

Remark We have m = limx→∞

f (x)

xand b = lim

x→∞[f (x)−mx ].

f(x)-(mx+b)

y=f(x)

y=mx+b

y

x

Figure : The distance between the curve y = f (x) and the line y = mx + b approaches 0.

Ruipeng Shen MATH 1ZA3 October 9-10th 17 / 21

Page 18: Section 4.5 Summary of Curve Sketchingms.mcmaster.ca/~rpshen/1ZA3/pptc4s5.pdfGuidelines F. Local Maximum and Minimum Values Find critical numbers and apply the rst derivative test

Example

Example

Sketch the curve y =x3

x2 + 3.

Solution A. Domain = R.B. The y -intercept is f (0) = 0. The x intercept is the solution to f (x) = 0,namely, x = 0.C. This function is odd.D. Since lim

x→af (x) = f (a) 6= ±∞, there is no vertical asymptote.

The limit m = limx→±∞

f (x)

x= lim

x→±∞

x2

x2 + 3= lim

x→±∞

1

1 + 3/x2= 1 exists.

In addition, we have

b = limx→±∞

[f (x)− 1 · x ] = limx→±∞

x3 − (x2 + 3)x

x2 + 3= lim

x→±∞

−3x

x2 + 3= 0.

As a result, the line y = x is a slant asymptote (↙↗).

Ruipeng Shen MATH 1ZA3 October 9-10th 18 / 21

Page 19: Section 4.5 Summary of Curve Sketchingms.mcmaster.ca/~rpshen/1ZA3/pptc4s5.pdfGuidelines F. Local Maximum and Minimum Values Find critical numbers and apply the rst derivative test

Example f (x) = x3

x2+3

E-G. We can first calculate the derivatives

f ′(x) =(x3)′(x2 + 3)− x3 · (x2 + 3)′

(x2 + 3)2=

3x2(x2 + 3)− x3 · 2x(x2 + 3)2

=x4 + 9x2

(x2 + 3)2= 1 + 3 · x2 − 3

(x2 + 3)2

f ′′(x) = 3 · ddx

[(x2 − 3)(x2 + 3)−2

]= 3 ·

{(x2 − 3)′(x2 + 3)−2 + (x2 − 3)[(x2 + 3)−2]′

}= 3

{2x · (x2 + 3)−3+1 + (x2 − 3) · (−2)(x2 + 3)−3 · 2x

}= 3 · 2x(x2 + 3)−3 ·

[(x2 + 3)− 2(x2 − 3)

]=

6x(9− x2)

(x2 + 3)3.

We break the domain into 4 intervals at the points x = −3, 0, 3.

Ruipeng Shen MATH 1ZA3 October 9-10th 19 / 21

Page 20: Section 4.5 Summary of Curve Sketchingms.mcmaster.ca/~rpshen/1ZA3/pptc4s5.pdfGuidelines F. Local Maximum and Minimum Values Find critical numbers and apply the rst derivative test

Example f (x) = x3

x2+3

We have

f ′(x) =x2(x2 + 9)

(x2 + 3)2f ′′(x) =

6x(9− x2)

(x2 + 3)3

Interval f ′(x) Monotonicity f ′′(x) Concavity

(−∞,−3) + Increasing + Upward

(−3, 0) + Increasing − Downward

(0, 3) + Increasing + Upward

(3,∞) + Increasing − Downward

There are no local extreme values. But we have three points of inflection

(−3, f (−3)) = (−3,−9/4), f ′(−3) = 9/8;

(0, f (0)) = (0, 0), f ′(0) = 0;

(3, f (3)) = (3, 9/4), f ′(3) = 9/8.

Ruipeng Shen MATH 1ZA3 October 9-10th 20 / 21

Page 21: Section 4.5 Summary of Curve Sketchingms.mcmaster.ca/~rpshen/1ZA3/pptc4s5.pdfGuidelines F. Local Maximum and Minimum Values Find critical numbers and apply the rst derivative test

Sketching of y = x3

x2+3

Asymptotes: y=x (↙↗)Odd Function

1 2 3

-3 0 3f(0)=0 f'(0)=0f(-3)=-9/4 f'(-3)=9/8f(3)=9/4 f'(3)=9/8

y

x

y=x

Ruipeng Shen MATH 1ZA3 October 9-10th 21 / 21